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ABSTRACT
Machine learning has been widely applied to clearly defined problems of astronomy and astrophysics. However, deep learning
and its conceptual differences to classical machine learning have been largely overlooked in these fields. The broad hypothesis
behind our work is that letting the abundant real astrophysical data speak for itself, with minimal supervision and no labels,
can reveal interesting patterns that may facilitate discovery of novel physical relationships. Here, as the first step, we seek to
interpret the representations a deep convolutional neural network chooses to learn, and find correlations in them with current
physical understanding. We train an encoder–decoder architecture on the self-supervised auxiliary task of reconstruction to allow
it to learn general representations without bias towards any specific task. By exerting weak disentanglement at the information
bottleneck of the network, we implicitly enforce interpretability in the learned features. We develop two independent statistical
and information-theoretical methods for finding the number of learned informative features, as well as measuring their true
correlation with astrophysical validation labels. As a case study, we apply this method to a data set of ∼270 000 stellar spectra,
each of which comprising ∼300 000 dimensions. We find that the network clearly assigns specific nodes to estimate (notions
of) parameters such as radial velocity and effective temperature without being asked to do so, all in a completely physics-
agnostic process. This supports the first part of our hypothesis. Moreover, we find with high confidence that there are ∼4 more
independently informative dimensions that do not show a direct correlation with our validation parameters, presenting potential
room for future studies.

Key words: methods: data analysis – methods: numerical – techniques: spectroscopic.

1 IN T RO D U C T I O N

Big Data has already changed the way we do science in nearly all
areas of research every day. Although data-driven methods have been
around since almost the very beginning of the history of science, the
meaning of the term has started to transform gradually; data are
not used only to validate our analytical formulations and hypotheses
any more, but have started taking more serious roles in defining the
problem itself, and providing non-parametric solutions to it.

The rationale behind this reform is two-fold. First, huge amounts
of new data are becoming available in many areas: from the ever
increasing number of search-able images on the web to the petabytes-
per-minute streams of data expected from future telescopes – e.g. see
SKA (Quinn et al. 2015). Secondly, and perhaps more importantly,
the scientific community has found, and is advancing, ways to handle
such big volumes of data, thanks to advances in technology. At the
core of these advances lies the recent revolution of techniques under
the broad term of machine learning.

The number of machine-learning-based solutions to problems in
astrophysics, astronomy, and cosmology has drastically increased in
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the past years, and providing a list of them is beyond the scope of this
manuscript – we refer to Baron (2019) for a practical overview. We
believe what particularly needs to be assessed, however, is the way
learning has been utilized in these fields, and the potentials to broaden
the horizons. Concretely speaking, the so-called revolution of the
past two decades has been more about deep learning (DL, Raina,
Madhavan & Ng 2009; Krizhevsky, Sutskever & Hinton 2012): a new
family of methods forked out of classical machine learning (ML) –
the latter has already been around since as early as 1980s (LeCun
1985). But most of the solutions used by our community have been
plugin-style usages of classical ML, and the advantages deep learning
brings upon have not found enough exposure.

Classical ML can be roughly modelled as a black box that
implicitly learns how to connect input features (engineered by
humans) to desired output. Deep learning, on the other hand, is a
similar box, normally implemented as a neural network, with the
additional capability to learn and decide what features are best to be
used for the task at hand. The ability, also known as representation
learning (Rumelhart, Hinton & Williams 1986; Bengio, Courville &
Vincent 2013), is the key difference between the two methodologies
– not the depth of the neural network.

Nevertheless, deep models have proven superiority in performance
and accuracy over traditional methods in astronomy and astrophysics.
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Applications involving classification, detection, and regression have
been extensively and successfully outsourced to neural networks in
the past years, from redshift estimation (Vanzella et al. 2004) to
morphological classification (Lukic & Brüggen 2016). Yet, there
has been little work towards finding how a network is tackling a
specific problem and indeed the interpretation of what the network
has learned is still an open line of research, in all areas.

Unsupervised approaches have also been extensively studied,
especially in the field of computer vision where deep learning was
originally cultivated, e.g. see Bengio et al. (2013) for a review. Such
methods have even been attempted in other fields of science too,
including astronomy (e.g. see Baron & Poznanski 2017). However,
they have often been used to either learn proper features for ini-
tialization of the main supervised task (e.g. Martinazzo, Espadoto &
Hirata 2020), or simply as techniques for tasks such as dimensionality
reduction (Hinton 2006), compression (Wulff 2020), and storage
tractability.

In this work, we choose to take a fully unsupervised approach,
without defining any specific tasks for the network. The idea is to
attempt to interpret the representations by which the network decides
to perceive and describe the data, and assess whether there are traces
of (astro-)physical concepts in them.

The idea of ‘distilling data into knowledge’ in form of analytical
expressions was introduced by Schmidt & Lipson 2009, and later
adapted to astronomy (Graham et al. 2013) and cosmology (Krone-
Martins, Ishida & De Souza 2014). Our work shares the same basic
goal at the conceptual level: letting a machine learn from experi-
mental data. However, we go beyond the constraints of analytical
expressions and try to capture the knowledge in a non-parametric
fashion, relying on the hierarchical feature learning capabilities of
deep neural networks.

In the past years, there have been works lying at the cross-
section of deep learning and the broad definition of the term physics.
Most of such works implement physics-guided or physics-informed
networks, where the network is explicitly or implicitly pre-fed with
known physical laws (e.g. see Meng et al. 2020; Zhang, Liu & Sun
2020). Inspired by Hamiltonian mechanics, Greydanus, Dzamba &
Yosinski (2019) and Choudhary et al. (2020) design Hamiltonian
Neural Networks that learn to respect exact conservation laws. Raissi,
Perdikaris & Karniadakis (2017) teach neural networks to solve
tasks while respecting physical laws described by partial differential
equations. Stewart & Ermon (2017) use prior knowledge to limit
the space of possible learned mappings. Denil et al. (2017) use
reinforcement learning to pursue physical experiments. Ehrhardt
et al. (2017) use simulated motion sequences to teach a neural
network to predict motion, where Sedaghat, Zolfaghari & Brox
(2017) predict motion patterns in real videos. D’Agnolo & Wulzer
(2019) and De Simone & Jacques (2019) use neural networks to
detect discrepancy between reference models and actual (synthetic)
data. However in all of them the flow of physics knowledge is, directly
or indirectly, from human mind to the machine, whereas in this work,
we focus on observing how the machines learn; i.e. the way Big Data
enforces the machine to interpret it.

Fig. 1 outlines our implementation of the above idea. We use an
archive of stellar spectra obtained using the HARPS (High Accuracy
Radial-velocity Planet Searcher; Pepe et al. 2002; Santos et al. 2004;
Romaniello et al. 2018) instrument, as an exemplar case for study,
with easy access to a large number of samples.1 We pass the data, as

1We henceforth refer to the data set itself as HARPS.

Figure 1. A large number of stellar spectra are passed through the informa-
tion bottleneck of a deep convolutional autoencoder, in a fully unsupervised,
physics-agnostic process. The network has zero information about the content
of the numerical vectors it receives. We use techniques based on information
maximization, to enforce learning of disentangled features, and find that the
network learns representations for astrophysical parameters such as radial
velocity and effective temperature, without being asked to do so.

a set of 1D2 numerical arrays, through the information bottleneck3

of a deep convolutional autoencoder, seeking a low-dimensional
yet informative representation of the data (Tishby et al. 1999).
The process is fully unsupervised and the network is completely
agnostic of the type of the content it is seeing. The only constraint
we apply during training is enforcing disentanglement of the learned
representations (Bengio et al. 2013), based on maximization of the
mutual information (MI; Cover 1991) between latent representations
and the main signal. This, however, is the key component of our
implementation, as we need to tune the disentanglement weight to a
lower-than-standard level, for the method to work.

We crack open the trained network, and surprisingly find that
clear traces of physical concepts, such as the effective temperature
of stars and radial velocity are captured by the network. In other
words, the network learns to identify and map such physical features
to individual dedicated latent nodes. Such correlations are identified
by seeking MI between the latent nodes and astrophysical validation
labels we manage to collect from published catalogues (through the
VizieR interface, Ochsenbein, Bauer & Marcout 2000), for a subset
of HARPS object.

In parallel, we define a purely statistical informativeness measure
and run it on the latent nodes to find probable candidates for analysis.
Although the weight we put on disentanglement affects the results,
we find in a reasonable setting that six nodes (out of 128) supposedly
capture a noticeable amount of information. Interestingly, the two
physical nodes we already identified are among the 6, leaving the
remaining 4 open for future studies. As scientifically surprising as
the identified physical nodes are, the remaining 4 are potentially even
more important in the context of the long-term goal of our studies, as
they may open doors for us to learn new patterns/correlations from
data.

Our implementation is based on autoencoders (Vincent et al.
2010): the de-facto framework for unsupervised approaches in
deep learning. The image generating capability of convolutional
encoder–decoder architectures has also been utilized in for tasks
such as transient detection (Sedaghat & Mahabal 2018) and de-

2The term 1D here is used the way it is used in the signal processing
literature, to differentiate vectors from 2D arrays, a.k.a. matrices, and higher
dimensionalities. Otherwise, from a computer scientific point of view each
spectrum in our case has a dimensionality of ∼300 000.
3We use the term ‘information bottleneck’ in a loose manner for both the
exact theory of Tishby, Pereira & Bialek (1999), as well as the architectural
bottleneck formed where the encoder and decoder of an autoencoder meet.
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blending (Boucaud et al. 2020). However, we move from the
deterministic version to Variational AutoEncoders (VAE; Kingma
& Welling 2014), where statistical analysis is made possible. VAEs
and their extensions have been widely used to achieve (or enforce)
interpretability in latent representations – e.g. see Bengio et al.
(2013), Higgins et al. (2017), Chen et al. (2018), Zhao, Song & Ermon
(2018), Tschannen, Bachem & Lucic (2018), and Crescimanna &
Graham (2020). A comprehensive tutorial on VAEs can be found in
Doersch (2016). Information-theoretic extensions to VAEs have also
been studied recently by e.g. Crescimanna & Graham (2020) and
Rezaabad & Vishwanath (2020).

Perhaps the closest to our implementation is the parallel work
of Iten et al. (2020) where a β-VAE is used to look for traces of
physics in latent representations. However, in that work only ‘toy
examples’ based on simulations are tried, with a rather shallow non-
convolutional network. This makes the work orthogonal to our long-
term goal of ‘learning from data’: simulations are created based on
simplistic mathematical models we already know. Hence, they can
teach us, at best, the things we already know.

Moreover, for a network to be able to learn semantics from data,
it needs to be (a) presented with huge amounts of real data, to
avoid overfitting and falling in the covariate shift trap (Sugiyama
& Kawanabe 2012), and (b) at the same time sophisticated and deep
enough to learn useful representations.

There have also been a few attempts towards finding physical
parameters in spectra based on typical dimensionality reduction
methods such as principal component analysis (PCA; Jolliffe &
Cadima 2016). However, PCA provides a linear decomposition of
data and hence, as expected, does not yield the desired one-to-one
mapping between the principal components and physical features –
e.g. see Bailer-Jones, Irwin & Von Hippel (1998). We illustrate such
an effect on our data set in Appendix C.

Our contributions

(i) To the best of our knowledge, this is the first work to allow
deep convolutional neural networks to learn to infer (astro-)physical
parameters just by looking at real data, with zero supervision.

(ii) We provide methods based on MI and statistics, to track true
correlation between learned representations and physical parame-
ters, as well as autodiscovery of the potentially informative latent
dimensions.

(iii) We identify but leave open, cues for doing science with
potentially new patterns that neural networks discover in data.

Section 2 presents the basic deterministic convolutional autoencoder
we start our study with. Section 3 explains how we enforce in-
terpretability of the learned representations via disentanglement.
Section 4 details the specifications of the data set. In Section 5,
we briefly look at reconstruction results. Finally, in Section 6, we
analyse the learned latent representations and assess traces of physics
in them.

2 A DETERMINISTIC CONVOLUTIONA L
AU TO E N C O D E R

Although the final implementation of the proposed method involves
treatment of the input and the latent representation as statistical
variables, in this section, we start by detailing the architecture of
a deterministic deep convolutional autoencoder (Vincent et al. 2010)
and training details. This allows us to clarify the migration from
a traditional fully connected autoencoder to a convolutional one,

as well as to briefly illustrate that even the deterministic variant is
capable of learning useful information from Big Data.

2.1 Architecture

We design an autoencoder composed of a combination of convo-
lutional, up-convolutional and fully connected layers (Fig. 2). A
fully detailed illustration of the network architecture is presented in
Appendix A. There are 15 convolutional layers in the encoder part
that transform the input spectrum, x, down to 512 vectors of length
20 (in case of HARPS). The vectors are then transformed to a single
vector of scalars, called code, using a fully connected layer. The
code, also referred to as the latent representation throughout this
article, contains the most compressed version of the input spectrum
throughout the network. The dimensionality of this vector is chosen
based on the desired compression rate. We experiment with different
code sizes, from 2 to 128. On the other side of the bottleneck, a second
fully connected layer transforms the code back to a similar set of 512
vectors. Then a set of up-convolutional layers take them step-by-
step up to the same dimensionality as the original input (327 680 for
HARPS).

2.2 Reconstruction loss

Eφ and Dθ represent the deterministic encoder and decoder, respec-
tively, where φ and θ are the learn-able parameters of the network.
We aim for pixel-level accuracy in the reconstructed spectrum and
so choose to minimize the per-pixel L1 loss function:

LAE(θ, φ) = Edata

[||x − Dθ (Eφ(x))||11
]
, (1)

which is empirically computed as

LAE =
∑

i∈M |xi − x̂i |
n

, (2)

where x and x̂ are the input and reconstructed spectra, respectively,
i is the pixel index and n is the total number of pixels.

Set M represents a mask, constant over all the spectra in the data
set, which masks out the three information gaps in the beginning,
middle, and end of each HARPS spectrum (Pepe et al. 2002). This
is a safe procedure, because these are just instrumental artifacts that
bear no meaning for the astrophysical interpretation of the spectra.4

2.3 Median normalization

For stability of the training process, we want the input samples not to
feed extremely different value ranges into the input of the network.
Thus, without loss of generality, we normalize the spectra in the data
set according to

x = x̊

median
i∈M

{x̊i} (3)

in which x̊ is the original input spectrum before normalization.
Our initial experiments show that a deterministic autoencoder not

only can compress and reconstruct the whole data sets with as few
as eight nodes at the bottleneck and with a high quality, but also
can grasp a degree of understanding about the underlying signal
sources. This is reflected in the way the network treats the telluric

4The location of such artifacts is not exactly fixed across different spectra.
Therefore, we chose to use a single constant mask to cover all of them, at the
cost of losing a small fraction of informative pixels from each spectrum.
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Figure 2. Brief architecture of the deterministic autoencoder on top, with the schematic variational counterpart of it at the bottom. In the VAE version, the
code is not directly connected to the encoder, but is drawn from the learnable parameters of the normal distribution: reparametrization trick (Kingma & Welling
2014).

lines differently to other (stellar) lines. Details of this part of the
study will be published in a future article.

3 ENFORCING INTERPRETABILITY

Learning disentangled representations for composing factors of
observed phenomena is key to interpretability (Bengio et al. 2013).

Although our deterministic autoencoder proves to be capable of
learning interesting aspects of the observations, the de facto methods
of enforcing disentanglement in deep autoencoders are built on top of
the VAE-based family of methods, and are done by regularization of
the variational autoencoder objective, one way or another (Tschannen
et al. 2018).

We convert our classic autoencoder to a VAE, as seen in Fig. 2,
where the deterministic code is replaced by a probabilistic one and
each element of it is drawn from a normal distribution defined by a
pair of learnable parameters: mean (μ) and standard deviation (σ ).

In the most basic form of a VAE, the objective is of the form:

LVAE(θ, φ) = Lreconst(θ, φ) + Edata[DKL(qφ(z|x)||pθ (z))], (4)

where z is the latent variable, pθ (z) is the prior distribution on the
latent space. qφ(z|x) is the approximation of the posterior, learned
by the encoder and DKL represents the Kullback–Liebler divergence
(Kullback & Leibler 1951).

Higgins et al. (2017) introduce β-VAE in which more disentangle-
ment is enforced by increasing the weight (λ) of the second term:

L(θ, φ) = Lreconst(θ, φ) + λEdata[DKL(qφ(z|x)||pθ (z))] (5)

which from another perspective, pushes for maximizing the MI
between z and x – e.g. see Burgess et al. (2018). We follow the same
formulation for enforcing disentanglement in our implementation.
However, we find that pushing for too much disentanglement by
setting λ to too high a value, even values close to 1 as suggested

by Kingma & Welling (2014) and Higgins et al. (2017), results in
too much loss of reconstruction quality, rendering it against the main
goal of this work. We assess this trade-off between disentanglement
and reconstruction quality in the upcoming sections and find λ = 0.3
a reasonable choice for the current task.

4 DATA SET

The data set is built from observations using the HARPS instrument,
a fibre-fed high-resolution echelle spectrograph dedicated to the
discovery of exoplanets (Mayor et al. 2003). The spectrograph has a
resolving power of 115 000 and covers the spectral range 378–691
nm. We use the ∼270 000 HARPS fully reduced spectra available in
the ESO Science Archive5 in our investigations.

The data set consists primarily of stellar spectra, although has an
extended diversity due to the presence of Solar system objects such as
Jupiter and its Galilean moons, and asteroids. Although these objects
are potential contaminants, we decide to leave them in the data set, to
keep the degree of supervision close to zero. We only had to remove
unusable spectra: the ones containing undefined or unrealistic flux
values, reflecting instrumental errors.

The spectra are homogenized by trimming down to the same
minimum (3785 Å) and maximum (6910 Å) wavelengths, and then
zero-padded either side to the reach the same number of pixels. We
chose this length to be 327 680 = 218 + 216 – reasonably close to
a power of 2 for computational purposes. With the same resolution
(0.01 Å), the wavelengths in the spectra are therefore represented by
the index of the flux vector. The result is a one-dimensional input for
the network to train on.

5The retrieval form to access these spectra is at http://archive.eso.org/wdb/
wdb/adp/phase3 main/form
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4.1 Imbalanced Observations

Any data set can potentially have different numbers of observations
(instances) for different objects. An extreme example in the case
of HARPS is HD128621 (α Cen B) for which there are ∼20 000
instances in the data set, whereas many other objects have been
observed only once.

Just like in any other data-driven method, ignoring this effect,
which is quite similar to a selection function, would allow dominant
objects to inject bias and prevent the learned features from being
representative of the whole data set. But in order to stay fully
unsupervised we take two parallel approaches and compare the
results: First we implement a visibility balancing technique in which
visibility weights are incorporated during training, set to be inversely
proportional to the occurrence frequency of each object in the data
set. Then we also run the same experiments ignoring the imbalance.

As we will see in the upcoming sections, the major physical
concepts that are captured by the network remain consistent across
the two experiments. However, as expected, some other nodes start
to learn features influenced by the dominant (class of) objects.

Also, in some of the test experiments, we are interested in looking
at each object only once. We extract a ‘unique’ list of objects for
this purpose, in which multiple observations of each object are
discarded and simply the first one is picked. We extract the number
of occurrences only based on the ‘target-name’ field in the database.
While the target names in HARPS are not 100 per cent reliable, we
decide to accept the error as it can only influence the results in a
negative way, and does not introduce any kind of false hope. In the
272 376 spectra queried from the data base at the start of the work,6

we get 7653 unique target names.

5 R ECONSTRUCTION R ESULTS

5.1 Deterministic autoencoder

Theoretically, the quality of the reconstructed spectra should heavily
depend on the size of the bottleneck, as it reflects the amount of
preserved information.

Reconstructions with various bottleneck sizes are displayed in
Fig. 3. Interestingly, with a bottleneck as low as eight dimensions,
we already get a very good reconstruction of most of the spectra.

With only two latent dimensions, the network tends to preserve
only the overall shape of the spectrum. Conversely, the higher
the number of bottleneck dimensions is, the more accurately the
output follows fine features of the input. A detailed analysis of this
behaviour is beyond the scope of this paper and will be provided in
an upcoming article.

5.2 With disentangled features

Fig. 3 also depicts reconstruction examples with disentangled fea-
tures. As expected, disentanglement comes at the cost of losing re-
construction quality. Hence, to obtain a high degree of reconstruction
quality and disentanglement at the same time, the bottleneck needs
to have a higher number of dimensions.

5.3 Training set versus validatation set

We split HARPS into training and validation subsets simply based on
the index, after being sorted on the ‘ADP ID’ field. The field presents

6We make the subset available to public.

just a unique identifier and does not have any meaningful correlation
with real-world features, such as observation time or object type, and
is therefore safe for the purpose.

The split has been used to monitor the training process and
avoid overfitting. We also investigated possible differences in re-
construction quality across the two subsets subjectively, and found
no meaningful difference.

6 TH E P H Y S I C S TH E N E T WO R K L E A R N S TO
INFER

The main objective is not for the network to reconstruct the input with
a high accuracy, but rather to learn a minimal useful representation of
the spectra. In this section, we try to interpret the learned features, and
seek to find traces of physical semantics. We pursue ablation study
by cracking open the network and analysing the statistical behaviour
of the latent nodes.

To this end, we forward-pass an ensemble of spectra half-way
through the network and store the ensemble of latent representations,
to form a n × d matrix of codes. This compact matrix, in practice,
contains the whole ensemble, in a compressed format, and suffices
for all statistical analyses. We use the unique subset introduced in
Section 4.1 for this purpose, since dominant objects in the data set,
like α Cen-B with ∼20 000 instances, would bias and occlude our
analyses otherwise.

6.1 Informative dimensions

Our very first analysis is to find out how many informative features
the network really has learned. To this end, we utilize median absolute
deviation (MAD), as a robust measure of statistical dispersion as an
initial score of informativeness. The score for the ith latent node (Zi)
is computed as

MADi = median
j

(
|Zi

j − Z̃i |
)

, (6)

where j iterates over samples (spectra) and Z̃i = median
j

(Zi).

Although such a dispersion measure is, by definition, tied to the
diversity of the underlying data set, still any important property of
the samples should show enough variability across different samples
– or else it contains close to zero information for our purpose, hence
deemed unimportant.

There is one degree of freedom (hyper parameter) which seems
to affect the number of informative nodes: the disentanglement
weight (λ) of equation (5). In Fig. 4, we see that, lower levels of
disentanglement simply result in too many significant dimensions,
which cannot be called informative anymore, as disentanglement is
not really happening. Fig. 5 depicts how two significant dimensions
may still be highly correlated – evidence that the disentanglement
has failed.

Too much disentanglement, on the other hand, results in fewer
significant dimensions, which may seem as a good outcome in
the first look. However, our experiments show that reconstruction
quality decays so much that fine details are discarded and the few
learned features are all centred around the overall shape of the
spectra – Fig. 6. This trade-off is a well-studied characteristic of
unsupervised disentanglement methods – e.g. see Burgess et al.
(2018). Networks with other bottle-neck dimensionalities follow the
same trend, although narrower bottlenecks inherently tend to (have
to) discard fine details.

We find that a disentanglement weight λ of around 0.3 provides
a reasonable trade-off, where no two significant dimensions show
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Machines learn to infer stellar parameters 6031

Figure 3. Illustration of the effects of two major factors on reconstruction quality: latent space dimensionality and disentanglement. The left two columns
illustrate reconstruction loss over the whole spectra, while on the right the same effects are depicted, in two different zoom levels, on an exemplar single
spectrum: Input (blue) and reconstructed version (orange) are overplotted. Comparing the results of the deterministic autoencoder, and that of the disentangled
variational autoencoder, we can clearly see the sacrifice in reconstruction quality, that occurs for the sake of disentanglement. On the other hand, as we increase
the number of latent dimensions (top-down direction in the figure), reconstruction quality for fine details is enhanced.

Figure 4. M.A.D. values for 128-d network on the top and 8-d network on the
bottom. From left to right, the disentanglement weight (λ) is increased. Too
low weights result in leak of information among different dimensions, while
too high values cause loss of details which causes better disentanglement, yet
less useful features. Interestingly the 128-d and 8-d networks agree on the
number of informative features at λ = 0.3.

significant correlation – i.e. good disentanglement. Interestingly,
we find exactly six informative latent dimensions in two different
networks with latent dimensionalities of 8 and 128.

In the next section, we take an information theoretic approach
towards detection of traces of physics in latent features, which
is completely independent of the informativeness indicator of this
section. But as we move forward we find a reassuring harmony
between the two methods.

6.2 Mutual information – with known physics

So far we have identified the dimensions which, from a purely
statistical point of view, seem to have captured significant features
of the stars. Now we seek to interpret the learned features and find
specific traces of physics. The search is conducted over all the latent
features, to avoid any bias from the statistical scores of previous
section.

Assuming we have access to a large number of known (astro-
)physical parameters, we seek MI between them and the latent
features the network has learned. Pearson correlation is too limited
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6032 N. Sedaghat et al.

Figure 5. Scatter plots illustrating mutual behaviour of pairs of latent
dimensions. On the top, there is little to no significant correlation between
the two. In contrast, the bottom two plots show clear correlation between
exemplar dimension pairs, in networks where λ has been too low, which
is a strong hint for failure of disentanglement. In such cases, a high
M.A.D. does not directly translate to possession of exclusive information.
Contrary to intuition, the less structured the plots are, the more successful the
disentanglement has been. Different colours show different spectral classes
and are used for illustration purposes only.

as it can only capture linear dependence with Gaussian noise, while
‘MI is able to quantify the strength of dependencies without regard
to the specific functional form of those dependencies’ (Kinney &
Atwal 2014).

MI of two jointly discrete random variables is defined as (Cover
1991)

I (X; Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)
. (7)

A more intuitive formulation is given by

I (X; Y ) = H (X) − H (X|Y ) = H (Y ) − H (Y |X) (8)

and defines MI as the amount of uncertainty lost in one of the
variables by knowing the other one. In equation (8), H(.) is the
Shannon Entropy (Shannon 2001).

Figure 6. From top to bottom, the effect of too much disentanglement
enforcement is visualized. The network loses the ability to preserve details,
i.e. narrow lines, and starts focusing on the overall shape only. In such a case,
although the significant dimensions learn disentangled representations, the
captured concepts are too simplistic and not much useful.

Given a number of data points, it is often difficult to obtain an
accurate estimate of the MI of the underlying random variables, as
it involves estimation of the underlying joint distribution. For the
task at hand, however, we are not much interested in the exact value
of the MI, as it is a relative indicator when considering all latent
dimensions.

We use joint histograms to simply approximate the joint density.
Still, the estimated MI’s turn out to be quite sensitive to the chosen
number of bins. Therefore, to have a simple, yet robust indicator, we
provide a two-step workaround: (a) sigma-clipping at 5σ , and (b)
multiscale (scan at various bin resolutions).

We extracted some of the known astrophysical features, for a
portion of our data set, from SIMBAD (Wenger et al. 2000), TIC
Stassun et al. (2019), and observation-time parameters:

(i) effective temperature (Teff)
(ii) surface gravity [log(g)]
(iii) metallicity ([M/H])
(iv) radial velocity
(v) airmass
(vi) signal-to-noise ratio (SNR)
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Machines learn to infer stellar parameters 6033

Figure 7. Correlation indicators based on MI at different scales. The depicted matrix at each row shows different scales (binning configurations) along the
vertical axis and different nodes are sitting horizontally. Each row of each indicator, representing a single scale, is normalized by max. For radial velocity,
effective temperature, and surface gravity, individual nodes stand out, while for metallicity, airmass, and SNR, that is not the case.

Steps of the process are detailed in Appendix B.7

We construct MI indicators as explained above, to seek traces
of these intrinsic astrophysical stellar parameters in all dimensions
of our networks. Results for the 128-dimensional network are
illustrated in Fig. 7. Clear signs of strong correlation are seen for
radial velocity at dimension {124}, and Teff, log(g) at dimension
{85}. No clear dimension stands out for [M/H] airmass and
signal-to-noise ratio (SNR).

The two detected ‘physical dimensions’ have already been iden-
tified by the purely statistical indicator of the previous section,
which increases the reliability of the finding. Visualization of the
direct relationship between latent features and their corresponding
validation labels in Figs 8 and 9, shows that the network has clearly
grasped a direct notion of these physical concepts.

6.2.1 Analysis

Node {85} shows correlation with both effective temperature and
surface gravity. Its correlation with the effective temperature is clear,
monotonic and tight, providing close to a one-to-one mapping from
node values to temperatures – Fig. 8, top row.

The reason surface gravity is captured with the same dimension
becomes clearer after plotting the scatter of the two physical parame-
ters (not the node values) against each other – bottom row of Fig. 8. It
turns out that the input data set presents a biased view when it comes
to temperature and gravity, in that it does not sample uniformly
the general underlying stellar population. Concretely speaking, in
the objects the network has seen, temperature and surface gravity
are more or less strongly correlated. From an information theoretic
point of view, surface gravity does not provide much exclusive
information, and a big fraction of the information in it is shared
with effective temperature. In other words, the network does not
need to dedicate an independent node to store information about this
physical parameter, when it can obtain most of what it needs from
another node – especially under disentanglement pressure. Of course,
the network needs to store the exclusive part of the information about

7We re-emphasize that the learning process has been a fully unsupervised one
and such labels have been merely used post-training for validation purposes
only.

this parameter, which is reflected in the scattered points in the plot,
somewhere. That place is most likely in one of the discarded nodes.

Node {124} has captured information on the stars’ radial velocity.
The correlation is shown visually in Fig. 9. The plot shows that
the network has automatically learned a model for hypothetical,
reference, zero-velocity spectra, since it has formed a symmetric
mapping around it. The mapping is of course not a bijective function.
It is also worth noting that for colder stars the correlation is quite
tight and progressively loosens for hotter stars, until it essentially
vanishes at the highest temperature available in our data set. We
speculate that the increasing sparseness of absorption features with
increasing temperature is responsible for the observed behaviour.

The spectral absorption from the Earth atmosphere as parametrized
by the airmass affects the large-scale shape of the spectra, a prominent
feature that could be expected to be picked out by the network.
The same could be expected for metallicity. A posteriori, however,
this does not seem to be the case since neither of these parameters
are significantly correlated with any of the dimensions, as gauged
by the MI results, which may look puzzling at first glance. This
may be, however, related to the fact that HARPS has a relatively
narrow wavelength range, mostly bluewards of most telluric features.
HARPS is mostly an exoplanet hunter, and those are mostly looked
at around solar-like or cooler stars, and our sample is strongly biased
against containing early-type stars. This can be seen in Fig. 8, where
it is also clear that our data set is mostly comprising main-sequence
stars. It also covers a limited range in metallicity, while the optimized
New Short Term Scheduler used by most HARPS visitors
implies that most targets are observed at the best (i.e. lowest) airmass
possible. It is therefore not surprising that the algorithm could not
find a correlation with metallicity and airmass.

One may also expect SNR to be captured by the network as an
independent feature, since it plays a role in forming the appearance
of an spectrum. This is, however, not the case and comes as little
surprise; the noise is uncorrelated with any other type of information
in the data set and by definition does not contain any pattern
across different spectra to be learned. Thus, for a model to capture
and reconstruct pixel-accurate noise, it would need to assign one
parameter per pixel per spectrum – i.e. memorize the noise. This
advantageous limitation is a well-known feature of even the simplest
classical autoencoders, such that denoising autoencoders have been
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Figure 8. Node {85} shows a good correlation with effective temperature
– top row. The tightness of the structure reflects the strength of the MI. The
same node shows a not-so-strong correlation with surface gravity – middle
row. Plotting log(g) versus Teff in the bottom row reveals the reason. Please
refer to the main text for a detailed analysis. It is also useful to note that
our sample is very biased towards main sequence stars, with the log g only
varying between ∼3.5 and 5.

among the first ones to be used (Vincent et al. 2010). Such behaviour
is of course seen in many other methods used for dimensionality
reduction, such as PCA – e.g. see Bailer-Jones et al. (1998).

6.3 Latent space traversal

Although we run out of available physical labels or/and automatically
detected correlations, we go further and pursue deeper investigation
based on a method known as latent space traversal. We start by
forward-passing single spectra half-way through the network, just the
way we did in the beginning of this section, to encode the spectrum
into its latent representation. Then by perturbing (or traversing, in ex-
treme cases) the code and generating the corresponding spectrum, we
can have synthetic spectra which are different to the (reconstructed
version of) the original spectrum as a result of the change in the code.
So, singling out dimensions of the latent space allows for analysis of
the effects of specific dimensions on the generated spectra, hopefully
equal to interpretable features.

To this end, we create an interface with sliders which allow for
traversal over different dimensions and visualization of the effects
on the fly – Fig. 10. In the following, we list the significant findings.

Node {11} seems to be, partly, related to the rotation of the star,
which is another parameter that is known to affect the spectra – a
higher rotation will broaden the lines, making them less deep. Varying
the value of this node does not affect the shape of the continuum,

Figure 9. Node {124} learns a clear understanding of a notion of radial
velocity – top row. The symmetric shape, and the fact that the network has
automatically gained an understanding of zero velocity as a reference point
are notable observations. Different temperatures have apparently been treated
differently, as also detailed in the bottom row.

but only the depth of the lines. Thus, an increased value of the
node corresponds to much broader lines and this is clearly an effect
of increasing rotational velocities (or macroturbulence in general).
Above a given threshold, however, the situation is more complex: for
solar-like stars, the match seems to be done only on stars that have
quite a large radial velocity shift. We have not yet found a physical
reason for this. For early-type stars, the lines do not become broader
either, but instead the Balmer lines clearly become narrower. This is
likely an effect of the gravity of the star.

Node {19} is only affecting a subset of our sample, namely only
the coolest stars. It has indeed no effect on solar-like stars or early-
type stars, but only affects stars that have a value of node {85} above
about 0.85, that is, stars cooler than ∼4500 K. For these stars, this
node is clearly linked with the luminosity of the star. This node is
thus also physical, but confined to a subset of the stars, only the
coolest ones – see Fig. 10 for an illustration.

Node {58} has, similarly to above, no apparent effect on the
spectra of solar-like or early-type stars, but only manifests itself for
even cooler stars than node {19}, those that are characterized with a
value of node {85} above about 1.2. However, we could not find as
yet a clear explanation of the effect at play when varying the value
of node {58}, and we defer a detailed analysis to further work.

Node {99} is contrarily to node {11} affecting the continuum of
the star, more than the lines themselves. It is also, unlike the previous
two nodes, not really affecting solar-like and cooler stars, but has only
a visible effect on stars hotter than the Sun. From a phenomenological
point of view, this node appears to be looking at the inflexion point
of the continuum and whether the spectrum is thereby concave
or convex. Thus, for very negative values (e.g. −4.5), there is a
depression in the spectrum around 5800 Å, which disappears at about
−1.7, while for positive values, there is a maximum around 5300 Å.
The clear physical explanation of this apparent phenomenological
node is hard to find, but a first investigation indicates that it may
be related to the presence of a disc (such as around Be stars) or a
companion. Further studies are needed.

6.4 Discarding observation frequencies

Using the non-balanced data set, we obtain five significant nodes, two
of which correspond exactly to the major captured physical features:
{85} and {124}.
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Machines learn to infer stellar parameters 6035

Figure 10. Our interface for latent space traversal, showing three different experiments. All experiments share the same randomly chosen ‘reference’ star,
shown in blue. This reference is encoded by the network, the obtained code is slightly modified using the sliders, and decoded to generate the orange spectrum.
This resulting spectrum is usually an imaginary one and thus, we illustrate the closest real object to it in green. This closest object is searched for in the learned
latent space. From top to bottom, we show experiments for the effects of {85} (effective temperature), {124} (radial velocity), and {19}, respectively. For the
latter, which applies only to cool stars, we had to ‘move’ the base spectrum to a late-type star, using {85}.
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Two nodes represent features that are also seen as in the balanced
set: {11} and {88} (the latter, corresponding to node {99} of the
balanced set).

Representations captured in nodes {19} and {58} of the balanced
net are clearly not present any more, as we cannot spot any node
specifically representing only the coolest stars. The effect of the
remaining node, {99}, is not clear cut. It seems that for the hottest
stars (>10 000 K), it is partially sensitive to the gravity of the stars:
the lowest values of this node correspond to white dwarfs (i.e. high
gravity), while the highest values correspond to solar-like stars. It
has no apparent effect for A/F/G stars, nor for M stars, but there is
an effect on K stars as well. We could not identify the physical nor
phenomenological criteria that would correlate with this node.

7 C O N C L U S I O N

We implemented the idea of ‘letting the data speak for itself’ in
action, in the context of an astrophysical application, where we let a
deep convolutional neural network look at stellar spectra and learn
from them without any predefined objectives in mind. We showed
that the network ‘chose to’ learn how to extract and capture specific
physical parameters of stars, among other unidentified ones, as their
canonical features. The importance of the finding is in network’s
answer to ‘what is important to learn?’, and should not be confused
with the relatively trivial problem of training a network for estimation
of those parameters.

Specifically, our purely statistical measure revealed that 6 out of
128 latent nodes of our network stand out as informative ones. We
also developed an information-theoretic indicator to track true/non-
linear correlations between the learned features and a set of known
astrophysical parameters. We found that two latent nodes, which
interestingly turned out to be among the six informative ones, have
clearly learned a notion of radial-velocity and effective temperature.

The automatic method did not indicate correlations between the
remaining significant dimensions and the validation labels we had at
hand. This does not necessarily indicate a false alarm on those nodes.
They may have captured known physical parameters for which we
do not have labels yet, or the existing labels might have not been
quite reliable to reveal weaker correlations.

Also, it is quite possible that the other nodes have not captured di-
rect representations of familiar physical parameters, but rather other
complex (or even simpler) features. Artificial neural networks do not
have to think like humans! For example, We spot nodes which capture
variations of specific absorption lines. They may have captured fine
features of chemical abundances – something that is not formulated
in classical astronomy, with this level of granularity. We believe
such features that are not directly interpretable are interesting for
follow up studies, since understanding the reasons behind a network’s
decision to prioritize more complex/simpler features, or higher level
relationships between basic features, may help advance our physical
understanding of the underlying target – stars in this case.

We continued with latent space traversal and found traces of
rotation, luminosity, presence of a disc or a companion, in the
unidentified nodes, some affecting only a subset of our sample (either
the coolest stars, or the hottest). The latter correlations were, however,
not as clear as the previous ones and were decided to be left for future
studies. We make the interface available to public for this purpose.

As mentioned earlier, our data set for this case study is very
specific, due to the particularities of HARPS usage. It is to be
expected that in more generic samples, other features, e.g. luminosity
or metallicity, may come out more easily. In general, the concepts the
network learns to capture, are dependent on the biases in the data set.

AC K N OW L E D G E M E N T S

This work is in part supported by the ESCAPE project (the European
Science Cluster of Astronomy & Particle Physics ESFRI Research
Infrastructures) that has received funding from the European Union’s
Horizon 2020 research and innovation program under the Grant
Agreement no. 824064. We also acknowledge support for our
research by funding from the Science and Technology Facilities
Council. Lastly, we thank Michael F. Sterzik, Mark Allen, Henri
M. J. Boffin, and Felix Stoehr for their help in preparation of the
manuscript.

DATA AVAI LABI LI TY

We release the code for the convolutional neural network, the list of
IDs of the spectra used for training and validation and the physical
validation labels on https://www.eso.org/∼nsedagha/universe. We
also make the ‘sliders’ interface freely accessible to the community
to facilitate study and discovery of new relationships with the
introduced framework.

REFERENCES

Bailer-Jones C. A., Irwin M., Von Hippel T., 1998, MNRAS, 298, 361
Baron D., 2019, preprint (arXiv:1904.07248)
Baron D., Poznanski D., 2017, MNRAS, 465, 4530
Bengio Y., Courville A., Vincent P., 2013, IEEE Trans. Pattern Anal. Mach.

Intell., 35, 1798
Boucaud A. et al., 2020, MNRAS, 491, 2481
Burgess C. P., Higgins I., Pal A., Matthey L., Watters N., Desjardins G.,

Lerchner A., 2018, preprint (arXiv:1804.03599)
Chen R. T. Q., Li X., Grosse R. B., Duvenaud D. K., 2018, in Bengio S.,

Wallach H., Larochelle H., Grauman K., Cesa-Bianchi N., Garnett R.,
eds, Advances in Neural Information Processing Systems, Vol. 31. Curran
Associates, Inc., p. 2610

Choudhary A., Lindner J. F., Holliday E. G., Miller S. T., Sinha S., Ditto W.
L., 2020, Phys. Rev. E, 101, 062207

Cover T. M., 1991, Elements of Information Theory. Wiley, New York
Crescimanna V., Graham B., 2020, International Joint Conference on Neural

Networks. IEEE, Glasgow, United Kingdom, p. 1–8
D’Agnolo R. T., Wulzer A., 2019, Phys. Rev. D, 99, 015014
Denil M., Agrawal P., Kulkarni T. D., Erez T., Battaglia P., de Freitas N., 2017,

Proceedings of the International Conference on Learning Representation
(ICLR). OpenReview.net, Toulon, France

De Simone A., Jacques T., 2019, Eur. Phys. J. C, 79, 289
Doersch C., 2016, preprint (arXiv:1606.05908)
Ehrhardt S., Monszpart A., Mitra N. J., Vedaldi A., 2017, preprint (arXiv:

1703.00247)
Graham M. J., Djorgovski S., Mahabal A. A., Donalek C., Drake A. J., 2013,

MNRAS, 431, 2371
Greydanus S., Dzamba M., Yosinski J., 2019, in Wallach H., Larochelle H.,
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Fig. A1 illustrates details of the deterministic autoencoder. The VAE
version follows the exact same architecture, and differs only around
the bottleneck, as illustrated in Fig. 2.
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Figure A1. Detailed architecture of the deterministic autoencoder. Due to lack of space, not all the layers have been visualized. The missing information can
be extracted from the released source code.

APPENDIX B: R ETRIEVING VALIDATION
LAB ELS

To collect a large number of existing physical labels from the
literature, we use both SIMBAD (Wenger et al. 2000) and the TESS
Input Catalogue (TIC; Stassun et al. 2019), a ‘compiled catalogue of
stellar parameters’.

B1 Cross-matching process

We produce metadata of our HARPS subset as a reference table. Each
row of the table contains information regarding a single spectrum,
including its position on the sky. The table contains possibly many
observations of the same star, as discussed in Section 4. Moreover,
the position accuracy is quite low and the photometric counterpart
may be located at a distance of tens of arcseconds from the input
table position.

In the first step, we consider each entry of the table as an
independent object. We load the reference table into TOPCAT (Taylor
2005) and perform a cross-match with the remote VizieR version
of the TIC table using the CDS Xmatch service from TOPCAT. We
perform a simple cone-search cross-match returning all TIC objects
in a radius of 40 arcsec around each of the input table positions. This
results in more than 5 million matches (5610 122 exactly): the TIC
being deep, we get a large number of spurious association in such a
large search box.

Plotting angular separation versus magnitude V versus distance
of the TIC stars plot (Fig. B1), good matches seem to be separable
from the spurious ones based on the Vmag. It complies with the prior
knowledge that most HARPS objects have a magnitude lower than
12–13 (the green points on the plot). This magnitude corresponds
more or less to the limiting magnitude in the Hipparcos and Tycho
catalogue (HIP Perryman et al. 1997). We thus decided to filter TIC
data to keep only objects having an observation in HIP. With this
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Figure B1. HARPS versus TIC cross-match. Top left: angular separations (in arcsecond) for all cross-matches (red), the HIP selection (blue), and its complement
(green). Top right: re-scaled histogram of the angular separations for the HIP selection. Bottom: angular separation (in arcsecond) versus magnitude V versus
distance of the TIC stars. The left-hand, centre, and right-hand panels show all matches, the selected HIP matches, and its complement, respectively.
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Figure B2. Distributions of successfully acquired labels. It should be noted, however, that these only represent a subset of HARPS spectra, and do not necessarily
represent the exact distributions of the parameters in HARPS.

single selection criteria, we put a (loose) constraint on magnitudes
and ensure a better homogeneity of the selected sample, since all
objects have been observed at least in the Hipparcos catalogue. This
leaves us with 209 183 (4 per cent) associations. With this selection,
we probably miss good matches in a mag range of 10–12.5, the green
points on the right part of the plot.

Initially, the histogram of the angular separations of all matches
is dominated by spurious matches (almost only the linear – Poisson
– component is visible). But selecting only HIP objects in the TIC
catalogue, the histogram is now dominated by good matches (the
linear component being quite low).

After this first selection, we still get HARPS entries associated with
multiple TIC objects. As we favoured reliability over completeness,
we removed those objects resorting to an internal match in TOPCAT.
We get an output 185 662 HARPS spectra associated each with a
single TIC entry.

To add SIMBAD ‘labels’, we finally cross-match our results with
SIMBAD, keeping the closest match in a 2 arcsec radius around the
TIC object positions. 5000 HARPS objects are lost at this last step.

In the end, we get 179 389 matches with

(i) 151 743 radial velocities
(ii) 120 440 metallicity
(iii) 145 372 mass
(iv) 145 372 log(g)
(v) 167 728 Teff.

The cross matching and the resulting labels are by no means
complete. The labels may not be quite accurate either. This, however,
suffices for our validation experiments as we seek only the overall
possible patterns and correlations, not the exact values. Figure B2
illustrates distributions of the acquired labels.

A P P E N D I X C : PR I N C I PA L C O M P O N E N T
ANALYSI S

In Fig. C1, we depict how our MI indicators would work on the
first 128 principal components of our data set. As expected, being
essentially a linear transformation, PCA should not be expected to
result in any sort of ‘smart’ disentanglement of features.
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Figure C1. MI indicators for detection of traces of physical parameters in the first 128 components of PCA. As expected, no clear traces of individual parameters
can be seen; in other words, information about each physical parameter is spread over many dimensions.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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