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Abstract— The Prince of Songkla University (PSU) is the top 

five universities of Thailand that still uses traditional networking. 

Presently, there are Internet applications that are able to provide 

dynamic, manageable, and adaptable features such as Software-

defined Networking (SDN). SDN is a recent concept of 

programmable networks that divides the control plane and data 

plane of all network devices. It can be programmed via an open 

interface which is interesting to implement SDN because of their 

various benefits such as centralized network provisioning, lower 

operating costs etc. In this paper, we propose comparison 

between traditional PSU network which is defined Static routing 

(Static routing non-SDN) and SDN which are using 

programmable algorithm such as Bellman-Ford SDN (BFSDN) 

unicast, Dijkstra SDN (DSDN) on both unicast and multicast in 

order to determine worthiness of migration from traditional 

network to SDN. In part of topology emulator, we have 

replicated topology by Mininet. Its performance is examined in 

terms of throughput, latency, jitter, and packet loss. 

Keywords—Software-defined networking; Unicast; Multicast; 
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I. INTRODUCTION

In a traditional network, it is built from different network 
devices such as hubs, routers, and switches L2/L3 etc. with 
various protocols implemented on them [1]. Many device types 
lead to several configuring policies. It makes network 
administration and performance tuning rather complex. 
Moreover, the current Internet applications services are more 
complicate. They are crucial because the Internet is able to 
handle these new challenges. 

Software Define Networking is a new emerging networking 
approach under network programmable concept. It is an idea to 
divide the control plane and data plane of all transmission 
equipment that can be programmed via an open protocol such 
as ForCES [2], OpenFlow [3], etc. It serves a network manager 
to be centralized, manage and increase granular security. In a 
commercial aspect, it allows to reduce operating costs, save 
hardware and minimize capital expenditures [4]. However, all 
devices must support SDN protocol likes OpenFlow. 

In this paper, we simulate and compare traditional PSU 
network, BFSDN unicast, DSDN both unicast and multicast in 
order to explore the value of changing from traditional 
networking to SDN. 

The remainder of this paper is structured as follows. In the 
next section, we present preliminaries on the work, such as 
Software Defined Networking, Communications and Routing 
algorithm, Mininet and PSU network topology. In Section III, 
we illustrate the simulation results. Finally, this paper work is 
summarized and future work is shown in Section IV. 

II. PRELIMINARIES

A. Software Defined Networking

Software Defined Networking was developed to make
innovation convenient and enable facile programmatic control 
of the network data-path. It isolates controller hardware from 
forwarding hardware. The SDN structure enables the 
combination of transmission equipment which is easy policy 
management. 

Fig. 1. Traditional network and Software-Defined Network 

The SDN architectures, There are ForCES and OpenFlow. 
They are the basic SDN standard of isolation between the 
control and data planes. They standardize messages exchange 
between the planes. In this paper, we focus on OpenFlow 
architecture because it is popular than ForCES. SDN-
OpenFlow architecture composes of application layer, control 
layer, and infrastructure layer. 



· Application layer or management layer is the top
layer. It consists of network operation tools and user
interfaces that management of the network via the
control layer by OpenFlow protocol.

· Control layer is the middle layer using for control all
devices in infrastructure layer via OpenFlow protocol.
SDN controller such as NOX/POX [5], Ryu [6],
Floodlight [7] etc.

· Infrastructure layer is the lowest layer. It includes
all devices in traffic forwarding that all devices must
support OpenFlow protocol.

Fig. 2. The SDN architecture 

OpenFlow is a flow-based switch specification designed to 
enable researchers to run experiments in live networks. It is 
depended on a simple Ethernet flow switch which exposes a 
standardized interface for adding and removing flow accesses. 
OpenFlow protocol is an open protocol that is set between the 
control plane device and the data plane device [8]. 

B. Communications

In this section, two types of communications as unicast and
multicast are reviewed. They have advantages and 
disadvantages which are depended on situation of 
communication. 

1) Unicast

Unicast is a type of communication where data is sent from 
one source to one destination. Unicast uses protocol of 
transport layer such as Transmission Control Protocol (TCP) 
and User Datagram Protocol (UDP), which are session-based 
protocols. In this work, we use Dijkstra shortest path and 
Bellman-Ford shortest path which are popular algorithms [9]. 

a) Dijkstra’s algorithm

The Dijkstra method is algorithm for finding the optimum
path between nodes in a directed graph is G= (V, E), denote: 
V is the set of nodes and E is the set of edges. Dijkstra’s 

algorithm shows in Fig 3, Primarily, distance at source 

(dis[s]=0), distance at u (dis[u]=∞) when u≠s, and previous 

distance at u (pre[u]=null).  

Fig. 3. The Dijkstra’s Algorithm 

In [10] Jehn-Ruey Jiang and team propose Extending 
Dijkstra’s algorithm that adds the node weight analysis in their 
algorithms. 

a) Bellman-Ford’s algorithm

Bellman-Ford method is an algorithm to search for the
optimum path between nodes in a directed graph likes 
Dijkstra’s algorithm. However, it is able to analyze negative 
edge weights. It provides more features than Dijkstra 
algorithm. In contrast, if Bellman-Ford is used over non-
negative weights, its performance is slower than Dijkstra. From 
Fig. 4, shows Bellman-Ford’s algorithm which consists of 
three main steps as initialize graph, Relaxation of edges and 
checking negative cycle. 

Fig. 4. Bellman-ford’s Algorithm 

Bellman-ford’s Algorithm 

Input: G, s 

Output: d[V], p[V] 

1) Initialize graph

1: for each v in V
2:  dis[v] ← ∞ 
3:  pre[v] ← null 

2) Relaxation of edges

1: for i from 1 to IVI-1
2:  for each [u,v] with ew in E 
3:  if dis[u]+ew < dis[v] 
4:  dis[v] ← dis[u]+ew 
5:  pre[v] ← u 

3) Checking negative cycle

1: for each ew(u ,v) in E
2:  if d[u]+ew < dis[v] 
3:  print “Negative cycle” 

Dijkstra’s Algorithm 

Input: G, s 
Output: dis[V], pre[V] 

1: for each v in G(V) 
2:   dis[v] ← ∞ 
3:   pre[v] ← null 
4: insert distance at u node into Q set 
5: while (Q!=null) 
6:   u← Minimum_distance(Q) 
7:   for each v of  u 
8:   if dis[v] > dis[u]+ew[u,v] then 
9:   dis[v]←dis[u]+ew[u,v] 

10:   pre[v]←dis[u] 



Fig. 5. PSU network topology

1) Unicast

Multicast is the communication network ability of sending 
IP packets to member groups. It can reduce transmission 
overhead from an application to send copies of data to all 
group members. An advantage over than unicast is to 
minimize network traffic and optimize bandwidth where 
multiple users are accessing the same live video source. 

GroupFlow [11] is one SDN-driven approach to IP 
multicast routing that has already been proposed. It is based 
on CastFlow [12]. SDN controller of GroupFlow builds on the 
POX framework. Routing protocol of GroupFlow is Protocol 
Independent Multicast (PIM) which constructs shared trees 
centered at a rendezvous-point (RP) router. The PIM, there are 
two varieties as PIM dense mode and PIM sparse mode only 
establishes routes to the designated router (DRs) reactively to 
group joins. 

There is some difference between multicast non-SDN and 
multicast SDN. Multicast SDN can add more membership 
security to the network which is a normal problem in multicast 
non-SDN. In SDN, a client joins a multicast group, its 
membership is assumed to authenticate at a server to a 
controller. GroupFlow (Fig. 6) adds more membership 
security in IGMP JOIN phase. GroupFlow multicast model 
uses Dijkstra's algorithm to compute a shortest path from the 
multicast source to all multicast members in the network. Each 
shortest path is added to multicast tree construction. 

C. Tools

Mininet [13] is a topology emulator program that supports
SDN based on Linux kernel. It can create network virtual 
devices as hosts, OpenFlow switches, legacy switches, routers, 
links, and controllers. It is suitable for researching, testing, 

and debugging etc. Mininet brings many scripts with user-
friendly GUI. In addition, BRITE [14] has been used to create 
our tested topologies. It supports multiple generation models 
and can be used as input topologies in Mininet. Although the 
real network devices would have some cross-traffic, CPU and 
bus architectures specific to each hardware component that 
Mininet does not have, Mininet reveals the trend of 
performance efficiently. 

Fig. 6. IGMP Join of GroupFlow model 



Fig. 7. PSU Topology on Mininet

D. PSU network topology

The Prince of Songkla University (PSU) uses traditional
network that is the extended star topology. This real existed 
topology can be a representative of some organizations or 
companies on a similar scale. Fig. 5 shows PSU topology [15], 
it consists of different transmission node types such as router, 
L2 switch, managed switch and unmanaged switch or hub. 
Most bandwidth between L2 switches is 1 Gbps. We present 
two previously described transmission types such as unicast 
and multicast to test network performance since the PSU 
network topology has various transmission types. 

III. EXPERIMANTAL RESULTS

We set up POX [16] OpenFlow controller and PSU 
topology in the Mininet while all switches are linked to the 
controller.  Fig. 7 shows a PSU network topology which is 
simulated from Mininet. It provides most 1 Gbps links between 
peripheral  nodes to the central nodes [15]. For assess the 
performance of the PSU networking used SDN and Static non-
SDN, we use Iperf [17] to test them such as throughput, 
latency, jitter and packet loss. Experiments are conducted on a 
single computer with CPU Intel ® core TM i7-4790 3.60 GHz 
processor and DDR3 8 GB RAM. 

TABLE I. SIMULATION SETTINGS 

Parameter Value 

Hosts 45 

Nodes 49 

Links 109 

Test times 100 seconds 

Controller POX 0.2.0 support OpenFlow 1.0 

Test tools Mininet 

In the simulation experiments, we measure the performance 
for Static routing non-SDN and routing algorithm SDN. We 
use Iperf to create TCP and UDP. We assign one server (circle) 
and one client (square) because they have many paths such as 
s10-s1-s3-s5, s10-s1-s6-s5 and s10-s1-s7-s6-s5 etc. Their 
minimum bandwidth is 1 Gbps.  

Fig 8 shows  throughput of TCP. The results of Static 
routing non-SDN, BFSDN unicast and DSDN unicast are 
943.25 mbps, 954.50 mbps and 954.69 mbps, respectively. 
DSDN unicast is slightly better than BFSDN unicast. Static 
routing non-SDN has lowest throughput. Therefore, BFSDN 
unicast and DSDN unicast manage bandwidth better than Static 
routing non-SDN in TCP transmission. 

Fig. 8. The average TCP throughput 

Fig 9 shows latency of Static routing non-SDN, BFSDN 
unicast and DSDN unicast by executing Ping command which 
sends ICMP request messages. Their average latencies are 
0.0907 ms, 0.3934 ms and 0.3785 ms respectively. Comparison 
between algorithms related to SDN, BFSDN unicast latency is 



larger than DSDN unicast latency, which is usually caused by 
the depending inverse throughput. Static routing non-SDN has 
the lowest latency. Both BFSDN unicast and DSDN unicast on 
the SDN controller have to take the time calculating the route 
and install suitable paths on OpenFlow switches. Therefore, the 
data transfer increases and occurs between nodes in a specific 
time period for SDN than traditional network. 

Fig. 9. The average latency 

Their initial latency values are 0.9227 ms, 32.8987 ms and 
31.7150 ms respectively. When we calculate average latency 
without an initial value as shown in Fig. 10, their average 
latency will be 0.0823 ms, 0.0651 ms and 0.0620 ms. Static 
routing non-SDN has worse latency than others. The initial 
latency values of SDN affects to average latency. In addition, 
we examine interval time that SDN has average latency lower 
than Static routing non-SDN by changing the experiment time 
from 100 seconds to 2000 seconds. The average latency of 
DSDN unicast and BFSDN unicast are lower than Static 
routing non-SDN at 990 seconds and 1619 seconds 
respectively. However, we do not include them in the figure 
since it would make the data impossible to read. Therefore, 
SDN is greater than Static routing non-SDN in several 
performance metrics on the long term used. 

Fig. 10. Average Latency without an initial value 

The result of UDP transmission as shown in Fig 11-13, 
each bandwidth requirement (x-axis) takes 100 seconds for 
experiment time.  Static routing non-SDN, BFSDN unicast, 
DSDN unicast and Dijkstra multicast SDN (GroupFlow) have 
been tested for throughput of UDP as shown in Fig 11. All 

routing are fully well performed until BFSDN unicast began 
down and stable at 750 mbps, DSDN unicast began down and 
stable at 800 mbps and Static routing non-SDN and 
GroupFlow began down and stable at 850 mbps. 

Fig. 11. The UDP throughput 

Main factors of jitter and packet loss are depended on 
bandwidth congestion. At the maximum bandwidth, BFSDN 
unicast, DSDN unicast and GroupFlow (SDN-related) have 
high jitter as shown in Fig. 12.  Average jitter algorithm are 
ranked as follow as BFSDN unicast, DSDN unicast and 
GroupFlow. Static routing non-SDN has the lowest jitter. 
Therefore, Static routing non-SDN stably runs at fully 
bandwidth congestion. 

Fig. 12. The UDP jitter 

Packet loss is measured to verify the performance of 
different bandwidth such as jitter. However, it has another 
factor, called the quality of the network device installation, that 
affected to the packet loss rate as shown in Fig. 13. The 
simulation results illustrate that the order of packet loss rate are 
DSDN unicast, BFSDN unicast, GroupFlow and Static routing 
non-SDN respectively. Static routing non-SDN slightly swings 
and has the lowest average packet loss compared with other 
routing algorithms. BFSDN unicast, DSDN unicast and 
GroupFlow have the packet loss rate lightly different. They 
begin to swing a value at 450 mbps and increasing 
continuously. At high bandwidth usage, we can see different 
packet loss rate between SDN and Static routing non-SDN 
obviously since transmission of SDN requires controlled 
messages by connected switches (a sender side) to a centralize 
controller while Static routing non-SDN has a control plane 



inside a device. Therefore, Static routing non-SDN has an 
advantage on packet loss for fully bandwidth usage because 
SDN has more network installation steps due to the separating 
of the control plane and data plane. However, SDN packet loss 
percentage is fallen in medium category of phone quality 
standard [18] which is still adequate. 

Fig. 13. Packet loss rate 

IV. CONCLUSSION AND FUTURE WORK

The Software Defined Network is an efficiency 
programmable network which has more advantages than 
traditional network such as SDN handles data from a centralize 
controller, SDN allows reducing deployment configuration, 
SDN reduces the amount of spending required on infrastructure 
etc. Thus, SDN is an interesting network system that 
determines worthiness of migration traditional network. 

In this paper, we use POX to implement BFSDN unicast, 
DSDN unicast, and using GroupFlow multicast model to 
compare performance analysis with Static routing non-SDN in 
terms of throughput, latency, jitter, and packet loss under the 
PSU network topology simulation. Not only SDN benefits 
previously stated above but also the experiment results show 
that DSDN unicast and BFSDN unicast have more 
outperformed than Static routing non-SDN in term of TCP 
throughput. DSDN and BFSDN unicast have latency lower 
than Static routing non-SDN when transmission time is over 
than 990 seconds and 1619 seconds respectively.   

Furthermore, we found that the quality decreases at high 
bandwidth usage since packets are sent to a receiver while 
controlled messages are required sending to a centralized 
controller. Thus, SDN has more bandwidth congestion than 
Static routing non-SDN at same bandwidth requirement. 
However, SDN offers suitable quality of service requirements 
such as chat, video streaming, video on demand, video over IP, 
and video conferencing. The result of this research shows that 
replacing a traditional network by SDN has benefits. 
Moreover, we are able to develop various applications which 
can be used to manage and control network effectively. 
Eventually, the contribution of this paper is to examine the 
benefits of migrating from traditional network to SDN-aware 
network. 

For the future work, we plan to conduct simulation 
experiments for video streaming unicast and multicast 
transmission over real topologies and build horizontal scaling 
devices. We are going to simulate edge weights which may be 
changed during the experimental run and measure overhead of 
OpenFlow messages at a central controller. 
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