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Francesca Poggiolesi, Francesco Genco

Conceptual (and hence mathematical) ex-
planation, conceptual grounding and proof

Abstract

This paper studies the notions of conceptual grounding and conceptual ex-
planation (which includes the notion of mathematical explanation), with
an aim of clarifying the links between them. On the one hand, it analyses
complex examples of these two notions that bring to the fore features that
are easily overlooked otherwise. On the other hand, it provides a formal
framework for modeling both conceptual grounding and conceptual ex-
planation, based on the concept of proof. Inspiration and analogies are
drawn with the recent research in metaphysics on the pair metaphysical
grounding-metaphysical explanation, and especially with the literature in
philosophy of science on the pair causality-causal explanation.

1 Introduction

Metaphysics and philosophy of science are traditionally two separate branches
of philosophy which develop and express themselves in ways that are often
quite different. However, one interesting parallel between them involves pairs
of kindred notions that cover a central role in each: the pair metaphysical
grounding-metaphysical explanation, which has recently gained attention and
became the focus of metaphysical studies,1 and the dichotomy causality-causal
explanation in philosophy of science.2

The relationship involved in each – i.e. that between metaphysical ground-
ing and metaphysical explanation on the one hand, and that between causality
and causal explanation on the other – is or has been dealt with in the respective
disciplines. For each discipline, however, the focus is different. In metaphysics,
a fairly recent and active debate3 concerns the identity, or otherwise, of the
notions of metaphysical grounding and metaphysical explanation. According to
the unionist point of view, metaphysical explanation and metaphysical ground-
ing coincide, whilst according to the separatist point of view, metaphysical
grounding and metaphysical explanation come apart, the former notion backing
the latter.4 By contrast, in philosophy of science, there has been much emphasis
on the structures of causality and causal explanation.5 Given the relevance of
more complex examples of causal explanations coming from sciences, there is a

1E.g. see Correia and Schnieder (2012).
2E.g. see Menzies and Beebee (2019); Woodward (2019).
3E.g. see Glaizer (2020); Maurin (2019).
4See Raven (2012).
5See Hempel (1942); Woodward (2003).
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natural need to understand the structure of these examples and such structures
then illuminate the link with the notion of causality. Hence, the relationship
causality-causal explanation is studied from a structuralist angle.

More recent research6 has seen the rise of the idea that grounding and expla-
nation might not only be significant notions from a metaphysical perspective,
but they can also reveal particular connections between the sentences of our
language via the meaning that these sentences express, or via the concepts
occurring in them. These are cases of so-called conceptual grounding and con-
ceptual explanation. According to Smithson (2020, p. 4), typical examples of
conceptual grounding are:

(a) The wall is red because it is scarlet,

(b) John is a bachelor because he is a man and he is unmarried,

(c) that animal is a vixen because that animal is a fox and it is a female.

According to Schnieder (2006, p.403), typical examples of conceptual expla-
nations are:

(d) Federica is my sister-in-law because she is married to my brother,

(e) Xanthippe is a widow because Socrates died,

(f) this vase is colored because it is red.

It seems natural to extend the parallel between the causality-causal expla-
nation and metaphysical grounding-metaphysical explanation pairs to this new
pair consisting of conceptual grounding and conceptual explanation. However,
as we have seen above, this issue can be approached from two interconnected
yet different perspectives, that adopted by metaphysics or that prevalent in phi-
losophy of science. Since, as we will show later, the pair conceptual grounding-
conceptual explanations involves cases coming from mathematics which display
a complexity analogous to examples considered in philosophy of science, the aim
of this paper is to take some first steps towards clarifying the relation between
conceptual grounding and conceptual explanation by adopting a structuralist
point of view: the link between these two notions will be studied by focussing
on the structures the underlie them. To do this, we will use and rely on the
separate and historically well-established literatures on conceptual grounding-
conceptual explanation on the one hand, and philosophy of science on the other.

The paper is organized in the following way. In Section 2, we will introduce
the notions of conceptual grounding and conceptual explanation and we will
argue that, although perhaps slightly overlooked in the literature to date, the
notions of conceptual grounding and conceptual explanation apply not only to
simple toy examples, such as those above, but also to some more complex ex-
amples coming from mathematics. In Section 3 we shall study the relationship
between conceptual grounding and conceptual explanation, paying particular

6E.g. see Betti (2010); Chalmers (2012); Schnieder (2006); Smithson (2020).
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attention to more complex examples, which, as in the causal case, highlight
characteristics of the relationship that are out of focus on simpler examples.
In Section 4, we will elaborate a solid formal framework for modeling the dif-
ferent structures behind the notion of conceptual explanation and conceptual
grounding, which have emerged in the previous section. For this goal will use
the notion of proof, that independent studies have linked both to the notion
of conceptual grounding as well as to the notion of conceptual explanation.7.
Finally, in Section 5 we will draw some conclusions.

2 Conceptual grounding and conceptual expla-
nation

We begin by introducing the notions of conceptual grounding and conceptual
explanation, as they are usually treated in the contemporary literature. This
introduction will not only serve to better understand these notions, but also to
provide examples which will be useful later in the paper.

2.1 Conceptual grounding

In the last two decades, philosophers have focussed on the notion of metaphysical
grounding, which is often described as a relation amongst facts (or truths) that
is objective, non-causal and explanatory in nature. Metaphysical grounding
relates items on different ontological levels and it concerns the structure of the
world. Beside the notion of metaphysical grounding, the notion of conceptual
grounding has recently gained some attention; conceptual grounding is a relation
that creates connections between different semantic levels, as (Smithson, 2020,
p. 3) puts it, or between different conceptual levels, as (Betti, 2010, p. 284)
understands it.8 These connections could be of several kinds9 and they support
the relation between ground(s) and consequence.

There are two opposite ways to look at the links between metaphysical and
conceptual grounding. On the one hand, Correia (2014) explicitly formulates
a view, which seems to be shared by other scholars,10 that consists in taking
conceptual grounding as part of metaphysical grounding: any case of conceptual
grounding is also a case of metaphysical grounding, while the opposite does
not hold. On the other hand, a rising number of philosophers11 draw a sharp

7On the links between conceptual grounding and proof-theory see Poggiolesi (2018);
Prawitz (2019); Rumberg (2013). On the links between mathematical explanations and the
notion of proof see Mancosu (1999, 2001).

8Note that the difference between Smithson’s conception and Betti’s conception is marginal
for the discussion here, and therefore through the paper we will equivalently either refer to
one or the other. As (Smithson, 2020, p. 2) says: “It would be interesting to consider which
type of conceptual grounding is comparatively fundamental. This question may be related to
the dispute over the relative primacy of mental representation vs. public language meaning.”

9See (Smithson, 2020, p. 4).
10E.g. Fine (2012); Raven (2015).
11E.g. see Audi (2012); Betti (2010); Hofweber (2009); Merlo (2020); Smithson (2020).
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division between metaphysical and conceptual grounding: the two notions come
apart and a genuinely explanatory because-claim expresses either metaphysical
grounding or conceptual grounding.

In this paper we avoid taking sides in this debate and elaborate an approach
to conceptual grounding compatible with both positions. In practice, this means
treating conceptual grounding as a sui generis notion. There are independent
reasons for doing so, most notable of which is the oft-neglected feature that con-
ceptual grounding not only encompasses logical grounding,12 but also what we
might call mathematical grounding,13 namely grounding that connects sentences
in virtue of mathematical properties. Consider, for example, the following two
sentences p and q:

p: given two points a and b, there is a third point c such that ca = cb = ab,

q: given two circles, one described around the center a, the other around b,
both with a radius ab and lying in one and the same plain, these circles
always intersects in a point c such that ca = cb = ab.

Let us accept that the claim ‘q because p’ is a grounding claim;14 then one must
also accept that ‘q because p’ is a conceptual grounding claim since it connects
sentences in virtue of the (mathematical) concepts (or meaning of terms) in-
volved in them. This position is shared and put forward by a milestone in the
study of grounding, namely Bernard Bolzano. Bolzano focussed on the notion of
conceptual grounding, as a relation holding amongst conceptual truths15 that is
irreflexive, asymmetric and antitransitive.16 Since mathematical truths belong
to the realm of conceptual truths, in Bolzano’s Theory of Science many exam-
ples of conceptual grounding are actually examples of mathematical grounding,
like the one above. Indeed, the inclusion of such cases in the domain of concep-
tual grounding indicates the breadth of its scope, from the simple examples of
the Introduction, reminiscent of those discussed in the metaphysical literature,
to more refined ones with strong analogies to those debated in the literature
on causality. As we will try to show, these mathematical examples constitute
a paradigmatic and instructive case study, shedding light on the distinctive
characteristics of conceptual grounding.

2.2 Conceptual explanation

The notion of explanation is one of the most important in philosophy; in the
philosophy of science it has given rise to a wide literature, which, due to the em-
phasis on natural sciences tends to centre on causal explanation. In present-day
analytic metaphysics it has also received renewed attention; the debate makes

12This has already been observed by Correia (2014).
13Mathematical grounding as a subtype of conceptual grounding is also considered in Car-

rara and De Florio (2020).
14See for example (Bolzano, 2004, §13).
15The notion of conceptual grounding in Bolzano’s philosophy involves differences with the

modern conception, e.g. see Roski and Schnieder (2019); Rumberg (2013).
16E.g. see Tatzel (2002).

4



appeal to the notion of metaphysical explanation that philosophy of science, by
contrast, slightly marginalizes. This paper is concerned with yet another type
of explanation, namely conceptual explanation.

To the best of our knowledge, conceptual explanations have so far only been
treated by Betti (2010); Schnieder (2006). As (Betti, 2010, p. 283) says, it
is not easy to rigorously characterize them: they can be seen as explanations
connecting sentences on the basis of the links, which might be of several kinds,17

amongst concepts occurring in them, or of the meaning of expressions involved
in the sentences themselves. In particular, following (Schnieder, 2006, p. 404),
we can distinguish between a subjective and an objective notion of explanation.
An explanation in the first sense is just a piece of information enlarging our
understanding of a given matter; for example, if one explains how addition
works to a child by providing several examples of addition, then one is giving
an example of subjective explanation. Explanations in the subjective sense
represent a ‘loose’ way of talking about explanations.18

On the other hand, an explanation is objective when it involves (or it is) an
objective relation between explanans and explanandum. Consider for example
the relation between the cigarette lit in the forest and the fire in the forest: this
relation is causal in nature and holds independently of what a particular subject
might think of it. An explanation that takes into account (or amounts to) such
a relation, like the following one:

- there is a fire in the forest because a cigarette was lit in the forest,

is an objective causal explanation since it is (based on) an objective relation that
is causal in nature. Relations with these characteristics can occur not just in
virtue of a causal link between facts (or events), but also in virtue of a conceptual
link, carried by the concepts or due to the meanings of the expressions involved.
Consider the concept (or linguistic expression) (i) “sister-in law of x,” as well
as the concepts (or linguistic expressions) (ii)“wife of the brother of x.” There
is evidently a link between (i) and (ii): it is a link of conceptual or semantic
analysis19 (e.g. when we analyze the concept or expression ‘sister-in law of x’
we end up with ‘wife of the brother of x”) that is non-causal and objective in
nature. Hence, an explanation that takes into account (or amounts to) this link,
such as the conceptual explanation (d):

- Federica is my sister-in-law because she is the wife of my brother

is a conceptual explanation since it is (based on) an objective relation which is
conceptual or semantic in nature. As (Schnieder, 2006, p. 404) clearly sums up
while discussing explanations, conceptual explanations hold in virtue of objec-
tive relations amongst concepts and independently of the informational back-
ground of a person confronted with them. However, these explanations retain

17See (Schnieder, 2006, p. 405).
18See (Schnieder, 2006, p. 404).
19Conceptual explanations presuppose these conceptual-semantic-links. Hence, those

philosophers, as Williamson (2007), who are altogether skeptical of such conceptual-semantic
links, will be arguably skeptical of conceptual explanations.
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their epistemological force and status, which is that of convincing of the truth of
the explanandum. There are even illustrious philosophers, as (Aristotle, 1984,
115, Post. An., 71b 20-25) or (Bolzano, 1996, p.178), for whom the kind of
explanations revealing the objective grounds of the explananda are those expla-
nations that in the easiest and most constructive way secure the conviction of
the truth of their explananda. Hence in these explanations the ontological and
the epistemological levels seem to go hand in hand.

A closely related family of explanations are mathematical explanations, which
in the contemporary literature were firstly studied by Steiner (1978) and then
analyzed by Kitcher (1981) and are today a wide and important field of research
(e.g. see Mancosu (2001, 2008)). Standardly, they are divided into internal and
external mathematical explanations.20 For reasons that will become evident
shortly, we focus on the former. Internal mathematical explanations are expla-
nations within pure mathematics, namely proofs of mathematical results that
involve only other mathematical results. For example, there are many different
proofs of Pythagoras’s theorem, but one of them is standardly considered as an
explanation of Pythagoras’s theorem itself: this proof provides the reasons why
the theorem is true. These reasons are objective - they do not depend on what
someone might think of them - and non-causal in nature - since casual relations
hold amongst empirical facts but not amongst mathematical ones. (Schnieder,
2006, footnote 20) and Betti (2010) agree in considering this explanation of
Pythagoras’s theorem, as all internal mathematical explanations that share the
same characteristics, as conceptual explanations; as Betti says:21

Explanation in mathematics and conceptual explanation in present-
day metaphysics do not just cross paths: they are one of a kind.
(Betti, 2010, p. 252)

Precisely because conceptual explanations include mathematical explana-
tions which may display a high level of complexity, the question of the structure
underlying and thus clarifying these explanations is of particular importance.
Certainly, Bernard Bolzano felt this importance, since, as Mancosu (2008)
stresses, he could be seen as providing the first full systematization of con-
ceptual, and hence also mathematical, explanations. Following his lesson, we
will try to provide a novel structural analysis of conceptual explanations; this
analysis will also clarify the relation with the notion of conceptual grounding.

20External mathematical explanations are explanations in which non-mathematical phe-
nomena are partially explained by mathematical findings e.g. the explanation of why hive-bee
honeycombs have a hexagonal structure in virtue of the fact that any partition of the plane
into regions of equal area has as perimeter at least that of the regular hexagonal honeycomb
tiling.

21According to Betti, even external mathematical explanations should count as conceptual
explanations. However since in this case the link might be more controversial and Schnieder
does not mention it, we leave this type of explanations aside for future research.

6



3 On the relationship between conceptual ground-
ing and conceptual explanation

We have introduced two notions, conceptual grounding and conceptual expla-
nation, that even at the first glance seem to have a tight connection. We use
this section to precisely spell out their relationship.

3.1 Common points between conceptual grounding and
conceptual explanations

The existing literature on conceptual grounding and conceptual explanation,
which we reviewed in the previous section, brings up the following common
points. First of all, both notions connect sentences; secondly, both notions
connect sentences in virtue of the concepts or meaning of expressions contained
in the sentences themselves; thirdly, both notions include a mathematical sphere
which was noticed by Bolzano but is often neglected in some branches of the
contemporary literature.

A fourth common point concerns a notion that, though not mentioned yet,
is frequently retained in the existing literature as central to both conceptual
grounding and conceptual explanation: complexity. Let us consider grounding
and explanation in turn.

In the literature on conceptual grounding, complexity is generally taken to
play a role analogous to that played by fundamentality in the literature on meta-
physical grounding. Scholars working on metaphysical grounding standardly
assume22 it to be a relation between more fundamental and less fundamental
truths or facts. Grounding is the mortar relating different levels in a hierarchical
edifice in which the less fundamental rest on the more fundamental. In the lit-
erature on conceptual grounding, the picture is that of an analogous hierarchy,
but where levels are differentiated by their conceptual complexity. Conceptual
grounding is the mortar connecting conceptually more complex consequences
with their less complex grounds.

The classic statement of this vision, which has informed work on conceptual
grounding since, is due to Bolzano. A cornerstone of his theory of Abfolge is
the role of complexity as one of the main features of the notion of conceptual
grounding. According to him, it is possible to isolate a certain domain, that of
conceptual truths, in which grounding induces a reduction of a particular sort of
complexity, namely, conceptual complexity: (conceptual) grounds are conceptu-
ally less complex than their consequences. In particular, when descending from
a conceptual truth to its grounds, a level where no further reduction is possible
will be eventually reached. This is the base level in which all conceptual truths
are grounded, and its characterizing feature is simplicity.23

22E.g. see Audi (2012); Raven (2015).
23A detailed reconstruction of Bolzano’s notion of conceptual complexity can be found in

Roski and Rumberg (2016); Roski and Schnieder (2019).
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Like the notion of fundamentality in the literature on metaphysical ground-
ing,24 conceptual complexity is often taken to be unanalyzed and intuitive;
accordingly, detailed study of the notion in its full generality is scant. That
said, some elements of analytical rigor have been proposed, at least for certain
cases. For instance, for logical grounding, which is a case of conceptual ground-
ing, a clear and fine-grained notion of logical complexity has been defined;25

this notion adequately tracks complexity increases from logical grounds to their
conclusion. Or, to take another example, there are concepts that can be easily
defined in terms of other concepts: to the extent that the former can be seen
as composed from the latter, they count as more complex.26 The concept of
bachelor, say, can be defined in terms of the concept of man and the concept of
unmarried, and hence can be seen as composed by the concept of man and that
of unmarried and therefore it should count as more complex than the concepts of
man and unmarried. Or, to take another example, the color red can be defined
as the set of all types of red - crimson, scarlet, .. - and hence can be seen as
composed of them. In this case, the color red will count as more complex than
the color crimson.27 Although such examples most likely do not cover all cases
of conceptual grounding,28 they provide some further clarification into the no-
tion of conceptual complexity. For the purposes of this paper, we can follow the
bulk of this literature in taking conceptual complexity as an unanalyzed notion,
recognizing that there may be cases where there is more piercing understanding
to be had.

In the literature on conceptual explanation, conceptual complexity is equally
central. A point of agreement between Betti (2010) and Schnieder (2011) is that
relations of conceptual complexity, which are independent of any epistemic sub-
ject, are a constitutive part of conceptual explanations: these explanations can
indeed be seen as chains of sentences where complexity increases from the ex-
planans to the explanandum. Conceptual explanations are, like any other type
of explanation, asymmetric, but in the case of conceptual explanations this
asymmetry is due to factors of conceptual complexity and primitiveness: sen-
tences containing more complex concepts are explained by sentences containing
simpler ones. Moreover, in mathematical explanations, which are a particular
type of conceptual explanation, the issue of complexity increase from explanans
to explicandum has often been evoked. According to Detlefsen (1988) and Paoli
(1991), there is a long list of thinkers in the philosophy of mathematics, includ-
ing Arnauld and Nicole (1970); Bolzano (2015); Frege (2016); Leibniz (1996);
Pascal (1993), who conceive the truths of mathematics as divided in an objec-
tive hierarchy of simpler and more complex truths. Explaining a mathematical
truth amounts to revealing its place in such a hierarchy and thus connecting it

24What we call here fundamentality corresponds to what Tahko (2018) calls relative funda-
mentality. As he says “Given its importance, it is perhaps surprising that there are relatively
few explicit accounts of relative fundamentality in the literature so far.”

25See Poggiolesi (2016).
26See Ginammi et al. (2020).
27In Section 4, we will put forward an alternative conceptual complexity scale for the colors

red and crimson.
28See Ginammi et al. (2020).

8



with simpler truths that are the reasons behind it.
In summary, conceptual complexity is widely considered to be a main feature

of conceptual grounding and conceptual explanation in the literatures on these
topics, much as fundamentality is typically thought of as a main feature of
metaphysical grounding and metaphysical explanation in the literature on them.
Moreover, conceptual complexity has illustrious roots and is linked to the notion
of logical complexity as well as to a hierarchical conception of mathematics. The
directionality of conceptual grounding and conceptual explanation can be seen
as the result of the relation of conceptual complexity that characterizes these
notions.

Given all these similarities between conceptual grounding and conceptual
explanation, one might reasonably wonder whether these two notions are the
same. Indeed, if we look at the typical examples of conceptual grounding and
explanation in the literature (see for instance those in the Introduction), they
are so similar that it is hard to specify why any example represents one notion
and not the other. Consider the following paradigmatic example of conceptual
grounding: “John is a bachelor because John is a man and John is unmarried.”
According to what has been said so far, is there any reason for it not to also
count as an example of conceptual explanation? Consider, on the other hand,
the following typical example of conceptual explanation: “Xanthippe is a widow
because Socrates died.” Is there any reason for it not to also count as an example
of conceptual grounding? The temptation to conclude that conceptual ground-
ing and conceptual explanation are indeed one and the same notion is strong.
However, as we will now argue, a deeper study reveals that this temptation
should be resisted: they are different in subtle, yet important ways.

3.2 More complex examples: the causality-causal expla-
nation case

So far we have studied the link between conceptual grounding-conceptual ex-
planations only under the light of mere platitudes, like those concerning the
concepts of bachelor and widow. However both notions subsume a mathemati-
cal sphere rich with more intricate examples. As philosophy of science teaches
us, these examples should be also taken into account, probably being the most
enlightening. This will indeed be our strategy in what follows. However, in
order to clarify our argument, we will first introduce a paradigmatic complex
example of causality and causal explanation and briefly summarize the literature
concerning it. In the next section we will move to the conceptual level and draw
on the observations made with respect to causality and causal explanations.

Scientists by now agree that there is a causal relation between fridges, air
conditioners and climate change. So scientists will be willing to accept the
following sentence

(1) “there are climate damages (partly) because we use fridges and
air conditioners”

9



as a true sentence that conveys a relation, that is causal in nature, between
the use of some objects and world-wide well-known climate situation. We, non-
scientists, might also be willing to believe such sentence to be true, trusting
scientists, and hence to accept that there is a causal relation between fridges,
air conditioners and climate change. The question now arises: would sentence
(1) count as a genuine, albeit partial, causal explanation of climate change? The
answer seems to depend on the what one takes to be the aim or the point of
providing an explanation. If we take explanations to show why a phenomena
occurs29, i.e. if we take explanations to show that a certain phenomenon is to be
expected, then (1) cannot count as an explanation since nobody would expect
climate change by simply evoking fridges and air-conditioners (this has actually
been the case for decades). Sentence (1) does not make anybody understand
how fridges and air conditioners cause climate change: it conveys a relation
between two state of affairs but in no way clarifies how and why this relation
holds. In other words, sentence (1) states a link between fridges, air conditioners
and climate damages, but it doesn’t show how the explanandum-phenomenon is
to be expected and thus it does not satisfy the necessary condition of providing
understanding. So sentence (1) fails to count as an explanation.

In the scientific explanation literature there seems to be a wide consensus30

about what needs to be added to (1) in order for it to become an explanation.
Laws or, more generally, generalizations are the missing ingredients; in order
for (1) to be an explanation, we need to specify which generalizations connect
fridges and air conditioning to climate change. This view is shared by many dif-
ferent approaches: by the Deductive-Nomological model put forward by Hempel
(1942), by the Unionist account proposed by Kitcher (1981), but also by the
Counterfactual account defended by Woodward (2003). The main difference
between these approaches does not concern the importance of laws or general-
izations in explanations but their role in the structure of explanations (the role
will be important in this paper as well, as discussed in the next Section). For
example, according to the DN-model (1) would become an explanation if it was
rephrased according to the following structure:

S and K1, ... Kn, then T

(1a) S and K1, ... Kn

————————————-

T

where S = the fact that we use our fridges and air conditioners, T = climate
damages, K1 = fridges and air conditioners work if, and only if, electricity (as
fossil fuel) is produced; K2 = the law of combustion (which says that electricity
- produced as fossil fuel - causes the emissions of CO2); K3, ... Kn = physical
and chemical laws linking emission of CO2 to climate damages.

29This seems a widespread conception behind explanations, see (Woodward, 2003, p. 153).
30E.g. see Hempel (1942); Jansson (2017); Salmon (1984); Strevens (2008); Woodward

(2003).
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Why is (1a) to be considered as an explanation? More generally, why do
so many philosophers of science require the presence of laws or generalizations
to talk about explanations? The literature on this issue is immense and we
could not treat it in any detail here. However, three main lessons seem to be
recurrent.

First of all, as mentioned above, laws or generalizations are necessary in
explanations since they allow the occurrence of the phenomenon explained to
be expected and in this sense they contribute to making us understand why the
phenomenon occurred. This is one of Hempel’s main ideas and what Salmon
(1984) calls the nomic expectability, namely expectability on the basis of laws
or generalizations. Secondly, the requirement of laws or generalizations for
explanations is supported and justified by a Humean conception of the nature of
causality. According to this conception, causality cannot be taken as primitive
and the holding of regularities that support causal claims is a non-circular way of
preventing such causal claims to remain without analysis and elucidation. But
precisely because generalizations or laws provide an elucidation for causal claims,
then it is reasonable to argue that they contribute to explanations in which
causal claims occur. Thirdly and finally, the presence of laws or generalizations
in scientific explanations fits very well with the scientific practice: in many areas
of science, e.g. physics, chemistry, but also economics and evolutionary biology,
scientists use laws or generalizations to explain phenomena. “Explaining various
macroscopic electromagnetic phenomena typically involves writing down and
solving one or more of Maxwell’s equations” (Woodward, 2003, p. 185), in the
same way “explaining some elementary quantum-mechanical phenomenon will
involve modeling some physical systems in such a way that we can apply the
Schrödinger equation to it,” (Woodward, 2003, p. 185). Since the use of laws
or generalizations is a pervasive characteristic of explanatory practice, a theory
of explanation must acknowledge it.

In virtue of what has been said up to now, we can think of the difference
between causality and causal explanation as boiling down to this: whilst causal-
ity is merely a (binary) relation between facts or events (the cause(s) and the
effect), a causal explanation is a structure - which varies from approach to ap-
proach - including an explanans, an explanandum and the generalization(s) or
law(s) that link the two. In other words, the upshot of this literature is that
causal claims miss something that prevent them from being bona fide explana-
tions, and that thing is generalizations. However, causal claims do posess an
explanatory force which is provided by their proximity to causal explanations.

3.3 More complex examples: the conceptual grounding-
conceptual explanation case

Turning now to conceptual grounding and conceptual explanation, let us be-
gin with a complex example that concerns both. The example comes from
mathematics: as we have said, the mathematical sphere concerns both concep-
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tual grounding and explanation. According to a (largely) Bolzanian analysis,31

there exists a non-causal explanatory relation connecting the equality between
the sum of three angles of any triangle and two right angles on the one hand,
and the equality between the sum of the four angles of any quadrangle and a
full circle on the other. So Bolzano would be willing to accept the following
sentence:

(2) “the sum of the four angles of every quadrangle is equal to a full
circle because the sum of the three angles of a triangle is equal to
two right angles”

as a true sentence conveying a relation, that is non-causal and explanatory in
nature, between the angles of any triangle and the angles of any quadrangle.
For the purposes of this example, let us assume, trusting Bolzano, that there
is indeed a mathematical, and hence conceptual, grounding relation between
the angles of triangles and the angles of quadrangles. The question now arises:
would sentence (2) count as a genuine conceptual explanation of why the sum
of the four angles of every quadrangle is equal to a full circle? If we adapt the
nomic-expectability perspective discussed above to the conceptual case - namely
if we think that the point of providing a conceptual explanation is to show that
a certain item is to be expected to be true, then (2) cannot be an explanation
since by simply evoking the sum of the three angles of a triangle, one would not
expect that the fact that the sum of the four angles of every quadrangle is equal
to a full circle is true. In other words, sentence (2) does not make anybody
understand how the sum of the angles of a triangle can determine a feature of
the sum of the angles of a quadrangle: it conveys a relation between triangles
and quadrangles but in no way clarifies how or why this relation holds. Sentence
(2) states a link between triangles and quadrangles, but it doesn’t show how
the explanandum is to be expected to be true and thus it does not satisfy the
necessary condition of providing understanding. So sentence (2) fails to count
as an explanation.

Our idea is that, in order for sentence (2) to become an explanation, the
non-causal relation between triangles and quadrangles needs to be accompanied
by the generalization(s) underlying this relation. More generally, we want to
put forward an approach based on the claim that just like causal explanations,
conceptual explanations, in order to be explanations, need an explicit reference
to or use of generalizations. Let us first defend this claim; then we will show
what the structure of conceptual explanations is, according to our approach.
In order to defend the necessity of generalizations in conceptual explanations,
we will use and adapt to the conceptual context the three main arguments
previously cited in the causal context.

First of all, as mentioned above, generalizations are necessary in explana-
tions since they allow the explanandum to be expected to be true and in this
sense they contribute in making us understand why the explanandum is true.

31We have slightly changed Bolzano (2004)’s example to make it more adequate for our
study.

12



Hempel’s nomic expectability seems easily adaptable to the conceptual context:
expecting a sentence to be true on the basis of generalizations contribute the
one’s understanding of why the sentence is true. Therefore, generalizations are
necessary for explanations in order for them to satisfy their epistemological aim.

The second argument used in the causal context appealed to a Humean con-
ception of causality. Recall that under this conception, causality is not primitive,
and the central role of laws in supporting causal claims underpins the impor-
tance of laws for causal explanation. Clearly, there is no strict analogue to the
Humean conception of causality for grounding; however, there do exist accounts
of conceptual grounding that do not treat it as unanalyzable, the most notable
of which was proposed by Bolzano. Indeed, one trend of the current literature
on grounding32 precisely takes up this Bolzanian perspective and attempts to
provide a definition of grounding in terms of derivability and complexity.33 The
following picture emerges from this strand of research. For conceptual ground-
ing, the starting point are generalizations, notably in the form of definitions,
logical rules, mathematical theorems, conventions and so on (we will return
to this point later). These generalizations fix the relations among concepts and
hence serve to build the hierarchy of conceptual complexity mentioned above, in
which concepts and conceptual truths are classified. As concerns grounding, it
serves to reveal connections amongst conceptual truths of different levels of the
hierarchy, in that (sentences conveying) less complex conceptual truths ground
(sentences conveying) more complex ones. In this picture, it is the generaliza-
tions that support the hierarchy behind grounding claims, much as laws support
causal claims under the Humean approach to causality. Hence generalizations
represent a non-circular way for providing an analysis of grounding claims. But
precisely because generalizations give an elucidation for grounding claims, then,
just as for the case of causal explanations, it is reasonable to argue that gen-
eralizations contribute to explanations in which grounding claims occur. Hence
generalizations are a necessary element of conceptual explanations.

Let us now move to the third and final argument in defense of the pres-
ence of generalizations in conceptual explanations; such presence fits very well
with the scientific practice. As already said, conceptual explanations include
mathematical explanations and a mathematical explanation is typically a proof
that show why the theorem is true by evoking a general mathematical prop-
erty or a mathematical definition.34 For example the proof that explains why
Pythagora’s theorem is true uses a general mathematical property which says
that the areas of similar plane figures are to each other as the squares of the
corresponding sides. Hence, since the use of generalizations is a characteristic
of the mathematical explanatory practice, a theory of explanation that covers
inter alia mathematical explanations must acknowledge it.

Having defended the use of generalizations in conceptual explanations, let
us turn to the role that generalizations need to have in explanations, according
to our approach. We want to put forward the idea that generalizations are not,

32E.g. see Poggiolesi (2016).
33E.g. see also Ginammi et al. (2020).
34E.g. see Mancosu (1999); Steiner (1978).
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as in the DN-model, part of the explanans, but they represent what connects
and supports the link between explanans and explanandum. To precisely fit this
role, if the relation between explanans and explanandum is mediate, it needs to
be decomposed in steps in such a way that each step is supported by the relevant
generalization. Let us illustrate this point, which will also be developed in the
next section, by showing how, according to our view, sentence (2) needs to be
changed in order to become a bone fide explanation. This is our proposal:

(2a) The reason why the sum of the four angles of any quadrangle
is equal to a full circle is that the sum of the four angles of any
quadrangle is equal to four right angles, via definition (i) that says
that any full circle corresponds to four right angles. The reason
why the sum of four angles of any quadrangle is equal to four right
angles is that the sum of the three angles of a triangle is equal to
two right angles, via theorem (ii) that says that every quadrangle
can be divided into two triangles whose angles taken together are
equal to the angles of the quadrangle.

Let us dwell on paragraph (2a). It is easy to note that (2a) still connects tri-
angles and quadrangles but, in addition, (I) it specifies which steps are needed
to go from one to the other, (II) it justifies each step with a generalization,
which, in this example, takes the form of a theorem (see (ii)), or a definition
(see (i)). So in (2a) we still have an explanans and explanandum as in (2) (al-
though in (2) they are standardly called ground and consequence, respectively),
but we also have the structure that links the two, made of steps together with
the generalizations supporting each step. In (2a) the presence of generalizations
that are needed in explanations is ensured as in the causal context. However,
in (2a) the role of generalizations in explanations is novel: generalizations are
the connections relating the explanans to the explanandum and this is why we
need to divide the conceptual explanation in steps since we need to say ex-
actly which explanandum and explanans each generalization links. This way
of treating generalizations not only has several technical advantages that will
be illustrated in the next section, but is also novel and original. Moreover, it
respects and reflects the general picture which arises from the previous discus-
sion. As we have said, the holding of generalizations is what supports grounding
claims; this is also true in the causal context where laws support causal claims.
However, whilst the DN-model, say, betrays this role of generalizations since in
the DN-model generalizations are part of the explanans, our approach faithfully
systemizes this idea: according to our approach, the structure of conceptual
explanations is such that generalizations have a different status from the ex-
planans (i.e. ground) and the explanandum (i.e. consequence), they are neither
part of one nor of the other, they are what links the two. In the next section,
we will provide this idea with a proper formalization that will help clarifying it
and add further arguments for it.

We have so far focussed on conceptual explanations, defending the need
of generalizations in conceptual explanations as well as a particular use of such
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generalizations. We have not said much about conceptual grounding or its struc-
ture. However, as far as we can see, at this point, there are two possibilities:
either we take conceptual grounding to have the same structure as conceptual
explanations, or we do not. We see two important arguments for the second
option. First of all, because it is a widespread claim of the current literature
that grounding, be it metaphysical, conceptual or logical, is a relation, not a
structure, amongst items of different sorts. Secondly, because grounding runs on
a strict parallel with causality35 and causality is taken to be a relation between
cause and effect. Hence it seems fair to conclude that while a conceptual expla-
nation is a structure that starts with (an) explanans - the ground(s) - ends with
an explanandum - the consequence - and specifies the steps that link the two by
displaying the relevant generalization(s), which is a definition, or a logical rule,
or a convention, or a mathematical theorem and so on, conceptual grounding is
a (binary) relation between sentences (ground(s) and consequence), holding in
virtue of the concepts or the meaning of expressions contained in them. Note
that according to this picture conceptual grounding comes close to conceptual
explanation: it has all the elements to count as one; simply, it does not require
the use of generalizations. Hence, according to this perspective, it sounds very
natural to look at conceptual grounding as a relation having an explanatory
force although falling short of a bona fide explanation. The formalism that will
be introduced in the next section will serve to precisely spell out the relation-
ships between conceptual grounding as a relation and conceptual explanation
as a structure of a particular type.

3.4 General remarks

Let us conclude this section by offering some general remarks about the conclu-
sions that have just been drawn. The first concerns the use of generalizations in
conceptual explanations. As (Jansson, 2017, p. 10) notes, in the case of causal
explanations the difference between laws or generalizations and accidents is of-
ten treated as a given in the analysis: it is possible to gain insights in the
phenomenon of causal explanations without necessarily studying these related
notions. In particular, we can take the fact that some generalizations have a
special role in causal explanations as a given, as long as we think of these expla-
nations as relative to some theory T ; under this perspective, it is the theory T
that determines what should be considered as a generalization and thus treated
as pertaining to a different level.

In the present paper, we adopt this methodological strategy for conceptual
explanations. Therefore we will treat the difference between generalizations –
in the sense of definitions, theorems, conventions, and so on – and accidents
as a given in the analysis. In other words, we consider a notion of conceptual
explanation, and a related notion of conceptual grounding, as relative to a theory
T , where the relevant theory could be logical, mathematical, conceptual or
linguistic according to the context. We believe that, as in the causal case, it

35E.g. see Schaffer (2016).
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is plausible to think of the notions of conceptual explanation and grounding
against the background of some theories. This methodological move actually
helps to further clarify these notions. It is indeed the theory T that provides the
generalizations - in terms of definitions, logical rules, mathematical theorems,
conventions and so on - that fix the relations amongst concepts and hence serve
to build the hierarchy of conceptual complexity on which conceptual grounding
and conceptual explanation rely on. If for example we consider sentence (2)
and paragraph (2a), this sentence and paragraph need to be thought of as
formulated relative to a geometrical theory T , such as Euclid’s axiomatic theory.
It is T that provides the mathematical definitions of the concepts of triangle,
quadrangle, circle, angle and sum, along with the links amongst these concepts.
The grounding sentence (2) can be seen as revealing the relationships amongst
these concepts fixed by T , whilst (2a) is the explanation based on (2), and
displaying the generalizations fixed by T that underlie (2).36 We now defend
this position against two main objections against it.

The first objection relates to the objectivity of grounding: if conceptual
grounding and conceptual explanation are relative to theories, then they might
no longer seem objective, as is assumed in the current literature (see Section
2). The second objection relates to their relation with intuitions: if conceptual
grounding and conceptual explanation are relative to theories, then they are
not supported by our intuitions as most grounding-theorists claim.37 We will
answer both these objections at the same time by tapping once again into the
parallel with causality-causal explanation.

Consider the causal relation between the knocking of the glass and its fall:
at first glance we can say that this relation is objective - it does not depend
on any epistemic subject - and that we grasp it in a very intuitive way, namely
by simply looking at the glass falling after it has been knocked. However, as
we have seen, philosophers38 tend to think of causality, as well as of causal
explanations, as relative to scientific theories. The causal relation between the
knocking of the glass and the falling of the glass is best elaborated relatively to
a physical theory containing the law of gravity. Although there might seem to
be a contrast between the objectivity and the intuitiveness of the causal relation
(and related causal explanation) and the presence of the theory, this contrast
turns out to be only apparent. On the one hand, the presence of a theory does
not impinge upon the objectivity of the causal relation because the theories we
assume to refer to are our best scientific theories, theories which satisfy a certain
number of criteria, like adequacy, generality, prediction capacity and so on.39 In

36To take another example, consider the colors red and crimson. We can think of a theory
T where the color red is defined as the set of all types of red, namely scarlet, crimson, ...: in
T the color red will count as conceptually more complex than the color crimson. However,
we can equally think of a theory T ′ where the color red is primitive and crimson is defined as
a particular type of red, e.g. red plus violet: in T ′ crimson will count as conceptually more
complex than red. Hence, this approach seems to systematize an intricate debate concerning
grounding sentences that convey colors, e.g. see (Koslicki, 2015, p. 7).

37E.g. see Correia (2014), Fine (2012), Smithson (2020).
38See for example Jansson (2015).
39See Winther (2016).
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other words, the burden of the objectivity is moved from the causal relation to
the theory, and, in the context of causality-causal explanation discussions, the
theory is assumed to support such a burden. On the other hand, the presence
of the theory does not undermine the intuitiveness of the causal relation: on the
contrary, the appropriate theory often structures, systematizes and taps into
our (correct) intuitions.

Similar points would seem to hold for the case of conceptual grounding and
conceptual explanation. Consider the conceptual grounding relation between
points and circles in the example with sentences p and q of Section 2: at first
glance we can say that this relation is objective - it does not depend on any
epistemic subject - and that we grasp it in an intuitive way (probably after
having learned a bit of mathematics). However, here we defend the idea that
both conceptual grounding and conceptual explanations need to be thought of
as relative to theories, such as logical, mathematical, conceptual or linguistic
theories. The grounding relation between the points and the circle is for example
a relation relative to a geometrical theory where the circle is defined in terms
of points.40 Although there might seem to be a contrast between the objec-
tivity and the intuitiveness of the grounding relation (and relatedly conceptual
explanation) and the presence of the theory, this contrast might be, like in the
causal case, only apparent. On the one hand, the presence of a theory does
not impinge upon the objectivity of the grounding relation because the theories
we assume to work with are our best theories, theories which satisfy a certain
number of criteria that lend them some claim to objectivity.41 On the other
hand, the presence of the theory does not contrast with the intuitiveness of the
grounding relation; on the contrary, the theory can be thought of as structur-
ing, systematizing and tapping into our (correct) intuitions. To the extent to
which intuitions are correct they will correspond to theories with some objective
credentials. The great advantage of moving from intuitions to theories is that
these latter provide conceptual grounding and explanations with a rigor and a
scientific character that is otherwise absent.

Let us conclude the section with a final remark concerning the examples of
conceptual explanations proposed by (Schnieder, 2006, p.403) and provided in
the Introduction, namely:

(d) Federica is my sister-in-law because she is married to my brother,

(e) Xanthippe is a widow because Socrates died,

(f) this vase is colored because it is red.

According to our approach, these sentences are examples of conceptual
grounding relations, but not of conceptual explanations.42 This is so because

40See also (Rumberg, 2013, p. 443).
41E.g. see de Jongh and Betti (2010) or Muddy (2011).
42Note that a similar remark applies to the example of causality advocated in Section 2.

“There is a fire in the forest because a cigarette was lit in the forest” is a sentence expressing
a causal relation. For such a sentence to be a bone fide causal explanation, the specification
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there is no mention of the definitions that support the relation between con-
cepts conveyed by (or meaning of expression occurring in) the sentence. In
order to count as proper conceptual explanations, they need to be enriched in
the following way:

(d’) Federica is my sister-in-law because she is married to my brother, via the
definition of sister-in-law;

(e’) Xanthippe is a widow because Socrates died, according to the definition
of widow;

(f’) this vase is colored because it is red, via the characterization of the notion
of color as the set of all individual colors.

The main difference between (d)-(f) and (d)′-(f)′is the presence in the latter
case of definitions (or charcaterizations) that regulate the connections between
the concepts (or meaning of expressions) occurring in the sentences. However,
in these cases, insisting on the presence of such definitions may seem overly per-
nickety. One might even argue that the sentences (d)′-(f)′ do not have a greater
explicative force than (d)-(f), and hence doubt that the specification of defini-
tions truly constitutes a distinguishing feature of the notion of explanation. In
reply to this objection, note that this impression may be due to the fact that
the examples involve concepts (or meaning of expressions), such as sister-in-law
or widow, whose definitions and properties are so well-known that they seem
hardly worthy of mention. As (Hempel, 1942, p. 361) remarks “In such cases,
we feel familiar, at least in a general manner, with the relevant uniform con-
nections [...] and thus we are willing to take them for granted without explicit
mention.” In other terms, we are so used to employ the term (or concept) red
(or widow or sister-in-law), that we do not feel the need of being reminded of a
characterization relating it to other kindred concepts, such color (death, mar-
riage). However, the triviality of the relevant definitions does not imply that
they are unnecessary. On the contrary, in more complex examples - mathemat-
ical examples are again emblematic - where we do not necessarily master the
generalizations (in terms of definitions, theorems...) connecting the concepts
(or meanings of expressions) involved, the relevant generalizations stand out as
necessary: if they are not specified, we feel that the explanation is incomplete.
The more complex examples could be indicative of the inner features of expla-
nations in general and conceptual explanations in this particular case, revealing
characteristics that remain hidden in simple cases. Hence, since our aim is to
elaborate a general and unifying theory of conceptual explanation and ground-
ing that covers both simple as well as complex cases, we rely on what has been
shown in a clear way on more challenging cases.43 Adapting (Hempel, 1942, p.

that it is the law of combustion that makes it possible for the cigarette lit in the forest to
start the fire, is needed.

43While in the philosophy of science literature, the distinction causality-causal explanations
relies on the use of generalizations and laws, in the metaphysical literature, as far we know,
the distinction metaphysical grounding-metaphysical explanation does not mention such a
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360)’s words on causality to the grounding case, we can claim that an analytic
study of explanations cannot content itself with simply registering a grounding
relation: it must treat it as material for analysis; it must seek to clarify what is
claimed by an explanatory statement of this sort, and how the claim might be
supported.

4 On the formalism for the notions of concep-
tual grounding and conceptual explanation

We have undertaken an informal study of the relationship between the notions
of conceptual explanation and conceptual grounding. This section is dedicated
to developing a formalism which supports our observations. First we clarify the
advantages of a formal approach, and then we present our proposal in detail.

Generally speaking, one could say that one of the best ways to defend any
approach is to enfold it within a formalism:44 it is the formalism that makes
the various features of the approach clear and rigorous. More specifically to
our case, the formalism that we will introduce in this Section will clarify two
key ingredients of our approach, namely (i) the role that generalizations have in
conceptual explanations, and (ii) the precise link between conceptual grounding
as a relation and conceptual explanation as a structure. Hence the importance
of an appropriate formalism to accompany our approach can hardly be overes-
timated.

Let us begin by emphasizing a fact that emerges from the literature on con-
ceptual grounding and conceptual explanation. Both these notions have been
related, by independent studies, to the notion of proof. On the one hand, several
scholars have drawn a parallel between the grounding relation in the Bolzanian
tradition and Gerhard Gentzen’s cut-free proofs in the sequent calculus.45 The
parallel mainly rests on the analogy between the fact that a ground is concep-
tually simpler than its consequence and the fact that the formulas employed to
derive the conclusion of a cut-free proof are logically simpler than the conclu-
sion itself.46 On the other hand, relying on the Aristotelian distinction between
proofs that show that something is true (namely proofs-that), and proofs that
show why something is true (namely proofs-why), a long line of thinkers in the
philosophy of mathematics, see (Aristotle, 1984, 115, Post. An. I. 2-4), (Leib-
niz, 1996, Book IV, ch. xvii), (Bolzano, 2004, p. 71), (Frege, 2016, §90), seek
to base an account of proofs in mathematics on the primacy of proofs-why. In

feature (an exception is Wilsch (2016)). A conjecture to explain this difference is that the
latter literature only considers simple cases and hence the need of the use of generalizations,
in metaphysical explanations, does not emerge.

44See also (Schaffer, 2016, p.51).
45See Buhl (1961); Rumberg (2013); Tatzel (2002).
46We remind the reader that a cut-free (logical variant of the) sequent calculus only contains

introduction logical rules that introduce formulas either on the right or on the left of the
sequent. Hence in a proof p of a cut-free sequent calculus where only logical rules are used,
the complexity of the formulas involved in p cannot but increase. For further details see
Poggiolesi (2010, 2020).
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this perspective, proofs-why are explanatory proofs, i.e. proofs which explain
their conclusions by revealing their grounds. Hence they are nothing other than
mathematical explanations.

This double reference to the notion of proof, coming independently from
grounding and explanation, suggests they are intimately connected to the notion
of proof. Inspired by these insights, our aim is to use the notion of proof
as a formal background for modeling the contemporary notions of conceptual
grounding and conceptual explanation.

To this end, we adopt the standard representation of a proof as a tree ac-
cording to which the assumptions of the proof are the leaves of the tree, the
conclusion of the proof is the root of the tree, and each rule applied in the
proof links the nodes corresponding to the premises of the rule to the node cor-
responding to the conclusion of the rule. Let us list some examples of proofs
as tree-objects, where the nodes need to be substituted by sentences that are
connected by the corresponding rule, indicated by ri.

Example (i)

•
• r5

• • •
• r4

• r6

• •
• r2

• •
• r1

• r3

• r7

• r8

Example (ii)

•
• r1

• r2

• r3

• r4

• r5

Example (iii)

• • •
• r4

•
• r5

• r3

•
• r7

•
• r8

•
• r9

• •
• r10

• r6

• r2

•
• r1

• • •
• r14

• r13
•
• r15

• r12

• •
• r17

•
• r18

• r16

• r11

• r1

In the case where the nodes are substituted by formulas of a formal language
and the ri by appropriate rules, this notion of proof coincides with that of
derivation in logic.47 Here is an example of a derivation in the natural deduction

47E.g. see Gentzen (1935); Troelstra and Schwichtenberg (1996).
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calculus for classical logic:48

¬D

A B
A ∧B

∧I

(A ∧B) ∨ C
∨I

((A ∧B) ∨ C) ∧ ¬D
∧I

¬¬(((A ∧B) ∨ C) ∧ ¬D)
¬¬

In this example we have a tree with three leaves, namely the assumptions A,B
and ¬D; the root of the tree is the formula, ¬¬(((A ∧ B) ∨ C) ∧ ¬D) and
each logical rule (namely the rules ∧I, ∨I, ¬¬) applied in the proof links the
nodes corresponding to the premises of the rule to the node corresponding to
the conclusion of the rule. In these examples of formal proofs, formal systems
provide the appropriate rules: indeed, they can be thought of as playing the
role of what we have previously called theories. Derivations in logic are but
one example of what we mean by proof here: however, theories relevant to
conceptual explanation do not have to come in the form of formal systems, nor
proofs in the form of derivations.

How can we connect proofs as tree-objects to the notions of conceptual
grounding and conceptual explanation? Here is our proposal. We have seen
that while conceptual grounding amounts to a relation among sentences, ex-
planations are more refined objects where the generalizations that support the
links amongst concepts (or meaning of expressions) need to be specified, and, in
this respect, where a division in steps is particularly relevant. But this division
in steps implies that conceptual explanations can be profitably thought of as
proof-tree-objects: the explanans occupy the leaves of the tree, the explanan-
dum its root, and each step corresponds to the link between the premise(s) and
the conclusion of a rule. This simple re-conception, switching from a discur-
sive structure to a hierarchical one, plays a central role in relating conceptual
explanations, and not only mathematical explanations, to proof-tree-objects.
There is however a second, more subtle ingredient that is required for a full
formalization. It concerns the generalizations, in terms of definitions, theorems,
conventions and so on, which are characteristic of conceptual explanations and
which, in our approach, have the role of supporting the step from explanans
and explanandum. How can we reflect and formalize this role in the perspec-
tive which sees explanations as proof-tree-objects? It is precisely on this point
that this perspective reveals its depth: generalizations correspond to the rules
that justify the links between the nodes of the proof-tree; in other words, rules
seem to be a perfect and solid way to reflect at the formal level the role that
generalizations play in explanations. We first illustrate this point with a simple
example; at the end of the section we will set out its advantages. Consider the
following conceptual explanation:

48Because our approach is based on Poggiolesi’s formal results (e.g. see Poggiolesi (2016,
2018)) and Poggiolesi uses the natural deduction calculus, we prefer presenting derivations in
logic by using the natural deduction logic. However, as underlined before, it is also plausible
to use the resources of the sequent calculus.
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Federica is my sister-in-law because she is married to my brother,
via the definition of sister-in-law.

Suppose one aims at formalizing this conceptual explanation as a proof-tree.
We have a two-node proof-tree where the only leaf is the sentence “Federica
is married to my brother” and it is linked to the conclusion “Federica is my
sister-in law.” Namely we have:

Federica is married to my brother

Federica is my sister-in-law

What is the rule that justifies this passage? And what happens to the defi-
nition of ‘sister-in-law’, which, as we have said in the previous section, is what
distinguishes a conceptual explanation from a relation of conceptual ground-
ing? One simple answer to both these questions is the following: the definition
of ‘sister-in-law’ is precisely the rule that justifies the link between premise and
conclusion in the proof-tree above. The definition of ‘sister-in-law’ is usually
formulated as the following biconditional:

? : for any x and y, x is the sister-in-law of y if, and only if, x is
married to y’s brother.

However, it can be equivalently conveyed in the form of the following two rules,
namely for any x and any y:

x is the sister-in-law of y

x is married to y’s brother
slE

x is married to y’s brother

x is the sister-in-law of y
slI

The wide and influential literature49 on proof-theoretic semantics supports pre-
cisely the view that definitions can be conceived as and conveyed by means
of rules. It has also been shown50 that defining a term (or concept) proof-
theoretically - that is, via rules - is actually equivalent to defining it via the
corresponding biconditional. Hence, the rules slI and slE can be taken to de-
fine the term (or concept) ‘sister-in law.’ Note the difference between these two
rules: whilst slE removes or eliminates the notion of ‘sister-in-law’ if read from
top to the bottom, slI introduces this term (or concept). Indeed, while the
former is called an elimination rule, the latter, which introduces a new term (or
concept), is an introduction rule.51 The introduction rule slI can thus be used
to explain a sentence containing the term ‘sister-in-law’ by one containing the
simpler terms ‘married to’ and ‘brother.’ But then, it is easy to see that it is
precisely thanks to this rule that the passage from “Federica is married to my

49E.g. see Francez (2019); Schroeder-Heister (2018, 1991).
50E.g. Sambin et al. (2000).
51On the logical difference between introduction and elimination rules see Troelstra and

Schwichtenberg (1996).
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brother” to “Federica is my sister-in law” is justified: it is an instance of the
rule.

It thus seems that by moving to a hierarchical structure, and by thinking of
generalizations as rules, proof-tree-objects can be profitably used to model con-
ceptual explanations. Crucially, not any proof-tree object represents a ‘proper’
conceptual explanation, but only those involving an increase in conceptual com-
plexity from the premise(s) to the conclusion. This kind of proof-tree object has
been discussed in the tradition, see for instance Betti (2010); Mancosu (1999);
Sebestik (1992). According to Rumberg (2013), there exists a stringent parallel
between this particular kind of proof and the so-called canonical normal deriva-
tions in intuitionistic logic, e.g. see Prawitz (1965). Poggiolesi (2018) formalizes
the counterpart of proofs as tree-objects for logical explanation with her concept
of formal explanations. Formal explanations are composed of introduction rules
and involve the appropriate complexity increase for logical explanations. As
such, they can be seen as the skeleton underlying (our conception of) concep-
tual explanations, though set out for the special case of logical explanation. The
reader interested in further technical detail concerning our idea of proof-tree is
referred to Poggiolesi (2018).

We have introduced a conception of explanation in terms of a particular
type of proof-tree object, i.e. a proof-tree object with a conceptual complexity
increase from top to bottom. What does conceptual grounding correspond to
in this framework? Based on our discussion in Section 3, but also according
to Poggiolesi’s formal work, it seems reasonable to take conceptual grounding
as the relation between appropriate premise(s) and conclusions occurring in the
conceptual explanation proof-tree. In particular, we have a relation of immedi-
ate conceptual grounding when the premise(s) and conclusion are directly linked
in the relevant proof-tree; we obtain a relation of mediate conceptual ground-
ing by taking premises and conclusion separated by several consecutive steps
(i.e. a path) in the proof-tree. Under this proposal, proof-trees neatly formalize
the relationship between conceptual explanation and conceptual grounding: the
former are complex hierarchical structures made of nodes representing premises
and conclusions which are linked according to (introduction) rules; the latter
conveys a relation amongst the (appropriately selected) elements of these struc-
tures, but where no explicit mention of rules is necessary.

This proof-based perspective on conceptual explanation-conceptual ground-
ing emerges and copes comfortably with the more complex examples. Let us
illustrate this point on an example coming from logic, as well as the example
discussed in Section 3. Consider again the following derivation:

¬D

A B
A ∧B

∧I

(A ∧B) ∨ C
∨I

((A ∧B) ∨ C) ∧ ¬D
∧I

¬¬(((A ∧B) ∨ C) ∧ ¬D)
¬¬
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Figure 1: Quadrangle ABCD

A

B

D

C

On the one hand, this peculiar derivation, which displays a complexity in-
crease from the premisses to the conclusion, can be seen as a logical and hence
conceptual explanation that has as explanans the formulas A,B and ¬D and as
explanandum the formula ¬¬(((A∧B)∨C)∧¬D): in this explanation each step
is specified together with the introduction rule that justifies the step. On the
other hand, also thanks to this derivation, we can identify a logical (and hence
conceptual) mediate grounding relation between the formulas A,B,¬D and the
formula ¬¬(((A ∧ B) ∨ C) ∧ ¬D). In other words, a conceptual grounding re-
lation is the relation amongst (appropriate) formulas occurring in the structure
of the corresponding conceptual explanations.

Let us now move to considering example (2a), which, recall, is the following
explanation:

(2a) The reason why the sum of the four angles of any quadrangle is
equal to a full circle is that the sum of four angles of any quadrangle
is equal to the sum of four right angles, via definition (i) that says
that any full circle corresponds to four right angles.The reason why
the sum of the four angles of any quadrangle is equal to four right
angles is that the sum of the three angles of a triangle is equal to
two right angles, via theorem (ii) that says that any quadrangle can
be divided into two triangles whose angles taken together are equal
to the angles of the quadrangle.

Putting (2a) in the form of a proof-tree, we obtain the following object. For
any four points ABCD:52

52In the interests of readability, we use the following abbreviations:

- T for triangle,

- Q for quadrangle,

- 2RA for two right angles,

- 4RA for four right angles.
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if ABD is a T, then the sum of its angles = 2RA if BDC is a T, then the sum of its angles = 2RA

if ABCD is a Q, then the sum of its angles = 4RA
r1

if ABCD is a Q, then the sum of its angles = full circle
r2

where r1 is the rule that corresponds to theorem (i), namely the rule, for any
four points ABCD:

if ABD is a T, then the sum of its angles = z if BDC is a T, then the sum of its angles = x

if ABCD is a Q, then the sum of its angles = z + x

whilst r2 is the rule that corresponds to definition (ii), namely the rule, for all
x,

x = four right angles

x = full circle

So the conceptual explanation of why the sum of the four angles of a quad-
rangle is equal to a full circle has the form of the proof-tree-object above con-
structed in a theory encompassing at least the rules mentioned, and involving
an increase of conceptual complexity from the top to the bottom (at each step
a new concept, defined in terms of the previous ones, is introduced). Given
this, we can claim that there is a conceptual grounding relation, relative to the
same theory, between the premise of the conceptual explanation (the sum of the
three angles of a triangle is equal to two right angles) and its conclusion (the
sum of the four angles of any quadrangle is equal to a full circle). This relation
of conceptual grounding is mediate since it involves several consecutive steps.
Moreover, even in the conceptual grounding relation, the consequence is con-
ceptually more complex than the grounds and this provides the directionality of
the relation. However, in the grounding relation, since it is precisely a relation
and not an explanation, there is no need to specify the rules that support the
relation itself, nor to display the details of the connecting structure.

We would like to end the section by dwelling on two important points relative
to the formalism that has been introduced in this section. The first concerns
the formalization of generalizations in conceptual explanations as rules support-
ing steps of proof-trees. Although we have already discussed this point in the
previous section, we think it is worth to bring further arguments in its defense
by confronting it with the more famous and widespread DN-model, where gen-
eralizations occur in explanations as part of the explanans.

The first advantage of our way of treating generalizations in proof-trees is
that it ensures the conceptual complexity increase from the premisses to the
conclusion. Following the model of Poggiolesi (2018), only generalizations as
introduction rules are allowed in our proof-trees; but then, since introduction
rules do nothing but introducing a new concept at a time, then the conceptual
complexity cannot but increase going from the premisses to the conclusion in
our proof-trees. This is in stark contrast with the DN-model, or any other
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approach which uses the generalizations as premisses of the proof-tree, because
the step from a generalization to one of its instances does not involve an increase
of conceptual complexity, but rather a complexity decrease, if anything. On the
basis of these considerations, the use of generalizations as (introduction) rules
and the conceptual complexity increase53 in conceptual explanations emerge as
two faces of the same medal: having embraced the defense of the latter from the
literature, we cannot but put forward an approach that relies on the former.

The second advantage of using generalizations as rules and not as premisses
of the explanations is that this is precisely what protects our approach from
counterexamples analogous to those of the DN-model. Recall that, according to
the DN-model, an explanation is any object that displays the following structure:

S and K1, ... Kn, then T

S and K1, ... Kn

————————————-

T

All counterexamples to this model work by substituting the T with the S
and vice-versa and showing that the inference still holds. When this is the
case, the asymmetry of explanations is betrayed: if the premisses explain the
conclusion, it cannot be the case that the conclusion explains the premisses.
In our approach this type of counterexample can never arise. Since we use
generalizations as introduction rules, it is not possible to invert the conclusion
with the premisses and still have an inference compatible with our proof-tree
objects. Hence, the use of generalizations as (introduction) rules means that
our approach does not suffer from the standard counterexamples raised against
the DN-model.

Let us now turn to the second point concerning our formalism. Despite
the advantages discussed above, one might still wonder whether another formal
framework could do a better job. In particular, one might look at the structural
equational framework, which has been famously used by Woodward (2003) to
formalize the notion of causal explanation, but also more recently by Schaf-
fer (2016) to model the notion of metaphysical grounding: could the structural
equation framework be used to capture the notions of conceptual grounding and
explanation as well? Ultimately, of course, a full answer will have to wait for
an attempt to work out such a structural-equations-based approach to concep-
tual grounding. However, we shall venture some remarks that do not speak in
its favor. First of all, it is important to once more underlying that conceptual
explanations include mathematical explanations. It seems hard to see how the
structural equation framework could model mathematical explanations better
than proof-tree objects given that these explanations are nothing but particu-

53Here conceptual complexity should be understood in terms of composition of concepts.
As shown by Ginammi et al. (2020), if conceptual complexity is understood in terms of
generality, then it is a requirement compatible with the presence of generalizations as premisses
in explanations.
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lar types of proofs. Moreover, the proof-tree objects proposed here, which are
based on formal explanations put forward by Poggiolesi (2018), are finite ob-
jects that naturally display a hierarchical structure, which is invariably related
to complexity. In particular, this type of proof does not allow for loops; rather
they reduce, via a step-by-step procedure, the conceptual complexity from the
conclusion to the premise(s) until some atomic concepts (or meaning of expres-
sions) are reached. On this front, they are perfectly adapted to representing
conceptual explanations, namely explanations where one descends from a sen-
tence to its reasons through a hierarchy of (decreasing) complexity levels that
eventually stops when no further reduction is possible. The structural equation
framework is much more liberal; it allows for loops and do not necessarily display
any hierarchy. Hence, in the absence of particular restrictions (which remain to
be worked out), whilst the structural equations framework works well for the
causal case, and it has also been applied to metaphysics, proofs as tree-objects
seem naturally better equipped for the conceptual domain.

5 Conclusions

Following the example of philosophy of science where the causality-causal ex-
planation pair is a major focus of research, but also looking at metaphysics
where there is a new trend dealing with metaphysical grounding in its relation-
ship to metaphysical explanation, this paper has studied the couple conceptual
grounding-conceptual explanation. In particular we have analyzed the relation-
ship between the two notions, and we have elaborated a proof-based formal
framework to capture these notions and their relation. We think that this study
suggests at least two promising lines of research. On the one hand, we think
that it would be interesting to use the recent results in proof theory to better
investigate the inner structure of conceptual explanations and to develop the
connection between this kind of explanation and the literature on logic and
philosophy of mathematics. On the other hand, our research opens up the
question of the relationship between the three pairs of notions causality-causal
explanations, metaphysical grounding-metaphysical explanation, and concep-
tual grounding-conceptual-explanations. The comparison between them could
be undertaken both at the conceptual level and at the formal level, given that
formal frameworks have been developed for each pair.
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