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Abstract

Annular acoustic black holes (ABHs) have been recently proposed as a potential means of reducing
vibrations of cylindrical shells. The latter are very common structures in the naval, aeronautic and industrial
sectors so widening ABH applications from flat plates to curved structures seems worth exploring. This work
focuses on the benefits of embedding annular ABH indentations on cylindrical shells to reduce outward sound
radiation. The goal of the paper is to propose a semi-analytical method to determine the acoustic power,
radiation efficiency, source location and far-field acoustic pressure of ABH shells and compare them with
those of uniform thickness shells. The vibration field of the ABH and uniform cylindrical shells is computed
by means of the Gaussian expansion method (GEM) within the Rayleigh-Ritz approach. Then, the radiated
pressure is obtained by solving the Helmholtz equation in cylindrical coordinates using the Green’s function
method. The surface of the cylinder is discretized into small finite size radiators and an impedance matrix is
used to obtain the acoustic surface pressure in terms of the shell radial velocity. To determine those regions
of the cylinder responsible for the far field radiated sound, use is made of supersonic sound intensity (SSI).
A method is proposed to calculate the SSI in the spatial domain for cylindrical shell structures to make
direct use of the previously computed surface pressure and velocity distributions. The whole methodology
is validated against finite element method (FEM) simulations and after that, results are presented for an
acoustically thick shell. The roles played by the critical and ring frequencies are reported and the spectra
of the acoustic power, radiation efficiency and far field acoustic pressure get analysed. It is shown that the
annular ABH can become very effective once the cylinder flexural motion dominates over the circumferential
one. The slow down of bending waves inside the ABH makes structural supersonic waves (in relation to
sound speed) become subsonic at some point, which clearly diminishes the shell radiation efficiency. Overall,
it is described why embedding an annular ABH on a cylindrical shell can strongly help reducing the radiated
sound to the far-field.

Keywords: Annular acoustic black holes, Gaussian expansion method, Cylindrical shells, Sound radiation,
Supersonic intensity

1. Introduction

While embedding acoustic black holes (ABHs) in structures has proved to be a light-weight, efficient
method for reducing vibrations, as well as for wave manipulation and energy harvesting (see e.g., the very
recent and complete review in [1]), not many works have yet considered the potential of ABHs to diminish
structural radiated sound. One of the first works in this line was that in [2], where a combination of finite

∗Corresponding Author: oriol.guasch@salle.url.edu

Preprint submitted to Elsevier November 15, 2021



element (FEM) and boundary element (BEM) methods were used to investigate the reduction in sound
power level and radiated sound when embedding an array of ABHs on a flat plate. By transforming to the
wavenumber domain, it was lately shown in [3] that when supersonic flexural waves enter an ABH and get
slowed down, they eventually become subsonic which strongly diminishes the radiation efficiency of ABH
plates as compared to plates of uniform thickness. More recently, a semi-analytical method was proposed
in [4] in which the vibration field of the ABH plate was determined using wavelets as basis functions for the
Rayleigh-Ritz method, and then input in Rayleigh’s integral to compute the radiated sound. Supersonic
intensity (SSI) [5, 6] was employed to find the location on the ABH surface of sources responsible for far-
field sound radiation. The same authors resorted to topological optimization in [7] to properly distribute
damping material within the ABH to minimize the radiated sound. Likewise, the benefits of embedding
periodic tunnelled double-leaf ABHs on flat plates to decrease sound emission was analysed in [8]. On the
other hand, the vibroacoustics of somewhat more complex systems including ABH indentations has begun
to be explored. For instance, in [9] the case of an ABH plate coupled to a cavity was addressed, and the
transmission loss (TL) of ABH plates was numerically and experimentally investigated in [10, 11]. Moreover,
the TL of ABH plates in the mid-high frequency range has been recently explored by means of statistical
modal energy distribution analysis (SmEdA) [12]. Several of the theoretical conclusions in the preceding
articles have been supported by experimental evidence, see e.g., [8, 10, 13–15].

All the above cited works deal with ABH indentations on flat plates. In fact, with the exception of the
spiral ABH design in [16, 17], which is an interesting concept but of difficult practical implementation, most
current proposals to exploit the ABH effect consider different types of indentations on plates. The latter all
share a common decreasing power-law thickness profile but adapted to different geometries. Without any
doubt, the most familiar one consists of 2D circular indentations (see e.g., [18–22]) but other geometries like
rectangular [23], double-layer compound [8, 24] or ring-shaped ABHs [25] have been proposed as alternatives,
or to address particular problems. Indeed, if one thinks of potential practical applications of ABHs, it is worth
considering even further designs. For instance, in the naval, aeronautic and industrial sectors, cylindrical
shells are very common so embedding ABHs on curved structures deserves exploration. A first work in
that direction was presented in [26], where several ABH indentations were placed on a circular beam. That
resulted in typical phenomena of periodic systems, like the formation of frequency bandgaps reported for
infinite periodic ABH beams in [27]. Another design has been recently proposed in [28–30] consisting of an
annular ABH which aims at reducing vibrations on cylindrical shells. A FEM investigation was carried out
in [28, 29] to check its performance when submitted to simply supported periodic boundary conditions, and
a semi-analytical approach was suggested in [30] to carry out detailed parametric analyses of the annular
ABH cylinder vibration field.

The main goal and contribution of this paper is to propose a semi-analytical approach to determine the
effects of annular ABHs on sound radiated by vibrating cylindrical shells. In particular, we want to see how
the cylinder sound power level and radiation efficiency get modified because of the ABH. Also, we would like
to locate the sources of far-field radiated sound on the ABH cylindrical shell surface and compute the acoustic
pressure at any distance from the shell. Nonetheless, before outlining the procedure that will be followed
to achieve such objectives let us briefly recall a few basic facts of the vibroacoustics of cylindrical shells.
Because of its industrial interest many works exist on the topic. Analytical methods initially contemplated
the ideal case of infinite length cylinders (see e.g., [31]), though in most practical cases the finite length of
the structure and boundary conditions play an essential role in the vibroacoustics of cylindrical shells [32].
In a nutshell, the latter can be categorized as being acoustically thin, when their critical frequency fc is
bigger than their ring frequency fR, (i.e., fR/fc < 1) or as acoustically thick if fR/fc > 1. These two
frequencies play an important role in cylinder sound radiation. For frequencies larger than the critical
one, flexural wave motion becomes supersonic (with respect to sound wave speed) and radiates sound very
efficiently [33], while the opposite occurs for frequencies smaller than fc. On the other hand, the ring
frequency determines the threshold beyond which the cylindrical shell curvature begins losing importance
and its vibration starts resembling that of a flat plate (see e.g., [34]). In general, acoustic thin shells are
easier to characterize because they all follow the same vibroacoustic trends but unfortunately most cylindrical
shells of practical interest are acoustically thick [32]. Note that being acoustically thick does not mean that
thin shell theory cannot be applied; the two concepts are distinct. Thin shell theory is valid whenever the
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thickness of the cylindrical shell is much smaller than its radius. Dealing with acoustic thick shells to which
thin shell theory applies is totally standard and the examples in this work address such situation. As said
however, the vibroacoustics of acoustic thick shells are complex and can depend on many factors including
the boundary conditions, shell and stiffeners geometry and types of excitation [32]. Concerning the latter,
several of them have been considered in literature: from mechanical point or distributed forces, acoustic
incident waves or turbulent boundary layers. The reader is referred e.g., to [35, 36] and references therein
for specific bibliography on the topic. Being this the first work on sound radiated by a cylindrical shell with
an embedded annular ABH, only mechanical point excitation will be considered.

To characterize the sound radiated by the annular ABH cylindrical shell we first need to compute
its vibration field when submitted to the external point excitation. This will be done using Gaussian
basis functions in the framework of the Rayleigh-Ritz method and the procedure will be referred to as
the GEM [37, 38]. The GEM was initially developed for straight beams [37] and plates [38] but adapted to
circular beams in [26] and to cylindrical shells in [30]. The GEM gets its inspiration from wavelet approaches
for ABH beams and plates (see e.g., [39–41]) and has the advantage of easily dealing with periodic boundary
conditions, as those encountered in the circumferential direction of a cylinder. Once the surface velocity of
the ABH shell is computed, the next step is to obtain the surface acoustic pressure distribution to determine
the shell’s acoustic power. This can be done by solving the Helmholtz equation with the Green’s function
in cylindrical coordinates and defining and impedance matrix that relates the shell surface velocity with
the acoustic pressure [42, 43]. The ABH shell acoustic power and radiation efficiency can be obtained from
the surface velocity and pressure distribution. After that, we shall focus in locating the sources of far-field
sound radiation on the ABH cylindrical shell. To that purpose one can resort to supersonic intensity (SSI),
which relies on transforming the pressure and velocity fields to the wavenumber domain and eliminate the
effects of subsonic propagating flexural waves to build the intensity, which are mostly evanescent and do not
contribute to the far-field [5, 6, 44]. As we are working in the spatial domain and not in the wavenumber
one, it would be interesting to formulate SSI in the former. This was actually done for flat plates in [45]
and applied in [4] to locate sound sources in a plate with embedded 2D circular ABHs. In this work we will
develop a methodology to compute the SSI for cylindrical shells in the spatial domain that can serve for
the annular ABH cylindrical shell. It is to be noted that alternatives to improve the outcomes of SSI have
been proposed in literature such as non-negative intensity [46–48], though we will limit to SSI in this work.
Finally, the acoustic pressure at any point in the far field will be computed by means of the solution to the
Helmholtz equation mentioned above. Comparisons of all computed quantities for the ABH annular shell
will be compared with those of a uniform shell to illustrate the benefits of the former.

The remaining of this paper is organized as follows. In Section 2 we first state the radiation problem we
want to solve and then present a reminder of the GEM developments in [30] to characterize the vibration
field of the annular ABH cylindrical shell. Next, the sound radiation model together with the acoustic
impedance matrix to compute the acoustic power and radiation efficiency are introduced. This is followed
by the proposed strategy to deal with SSI in the spatial domain for cylindrical geometries. The complete
semi-analytical approach for sound radiation is validated against FEM simulations in Section 3. Then we
proceed to analyse the vibroacoustic performance of the annular ABH in Section 4. The results for mean
surface radial velocity, acoustic power, sound power level, radiation efficiency, intensity, supersonic intensity
and surface and far-field acoustic pressure are reported and compared for ABH and uniform cylindrical
shells. Conclusions are finally drawn in Section 5.

2. Sound radiation model for ABH cylindrical shells

2.1. Statement of the problem

To begin with, let us describe the radiation problem addressed in this paper in some detail. We consider
a cylindrical shell submitted to an external radial point force excitation (see Fig. 1). As a result, the shell
vibrates and emits sound waves that propagate outwards. For simplicity, the shell radiating in air is baffled
between two semi-infinite rigid cylinders (see Fig. 1a), so no interaction occurs at edges between the inner
and outer shell acoustic fields. In this work, we are only interested in the second one, i.e., on exterior acoustic
radiation.

3



Rigid baffle

Rigid baffle

x

y

x

Point force(x
j
, θ

j 
)

(x
i
, θ

i 
)

ΔS

ΔS

r
abh

r
v

h
c

h
v

h
uni

a

R

x
f

O

(a)

(b) Point force

Figure 1: a) Baffled cylinder with internal annular ABH. Division into elementary patches ∆S to compute sound radiation.
b) Section of the cylindrical shell with the annular ABH indentation.

To reduce the sound radiated by the cylindrical shell we consider embedding an annular ABH at its
interior comprising the space between the two blue circles in Fig. 1a. Flexural waves entering the ABH
are expected to slow down and increase their amplitude while approaching the ABH central region. There,
energy becomes dissipated by means of a damping layer that covers the area delimited by the green circles in
Fig. 1a. Our goal is to investigate how the reduction of shell vibrations induced by the ABH effect influence
the shell sound power level, its radiation efficiency and the emission of acoustic waves to the far field.

The cylindrical shell has external radius R, thickness huni and extends between −a < x < a. The axial
direction of the cylinder is denoted by x and the circumferential one by y, with y = θR and θ being the
angle in cylindrical coordinates. The junction between the shell and the semi-infinite rigid baffles is chosen
to be elastic and can accommodate various types of boundary conditions by tuning its parameters. The
geometric details of the annular ABH are depicted in Fig. 1b. It has half length rabh and a power-law
varying thickness h(x) = ε|x|m + hc, where m and hc respectively designate the ABH order and the central
truncation thickness. ε = (huni − hc)r−mabh stands for the smoothness parameter, which characterizes the
slope of the ABH profile. In what concerns the damping layer, it has half length rv and a uniform thickness
hv. The external excitation force is located at point xf = (xf , yf ).

2.2. Vibration field of the annular ABH cylindrical shell

To determine the sound radiated by an ABH cylindrical shell when submitted to an external excitation,
we first need to know its surface velocity distribution. As the shell radiates into air, it is well-known that
the coupling between the shell and the acoustic domain is weak so one can estimate the shell vibration
neglecting air’s influence. To obtain the shell’s surface velocity we rely on the Gaussian expansion method
(GEM). The GEM applied to ABH cylindrical shells was described in the authors’ previous work [30] and
only a summary will be presented hereafter for the article completeness. The reader is referred to [30] for
further details.

Unlike flat plates, where transverse vibration is clearly dominant in terms of sound radiation and in-
plane motion can often be discarded, vibrations in the three directions must be accounted for in the case of
cylinders, as these are usually strongly coupled. This means that we have to deal with the axial displacement
u, the circumferential displacement v, and the radial displacement w.
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Each of the three displacements u, v, w can be decomposed in a series of basis functions. Let us re-
spectively symbolize the basis functions in the three directions as ψi(x, y), ξi(x, y), ϕi(x, y), with a priori
unknown weight coefficients ai(t), bi(t), ci(t). It follows,

u(x, y, t) =
∑
i

ai(t)ψi(x, y) = a>ψ = ψ>a, (1)

v(x, y, t) =
∑
i

bi(t)ξi(x, y) = b>ξ = ξ>b, (2)

w(x, y, t) =
∑
i

ci(t)ϕi(x, y) = c>ϕ = ϕ>c, (3)

with

a = Â exp (jωt),b = B̂ exp (jωt), c = Ĉ exp (jωt). (4)

as we are assuming harmonic time dependence. In Eqs. (1)-(3), ψ, ξ and ϕ are column vectors with
respective entries ψi(x, y), ξi(x, y) and ϕi(x, y). Introducing Kronecker’s product, vectors ψ, ξ and ϕ can be
factorized as

ψ(x, y) = αψ(x)⊗ βψ(y), (5)

ξ(x, y) = αξ(x)⊗ βξ(y), (6)

ϕ(x, y) = αϕ(x)⊗ βϕ(y), (7)

where α(i)(i = ψ, ξ, ϕ) are column vectors containing basis functions that only depend on the x direction
and β(i)(i = ψ, ξ, ϕ) are analogous column vectors only depending on the y direction. The entries of α and
β are given by

αi(x) = 2sx/2exp[−(2sxx− qxi)2/2], (8)

βi(y) = 2sy/2exp[−(2syy − qyi)
2/2], (9)

and are obtained by translation and dilation of a general Gaussian function g(z) = exp(−z2/2) (see [37, 38]
for details on how to build the Gaussian basis). However, as quoted in [30], Eq. (9) cannot be directly used
to decompose the vibration in the y direction because periodicity has to be imposed in that direction. That
is, the following conditions must be satisfied,

u(x, 0) = u(x, 2πR), v(x, 0) = v(x, 2πR), w(x, 0) = w(x, 2πR), (10)

∂u

∂y
(x, 0) =

∂u

∂y
(x, 2πR),

∂v

∂y
(x, 0) =

∂v

∂y
(x, 2πR),

∂w

∂y
(x, 0) =

∂w

∂y
(x, 2πR), (11)

∂2u

∂y2
(x, 0) =

∂2u

∂y2
(x, 2πR),

∂2v

∂y2
(x, 0) =

∂2v

∂y2
(x, 2πR),

∂2w

∂y2
(x, 0) =

∂2w

∂y2
(x, 2πR). (12)

As shown in [30], after some manipulations the Gaussian basis in Eqs. (8)-(9) can be modified to satisfy
Eqs. (10)-(12).

To determine the displacement field (u, v, w) from the Rayleigh-Ritz method, we next need to find
expressions for the kinetic and potential energy of the ABH cylindrical shell. The kinetic energy is given by,

Kshell =
1

2

∫ 2πR

0

∫ a

−a
ρh(x, y)

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]

dxdy, (13)

where ρ and h(x, y) represent the shell density and local thickness, respectively.
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The potential energy of the shell reads (see e.g. [49]),

Ushell =
1

2

∫ 2πR

0

∫ a

−a
D(x, y)

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2
− 1

R

∂v

∂y

)2

+ 2ν
∂2w

∂x2

(
∂2w

∂y2
− 1

R

∂v

∂y

)
+

1− ν
2

(
2
∂2w

∂x∂y
− 2

R

∂v

∂x

)2
]

dxdy

+
1

2

∫ 2πR

0

∫ a

−a
G(x, y)

{(
∂u

∂x

)2

+

(
∂v

∂y
+
w

R

)2

+ ν

[
∂u

∂x

(
∂v

∂y
+
w

R

)
+

(
∂v

∂y
+
w

R

)
∂u

∂x

]
+

1− ν
2

(
∂v

∂x
+
∂u

∂y

)2
}

dxdy, (14)

where D(x, y) = E?h3(x,y)
12(1−ν2) is the bending stiffness and G(x, y) = E?h(x,y)

1−ν2 the extensional one. E? = E(1+iη)

stands for the complex Young modulus that includes the material loss factor η.
A large variety of boundary conditions can be simulated by assigning different values to translational

springs with stiffness values kji , i = 1, 2, j = u, v, w, placed at the edges of the cylinder, as well as to rotational
springs with parameters pwi , i = 1, 2. Their contribution to the potential energy has to be considered and
turns to be,

Uedge =
1

2

∫ 2πR

0

{
kw1 u

2(−a, y) + kv1v
2(−a, y) + kw1 w

2(−a, y) + pw1

[
∂w

∂x
(−a, y)

]2
}

dy

+
1

2

∫ 2πR

0

{
ku2u

2(a, y) + kv2v
2(a, y) + kw2 w

2(a, y) + pw2

[
∂w

∂x
(a, y)

]2
}

dy. (15)

Finally, the external work resulting from the point force at xf = (xf , yf ) is expressed as

W = f(t)w(xf , yf , t). (16)

Eqs. (13)-(16) are valid for a cylindrical shell with any varying thickness profile and with arbitrary
boundary conditions. The influence of damping layers can be incorporated in the model following the fully-
coupled method [39]. Analogous expressions to Eqs. (13)-(14) are used to determine the viscous damping
layer kinetic, Kvis, and potential Uvis, energies.

The complete Lagrangian of the system is built as

L = K − U +W = (Kshell +Kvis)− (Ushell + Uvis + Uedge) +W =
1

2
q̇>Mq̇− 1

2
q>Kq + q>f , (17)

where in the last equality we have inserted the expansions Eqs. (1)-(3) into Eqs. (13)-(16) and their equivalent
for the damping layer. The vector

q = [Â>, B̂>, Ĉ>]> exp (jωt) ≡ Q̂ exp (−jωt), (18)

in Eq. (17) collects the system unknowns of Eq. (4), while M represents the mass matrix, K the stiffness

one and f = F̂ exp (−jωt) the force vector. Their detailed expressions are provided in [30] as well as an
explanation on how to embed the annular ABH on them according to the matrix replacing strategy in [38].
The equations of motion for the ABH cylindrical shell are obtained from the Euler-Lagrange equations
∂t(∂q̇L )− ∂qL = 0, which yield, in the frequency domain,(

−ω2M + K
)
Q̂ = F̂. (19)

The solution to Eq. (19) provides the displacement field of the ABH cylindrical shell at a given angular
frequency ω.
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2.3. Sound radiation and supersonic intensity

2.3.1. Acoustic pressure, sound power and radiation efficiency

Once the radial displacement w(x, y) is computed, the normal velocity to the cylinder surface can be
simply obtained as vw(x, y) = −jωw(x, y). For a baffled cylindrical shell, the radiated sound pressure at an
external point (x′, y′, r) ≡ (x′, θ′R, r) due to the shell vibration can be calculated by means of the Helmholtz
equation Green’s function in cylindrical coordinates. This yields (see [42, 43]),

p(x′, θ′R, r)=
jρ0ω

4π2

∫ 2π

0

∫ a

−a
vw(x, θR)

+∞∑
n=0

εncos [n(θ′ − θ)]
∫ +∞

−∞

exp [jkx(x′ − x)]

kyR

H
(1)
n

(√
k2

0 − k2
xr
)

H
(1)′
n

(√
k2

0 − k2
xR
)dkxdxRdθ,

(20)

where ρ0 represents the air density, k0 = ω/c0 the total acoustic wavenumber (c0 is the speed of sound) and

n designates the circumferential number (besides, remember that y = θR). Likewise, H
(1)
n stands for the

n-th Hankel function of the first kind while H
(1)′
n represents its first derivative with respect to the argument

kyR. The normalization coefficient εn in Eq. (20) has values,

εn =

{
1 n = 0,
2 n > 0.

(21)

For the numerical estimation of Eq. (20), the cylindrical shell can be divided into N equal elementary
radiators of area ∆S (see Fig. 1). The normal velocity is assumed constant within each radiator and we
can assemble all of them into an N × 1 vector vw. Then, the sound pressure at the surface of each radiator
(acoustic wall pressure) can be also expressed as an N × 1 vector p such that,

p = Zvw. (22)

Here, Z represents the N ×N acoustic impedance matrix with entries,

Zij =
jρ0ω∆S

2π2

+∞∑
n=0

εn cos [n(θi − θj)]
∫ +∞

0

cos [kx(xi − xj)]√
k2

0 − k2
xR

H
(1)
n

(√
k2

0 − k2
xr
)

H
(1)′
n

(√
k2

0 − k2
xR
)dkx. (23)

On the other hand, the ABH cylinder sound power radiation can be computed as

Wrad = vH
wRvw, (24)

where the superscript H stands for the Hermitian transpose and R = ∆S
2 Re(Z|r=R) is the radiation resistance

matrix, which is real, symmetric and positive-definite. KnowingWrad, one can recover the radiation efficiency
of the cylinder from its definition [31],

σ =
Wrad

ρ0c0N∆S〈v2
w〉S

, (25)

where 〈v2
w〉S represents the mean square velocity (MSV) over the whole surface S of the ABH cylindrical

shell. The MSV can be directly computed from the normal velocities determined with the semi-analytical
GEM approach of Section 2.2. Z0 = ρ0c0 in Eq. (25) is the air characteristic impedance, c0 being the sound
speed in air.

2.3.2. Supersonic intensity in the spatial domain

To identify the vibration regions on the cylinder surface that most effectively radiate sound to the far
field, one can resort to supersonic intensity [5]. Hereafter, we will follow its formulation in the spatial
domain, as done for a plate in [45], but adapting the strategy to the cylindrical problem at hand. As the
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procedure involves expressing the radial velocity and the acoustic wall pressure fields at the cylinder surface
(i.e., r = R) in the wavenumber domain, we must first force them to be periodic in the circumferential
direction y = θR. This can be done by convolving their expressions with a Dirac comb distribution (see
e.g., [33] or [36] for recent applications in cylindrical shell vibroacoustics) so that,

v̄w(x, y) ≡ vw(x, y) ∗ 1

2πR
III
( y

2πR

)
, (26)

p̄(x, y) ≡ p(x, y) ∗ 1

2πR
III
( y

2πR

)
, (27)

with

III(y/2πR) = 2πR

+∞∑
n=−∞

δ(y − 2πRn). (28)

As usual, δ stands for Dirac’s delta and ∗ for the convolution operation.
To lighten the presentation, let us primarily focus on the velocity field, the developments for the pressure

being totally analogous. The spatial Fourier transform of v̄w(x, y) is given by

V̄w(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
v̄w(x, y) e−jkxxe−jkyydxdy = Vw(kx, ky)III (Rky) , (29)

where use has been made of Eq. (26) and the convolution theorem. Vw(kx, ky) denotes the spatial Fourier
transform of vw(x, y). The inverse transform of Eq. (29) reads,

v̄w(x, y) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
Vw(kx, ky)III (Rky) ejkxxejkyydkxdky. (30)

Supersonic intensity relies on the fact that, at least for unbounded structures, only waves propagat-
ing at supersonic speed on the structure (e.g., a cylinder in our case) are effective in radiating acous-
tic waves to the far field. The term supersonic makes reference to the speed of waves in the struc-
ture as compared to c0, but obviously the generated acoustic waves propagate outwards at the speed of
sound. This means that only structural waves with wavenumbers in the acoustic radiation disc D̄rad ={

(kx, ky) ∈ R | k2
x + k2

y ≤ k2
0 = (ω/c0)2

}
contribute to the far field, while those fulfilling k2

x + k2
y > k2

0 are
evanescent and can be discarded as potential sound sources. In the case of a plate, kx and ky in the radiation
disc respectively refer to the standard wavenumber components in the x and y directions [6], while in the
case of cylinders the radiation condition was only applied to the wavenumber in the axial direction, i.e.,
kx < k0, in [5]. In what follows, we will also consider the circumferential direction and proceed in the spatial
domain as in [45]. It will be made apparent below that ky = n/R, so that our radiation disc is given by
D̄rad =

{
kx ∈ R, n ∈ N | k2

x + (n/R)2 ≤ k2
0 = (ω/c0)2

}
.

The supersonic velocity v̄
(s)
w (x, y) is defined by limiting the integral in Eq. (30) to values (kx, ky) ∈ D̄rad.

That is,

v̄(s)
w (x, y) =

1

(2π)2

∫∫
D̄rad

Vw(kx, ky)III (Rky) ejkxxejkyydkxdky. (31)

However, we can recover the infinite limits by introducing the Heaviside unit function,

H(kx, ky) =

{
1 (kx, ky) ∈ D̄rad

0 (kx, ky) /∈ D̄rad
(32)

to rewrite Eq. (31) as

v̄(s)
w (x, y) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
Vw(kx, ky)III (Rky)H(kx, ky) ejkxxejkydkxdky. (33)
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Next, let us define the filter function G(sp)(kx, ky) ≡ III (Rky)H(kx, ky). Its superscript (sp) indicates that
the filter has two purposes: limiting the integration to the radiation disc and forcing the periodicity of the
velocity field in the circumferential direction. If we denote the inverse Fourier transform of G(sp)(kx, ky) by
g(sp)(x, y), the convolution theorem allows one to express the supersonic velocity as

v̄(s)
w (x, y) = vw(x, y) ∗ g(sp)(x, y), (34)

and the same holds true for the acoustic pressure,

p̄(s)(x, y) = p(x, y) ∗ g(sp)(x, y). (35)

The velocity field vw(x, y) can be directly obtained from the GEM described in Section 2.2, while the
pressure field p(x, y) is acquired from Section 2.3.1. All that is lacking to compute the supersonic velocity
and pressure, and therefore the supersonic intensity, is an expression for g(sp)(x, y). This can be computed
from the inverse Fourier transform,

ḡ(sp)(x, y) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
III (Rky)H(kx, ky) ejkxxejkydkxdky

=
1

(2π)2R

+∞∑
n=−∞

ej(n/R)y

∫ +∞

−∞
H
(
kx,

n

R

)
ejkxxdkx

=
1

(2π)2R

bk0Rc∑
n=d−k0Re

2κxej(n/R)ysinc (κxx) , (36)

where in the second line use has been made of the definition of Dirac’s comb distribution in Eq. (28). In
the third line, the integral is carried out and κx = +[k2

0 − (n/R)2]1/2. Given that κ2
x > 0, this implies

|n| < |k0R| (bxc and dxe respectively stand for the floor and ceil functions of argument x). Note that
(n/R)y = nθ. The sinc function in Eq. (36) has an infinite amount of side lobes that in practice can pollute
the solution. As quoted in [45], one can get rid of most unwanted ringing oscillations associated to the
Gibbs phenomenon by resorting to a Lanczos filter. The function sinc (κxx) is replaced with the product
sinc (κxx) sinc (κxx/α) for κxx ∈ (−α, α) and is set to zero otherwise. Typical values for the α parameter
are α = 2, 3, because integers make the sinc functions vanish at the edge of the filter, providing a smooth
cut-off. Note that one could have arrived at Eqs. (34)-(36) by different paths, such as initially considering
a Fourier series development for the radial velocity and acoustic pressure in the circumferential direction
instead of using the Fourier transform and the convolution with the Dirac comb distribution. However,
the procedure followed above has the advantage of allowing one to directly exploit the field values vw(x, y)
and p(x, y) from previous sections and it is also directly comparable to the spatial approach to supersonic
intensity for flat plates in [45].

Once we have computed the supersonic velocity v̄
(s)
w (x, y) in Eq. (34) and the supersonic pressure p̄(s)(x, y)

in Eq. (35), the supersonic intensity can be obtained as

I(s)(x, y) =
1

2
Re
[
p̄(s)(x, y)v̄(s)

w (x, y)∗
]
, (37)

where the asterisk superscript denotes complex conjugate.
To compute the supersonic intensity for the ABH cylinder, we follow the strategy in the previous section

where the cylinder was divided into N radiators of area ∆S. The convolution operation in Eqs. (34) and
in (35) can be discretized for each radiator as,

v(s)
w (xS , yS) = ∆S

N∑
n=1

vw(x′n, y
′
n)g(sp)(xS − x′n, yS − y′n), (38)

p(s)(xS , yS) = ∆S

N∑
n=1

p(x′n, y
′
n)g(sp)(xS − x′n, yS − y′n). (39)
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Figure 2: Sketch and mesh of the shell-acoustic coupled FEM model (3D sectional view) to validate the proposed approach for
computing sound radiation from an annular ABH cylindrical shell. The blue mesh corresponds to the cylinder which is simply
supported to the rigid baffles. The mesh is strongly refined at the central ABH region. An air layer (orange colour) is coupled
to the cylinder and surrounded with a PML (green colour) to avoid reflection of outwards propagating acoustic waves.

where (xS , yS) stands for the centre of the considered radiator. The supersonic intensity is finally recovered
from,

I(s) =
1

2
Re
[
p̄(s) � v̄(s)∗

w

]
, (40)

where� indicates the Hadamard product (entrywise) between the supersonic pressure and complex conjugate
supersonic velocity vectors.

3. Model validation

In this section, we validate the computations of the cylinder radial velocity, vw(x, y), performed with the
GEM approach of Section 2.2 and the calculation of the acoustic wall pressure field, p(x, y), obtained from
the developments in Section 2.3.1. The validation is carried out by comparison with FEM simulations using

Geometry parameters Material parameters
m = 3 ρ = 7800 kg/m3

a = 2.5 m E = 210 GPa
R = 1 m η = 0.005

huni = 0.02 m ν = 0.3
rabh = 1.25 m
ε = 0.0096 m−2 ρv = 950 kg/m3

hc = 0.0013 m Ev = 5 GPa
rv = 1.25 m ηv = 0.5
hv = 0.008 m νv = 0.3

Table 1: Geometry and material parameters of the ABH cylindrical shell. ρ: shell density, ρv : damping layer density, E: shell
Young modulus, Ev : damping layer Young modulus, η: shell loss factor, ηv : damping layer loss factor, ν: shell Poisson ratio,
νv : damping layer Poisson ratio.
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Figure 3: Validation of the proposed GEM plus sound radiation approach against FEM simulations. Left columns: surface
radial velocity, vr(x, y), indicated as V in the figure. Right columns: acoustic wall pressure, p(x,y), indicated as P in the
figure. Results corresponding to the annular ABH cylindrical shell under a unit point excitation (red arrow in the figures) at
frequencies 100, 200, 300 and 600 Hz.

the commercial package COMSOL Multi-physics. As regards the GEM model, we have taken sx = 4 and
sy = 3 which results in 89 Gaussian functions in the x direction and 55 in the y direction. Consequently, the
mass and stiffness matrices in Eq. (19) have dimensions 14, 685×14, 685. For the computation of the surface
acoustic pressure of the shell through Eq. (22), we have considered a discretization of 100× 100 patches.

In what concerns the FEM model, the 3D shell-acoustic coupling module of COMSOL has been selected.
The annular ABH is simulated in FEM by prescribing a local thickness of the shell according to the power-
law introduced in Section 2.1 (see the blue mesh in Fig. 2). Given the symmetry of the model, we have just
considered half of the cylinder for the simulations and applied symmetric boundary conditions to reduce
the computational cost. The two ends of the cylindrical shell are connected to rigid baffles by means of
simple supports. The rigid baffles of length Lbaf = 1.0 m at both sides of the cylinder are intended to
approximate the ideal infinite ones in Fig. 1a. Outside the shell, an air layer (orange color in Fig. 2) of
thickness ha = 0.2 m is coupled to the ABH shell surface. To avoid reflected sound waves, a perfectly
matched layer (PML) of thickness hpml = 0.2 m (green color in Fig. 2) surrounds the air layer. The whole
FEM model has been meshed using hexahedral (for air) and quadrilateral (for shell) elements. In the rigid
walls and the uniform portions of the shell, the mesh size is h ∼ 0.06 m. However, a very fine mesh is needed
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to capture the rapid wavelength changes at the central region of the ABH portion. Therefore, the mesh has
been gradually decreased towards the ABH centre to 1/15 of its size in the uniform part (see Fig. 2). The
whole FEM model consists of 106,380 elements (including 8,802 shell elements for the ABH cylinder) and
119,790 nodes, with a total of 1,118,013 degrees of freedom. On the other hand, all material and geometrical
parameters corresponding to the annular ABH cylindrical shell sketched in Fig. 1 are reported in Table 1.
The harmonic unit point force is radially exerted at xf = 1.875 m.

In Fig. 3 we present a comparison between the shell surface radial velocity and the acoustic wall pressure
computed with both the GEM plus radiation model, and the FEM. The results are presented for the
frequency values 100, 200, 300 and 600 Hz. The left two columns (Figs. 3a1-3a4 and Figs. 3b1-3b4) show the
surface velocity distribution, vw(x, y), whereas the two columns in the right (Figs. 3c1-3c4 and Figs. 3d1-3d4)
exhibit the acoustic wall pressure distribution, p(x, y). As observed from the left column, a close matching
exists between the radial surface velocity from the proposed method and that of FEM (see also the deeper
validation of the GEM for annular ABH cylinder vibrations in [30]). As for the sound radiation in the right
columns, the results are very similar to those of FEM for the first three frequencies, namely 100, 200 and
300 Hz (compare Figs. 3c1-3c3 with Figs. 3d1-3d3). However, strong differences manifest at 600 Hz (see
Figs. 3c4 and3d4). These are mostly attributed to two facts. First, the difference in the acoustic boundary
conditions used for the FEM and GEM plus integral radiation approach. While semi-infinite baffles are
adopted for the formulation in Eq. (20) (see the black shell in Fig. 1a), only baffles of a finite extent can
be simulated with FEM (see the rigid walls in Fig. 2). Second, the patch discretization may introduce
some errors at high frequencies. Remember that we have taken 100 patches in the axial direction and if
one assumes the six patch per wavelength criteria, the model is valid up to f = 1, 143 Hz, but a slight
refinement of 10 patches per wavelength would diminish the threshold frequency to f = 686 Hz. A finer
mesh is beyond the capabilities of the computer used for the calculations in this work so it is logical that
some discrepancies manifest close to and beyond 600 Hz. Despite such differences in acoustic wall pressure
found at higher frequencies, which are credited to patch number limitation and distinct boundary conditions
between models, rather than to theoretical limitations, it is apparent that the proposed approach to compute
the sound radiated from annular ABH cylindrical shells is reliable for the considered frequency range, and
for the purposes in this paper.

4. Simulation results

4.1. Near-field acoustic characteristics

4.1.1. Sound power level reduction and radiation efficiency

In this section, we explore how embedding an annular ABH on the cylindrical shell affects quantities such
as its sound power level and radiation efficiency and therefore helps reducing sound emission. Before that,
however, let us recall the expressions for the critical frequency, fc, and the ring frequency, fR, of cylindrical
shells [32],

fc =
c20

2πh(x)

√
12ρ (1− ν2)

E
, (41)

fR =
1

2πR

√
E

ρ (1− ν2)
. (42)

In the case of flat plates, flexural wave propagation speed equals the speed of sound in air at the critical
frequency and the radiation efficiency, σ in Eq.(25), strongly peaks at this value. Below fc, flexural waves are
subsonic and barely radiate outwards because of acoustic recirculation on the radiating surface. Therefore,
radiation basically takes place at plate boundaries. In contrast, once passed the critical frequency, f > fc,
the radiation efficiency tends to unity and acoustic waves are effectively radiated outwards. fc also plays
a marked role for cylindrical shell radiation in combination with fR. As explained in [32] and commented
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Figure 4: Dependence of critical frequency fc on location (black curve) together with thickness variation profile (red curve).
Transonic boundaries xt are obtained by intersecting a constant frequency line with the fc curve.

in the Introduction, for thin acoustic shells, i.e. fR/fc < 1, the radiation efficiency follows a general trend.
It increases with frequency up to fR; then, once surpassed fR, curvature effects loose importance and σ
resembles that of a flat plate. Between fR < f < fc, the radiation efficiency first diminishes and then
starts increasing again until fc is reached. After the critical frequency, i.e., for f > fc, σ tends to unity.
However, for thick acoustic cylindrical shells in which fR/fc > 1 the situation is far more complex and σ
depends on the type of excitation and on the geometrical and physical parameters of the cylindrical shell as
well [32]. In the present example, the uniform cylinder without ABH (see Table 1), corresponds to a thick
acoustic shell with fR = 865 Hz and fc = 585 Hz (as said in the Introduction that has nothing to do with
the thin shell theory assumptions valid whenever huni � R; a shell can be thin and acoustically thick as
in the current example). Yet, it follows from Eqs. (41) and (42) that while fR is constant, fc depends on
the shell thickness. As a consequence, when embedding the ABH on the cylinder one can no longer assign
a single value to fc since that would increase inside the ABH until a maximum value was attained for the
central ABH truncation thickness. In the present case, the critical frequency for a uniform shell having
the truncation thickness hc in Table 1 would be fc = 6 kHz and therefore correspond to a thin acoustic
shell instead of a thick one. So what does occur inside the ABH? It is expected that structural supersonic
waves propagating in the axial direction will progressively slow down when approaching the ABH centre and
eventually become subsonic once passed a transonic boundary. In Fig. 4, we have plotted the dependence
of fc with position (the grey shaded area stands for the ABH region) together with the variation profile.
For a fixed frequency value, its intersection with the critical frequency curve determines the location of the
transonic boundaries. This phenomenon will be explained in more detail in the forthcoming section.

Apart from the critical and ring frequencies, two other important frequencies for ABHs are the radius
cut-on frequency frabh

= 38 Hz and the smoothness cut-on frequency fε = 5 Hz. These two frequencies
govern the functioning of ABHs on flat plates (see e.g., [2, 38]). Actually the ABH effect is expected to be
fully operative beyond 3fε = 15 Hz and usually it turns out fr < fε. Nonetheless and as quoted in [30], for
ABH cylindrical shells fc and fR play a much more important role than the ABH cut-on frequencies because
the annular ABH is designed to influence flexural motion, while the circumferential one often dominates the
lower part of the spectrum.

Let us start examining the surface mean square velocity (MSV = 10 log10〈v2
w〉S) of the cylindrical shell

with and without ABH and parameters in Table 1, as well as its corresponding sound power levels (SWL
= 10 log10(Wrad/W0), with Wrad obtained from Eq. (24) and W0 = 10−12 Watts). As seen in Fig. 5, the MSV
and SWL of the ABH shell are considerably lower than those of the uniform shell. As regards the reduction in
MSV of Fig. 5a, the ABH functions very well beyond the critical frequency fc = 585 Hz, because supersonic
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Figure 5: Comparison between the performance of a uniform cylindrical shell and a shell with an embedded annular ABH (a)
mean squared velocity (MSV) and (b) sound power level (SWL).

flexural motion becomes subsonic and dissipated by the damping layer inside the ABH. A zoom-in window
to better appreciate the performance of the ABH in that frequency range has been included in the figure
showing that, in average, the MSV diminishes about 15 dB. It is also observed in the figure that the MSV
for both the uniform and ABH shells clearly decreases above the ring frequency fR = 865 Hz. Below that
frequency the curvature of the cylinder plays a central role and the motions in the axial, circumferential and
radial directions are strongly coupled. As said before, when f > fR, the shell behaviour starts to resemble
that of a flat plate and the coupling between different types of waves gets much weaker. Some more insight
on this point will be provided in next subsection. On the other hand, at lower frequencies, i.e., for f � fc
the ABH shell MSV is also considerably lower than that of the uniform shell (about 10 dB in average).
That reduction is attributed to the smaller rigidity of the ABH shell due to the ABH indentation rather
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than to the ABH effect. Very similar trends to those of the MSV are recovered for the SWL in Fig. 5b.
For frequencies greater than f = 320 Hz, reductions up to 10 dB are achieved throughout the spectrum.
The explanations for the SWL performance are essentially those reported for the MSV, and a zoom is also
included in the figure to better observe the benefits attained for f > fc. This strong reduction in SWL
values is a first indication that one may achieve a significant decrease in the radiated sound by embedding
an annular ABH on a cylindrical shell. That is reinforced having a look at the radiation efficiency in Fig. 6.
For the uniform shell in this example, it is seen that σ increases from negligible values at low frequencies to
a peak value of ∼ 2 close to fc. Then it diminishes again until fR is reached and σ becomes more or less
stable for f > fR, in the analysed frequency range. In the figure, one can clearly appreciate how the annular
ABH indentation is capable of totally suppressing the peak value at the critical frequency, keeping it close
to 1 instead of 2. σ becomes almost constant and equal to 1 for most frequencies between fc < f < fR and
then slightly decreases once surpassed fR.

4.1.2. Source location through supersonic intensity

To determine which regions on the surface of the uniform and ABH cylindrical shells most contribute to
the radiation of acoustic pressure to the far field, we resort to the supersonic intensity (SSI) introduced in
Section 2.3.2. For comparison, results for standard surface acoustic intensity (hereafter referred to as sonic
intensity: SI) are also presented. In Fig. 7, the values of SI and SSI for ABH and uniform shells have been
plotted at the four different frequencies f1 = 110 Hz, f2 = 340 Hz, f3 = 778 Hz and f4 = 930 Hz. The
left column in the figure, Figs. 7a1-a4 shows the SI values for the ABH shell while those of SSI are plotted
in Figs. 7b1-7b4. Likewise, Figs. 7c1-7c4 present the SI for the uniform shell, while the SSI is provided in
the right column, Figs. 7d1-7d4. In each figure, the cylinder has been mapped into a flat surface for easier
inspection. The horizontal axis corresponds to the axial direction and the vertical one to the circumferential
direction. The colour scales change from figure to figure to better perceive their contents. The cross in each
plot indicates the point where the external force is applied and the two vertical lines denote the ABH limits.

Let us first focus on the outcomes from the lowest frequency in the figure, f1 = 110 Hz (first row in Fig. 7).
As observed for the ABH shell in Fig. 7a1, SI mostly concentrates within the ABH exhibiting positive and
negative values which result in very poor radiation efficiency. Its corresponding SSI in Fig. 7b1 is basically
positive but its maximum value reaches 5.8 × 10−11 W/m2, which is much lower than the maximum SI
(1.6× 10−8 W/m2). Moreover, the SSI pattern is completely different indicating that most radiated sound
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Figure 7: Sonic (SI) and supersonic (SSI) intensity (W/m2) for frequencies f1 = 110 Hz, f2 = 340 Hz, f3 = 778 Hz and
f4 = 930 Hz. Column (a): SI for the ABH shell, Column (b): SSI for the ABH shell, Column (c): SI for the uniform shell,
Column (d): SSI for the uniform shell

emanates along the top of the cylinder, where excitation takes place, and from its sides, but not from the
bottom area. One may wonder why is it that so much SSI is generated within the ABH. The reason is that
for such low frequency, f1 � fR, curvature effects are very important and the shell is partially stiffened
because of it, compensating the weakening caused by the ABH indentation. Circumferential supersonic
modes dominate the shell behaviour [5, 6, 30] and the ABH has very little effect on them because it is
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Figure 8: Surface and far-field acoustic pressure (Pa) for frequencies f1 = 110 Hz, f2 = 340 Hz, f3 = 778 Hz and f4 = 930 Hz.
Column (a): Surface pressure (R = 1) for the ABH shell, Column (b): Far-field pressure (r = 10) for the ABH shell, Column
(c): Surface pressure (R = 1) for the uniform shell, Column (d): Far-field pressure (r = 10) for the uniform shell.

designed to act on waves propagating in the axial direction. This is confirmed having a look at the SI and
SSI for the uniform shell in Fig. 7c1 and Fig. 7d1 in which circumferential motion predominates. Note that
at this low frequency the SI and SSI of the uniform shell present very similar patterns.

If we move to the second analysed frequency, f2 = 340 Hz, which is again considerably lower than the
critical and ring frequencies fc and fR, it is observed that negative SI values still appear in the annular ABH
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of Fig. 7a2, though these are smaller than those encountered for f1. The SSI in Fig. 7b2 still concentrates
within the ABH, with a pattern that now comprises the whole cylinder circumference. Its value is much
higher than that found for f1 indicating that more sound will be radiated outwards for f2 than for f1. In
what concerns the uniform cylinder, it is seen in Fig. 7c2 that SI exhibits a regular combination of regions
of maxima and minima which all become radiators in the figure for SSI (see Fig. 7d2).

The next frequency f3 = 778 Hz lies between fc and fR and reveals some additional interesting phe-
nomena. In this case, transonic boundaries appear within the ABH in which supersonic flexural waves
entering the ABH become subsonic as a result of the decrease in propagation speed. Transonic boundaries
are indicated with dashed lines in Fig. 7 and consist of rings for the annular ABH, while become circles
for circular ABHs in flat plates, see [4]. For a given incident wave with frequency f > fc, the transonic
boundary appears at the axial positions ±xt where the thickness h(xt) is such that the critical frequency in
Eq. (41) matches with the incident one f , i.e.,

xt =

[
c20

2πεf

√
12ρ(1− ν2)

E
− hc

ε

] 1
m

. (43)

This value is directly obtained combining Eq. (41) with the expression for the ABH thickness in section 2.1.
As explained before, the location of the transonic boundaries ±xt for a given frequency f can be graphically
obtained by intersecting the line of constant f with the curve for the critical frequency in Fig. 4. It is
clearly seen in the figure that fc starts increasing as approaching the ABH centre, indicating the transonic
boundaries gradually approach one to another at high frequencies.

Having a look at Fig. 7a3, it is observed that SI now mainly locates at the right part of the ABH shell,
close to the excitation point. SI is also found at the interior of the ABH but one can see that the ABH effect
is already significant and the SI values are small therein. The SSI pattern in Fig. 7b3 closely resembles that
in Fig. 7a3 but the SSI gets smaller than SI once passed the transonic boundary, for the reasons explained
before. Besides, note that the maximum SSI value outside the ABH is 4.3 × 10−7 W/m2 which is very
similar to the SI one, 4.8 × 10−7 W/m2. This is logical since the radiation efficiency is high above the
critical frequency and the main radiation spot is located in the neighbourhood of the excitation point. In
what concerns the values and patterns for the SI and SSI in Figs. 7c3-7d3 they are very similar one to
another and clearly higher than the values obtained for the ABH shell, indicating that the latter can be
very effective in reducing sound radiation.

Finally, at the fourth frequency f4 = 930 Hz, which is greater than the ring frequency fR = 865 Hz,
the ABH becomes fully operative and almost no SSI is found inside the ABH once surpassed the transonic
boundary (see Fig. 7b4), while some appears for the SI in Fig. 7a4. As regard the uniform shell in Figs. 7c4-
7d4, the values and patterns for the SI and SSI are again very similar because beyond the critical frequency
all propagating flexural waves are supersonic.

4.2. Far-field sound radiation

Once seen how the annular ABH is capable of reducing the cylindrical shell sound power level and its
radiation efficiency, and once determined the location of sources responsible for sound radiation by means
of supersonic intensity, it is time to inspect how the acoustic far field becomes influenced by the ABH. To
that purpose, we first consider the acoustic pressure distribution on a virtual cylindrical surface of radius
r = 10 m, at the same frequencies analysed in the previous subsection, namely f1 = 110 Hz, f2 = 340 Hz,
f3 = 778 Hz and f4 = 930 Hz. Results are presented in Fig. 8 together with the acoustic pressure at the
cylinder surface, R = 1 m, for comparison. Each row in the figure corresponds to one frequency. The
two columns in the left contain the acoustic pressure distribution for the ABH shell at R = 1 and r = 10,
respectively, while the columns in the right show the outcomes for the uniform shell at the same distances.
If one compares the far field results (r = 10 m) for the ABH and uniform shells, i.e., Figs. 8b1-8b4 with
Figs. 8d1-8d4, one can clearly appreciate that embedding the annular ABH indentation on the cylinder
reduces the emitted sound (note that the colour scales are different in the figures to better perceive their
details). On the other hand, if one contrasts the surface acoustic pressure of the uniform shell (Figs. 8c1-
8c4) with that at r = 10 m (Figs. 8d1-8d4) the same exact pattern is observed. That is, the figures only
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Figure 9: Far-field sound pressure level spectra at r = 10 m or points: (a) P1 = (0, 0, 10); (b) P2 = (1.875, 0, 10). The
coordinates (x, y, r) refer to Fig. 8.

differ by a constant value due to geometrical divergence. As opposed, the surface patterns of the ABH shell
(Figs. 8a1-8a4) are clearly distinct from those at the far field (Figs. 8b1-8b4).

To better recognize the role of the annular ABH, in Fig. 9 we have plotted the acoustic spectra at two
far field points P1 = (0, 0, 10) and P2 = (1.875, 0, 10) according to the coordinates (x, y, r) in Fig. 8. Note
that P2 is localized in the vertical of the excitation point source. Fig. 9a shows the sound pressure level
(SPL = 20 log10(p/p0), p0 = 2× 10−5 Pa) at P1 for the ABH and cylindrical shells. As observed, the SPL
starts being attenuated for f > 400 Hz and becomes really effective for f > 700, reaching reduction values
of 20 dB. At low frequencies, though, the benefits are not so clear because, as commented before, the ABH
does not work properly below the ring frequency, where circumferential motion becomes important. In what
concerns the second test point, P2, the ABH improvement is very significant for almost the whole frequency
range (f > 200 Hz). Therefore, the annular ABH reveals as a very effective way to suppress noise radiation
from cylindrical shells although its effectiveness may obviously vary from point to point (see the differences
in pressure patterns at r = 10 m in the previous Fig. 8). In this sense, it is worth mentioning that only
point excitation at a particular point has been considered and further exploration with other points at type
of excitations will be worth exploring in the future.

5. Conclusions

In this paper, we have suggested a semi-analytical approach to characterize sound radiation by cylindrical
shells with embedded annular acoustic back holes (ABHs). The case of an external point excitation on the
ABH cylinder has been addressed. The shell velocity distribution has been computed using the Gaussian
expansion method and the acoustic pressure has been obtained from the direct solution of the Helmholtz
equation using Green’s function in cylindrical coordinates. The surface acoustic pressure has been derived
by dividing the cylindrical shell into small radiators and making use of an impedance matrix to relate the
pressure to the surface radial velocity. To locate sound sources in the ABH cylinder surface, a procedure
has been proposed to compute the supersonic intensity (SSI) in the spatial domain. The strategy has been
validated against finite element method (FEM) simulations and has served to compute the ABH cylinder
sound power level, radiation efficiency, sound intensity, supersonic sound intensity and far-field acoustic
pressure. The latter have been compared for an ABH cylinder and a cylinder with uniform thickness.

The main outcomes from the performed simulations are as follows. A thick acoustic shell has been
considered so that the critical frequency is smaller than the ring one. It has been demonstrated that the
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annular ABH has a profound impact on the cylinder mean squared velocity (MSV). For a uniform cylinder,
the MSV increases up to the critical frequency, fc, then remains more or less constant in average up to the
ring frequency, fR, and finally rapidly decreases once surpassed fR. The sound power level (SWL) exhibits
identical tendency. The MSV and SWL of the annular ABH cylinder follow the same behaviour of the
uniform one but levels are reduced in about 10-15 dB beyond the critical frequency. However, the trends
for the radiation efficiency, σ, are very different. While for the uniform shell σ augments with frequency
reaching a maximum close to 2 at fc, then decreases until fR and then remains nearly constant past the
ring frequency, the situation is neatly distinct for the ABH cylinder. The radiation efficiency for the latter
also increases with frequency but barely surpasses a value of 1 at fc, then remains almost constant up to fR
and finally diminishes after it. The radiation efficiency for the ABH shell is clearly smaller than for uniform
one, which inhibits sound radiation. In what concerns the source location on the shell surface, supersonic
intensity (SSI) and acoustic intensity (SI) show very similar patterns for the uniform shell but clearly differ
for the ABH. It is observed that once surpassed fc, the ABH becomes very efficient and sound sources are
located in the close vicinity of the excitation point. The supersonic flexural waves entering the ABH become
subsonic once past a given axial position and their radiation efficiency drastically diminishes. All in all
proves that embedding an annular ABH on a cylindrical shell results in a clear reduction of the far-field
radiated sound.

To finish this paper, we would like to remark that the current work only constitutes a first step showing
the potential of ABHs to reduce noise radiated from cylindrical shells. In future works it will be worth
exploring the influence of different types of excitations like distributed mechanical forces, incident acoustic
fields or turbulent boundary layers. Also, it will be useful to check the influence of various types of boundary
conditions as well as the inclusion of ring and axial stiffeners to keep the structural rigidity of the shell to
acceptable values.
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