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Network-calculus is a theory that bounds delays in embedded networks such as AFDX networks used in modern airplanes. Effective computations rely on operators from the min-plus algebra on real functions. Algorithms on specific subsets can be found in the literature. Such algorithms and related implementations are however complicated. Instead of redeveloping a provably correct implementation, we take an existing implementation as an oracle and propose a Coq based verifier.

Problem Statement

Network Calculus is a static analysis method used to bound worst case traversal times of networks. It has noticeably been used since a few decades to certify embedded networks, called Avionics Full DupleX (AFDX), on modern civil aircrafts [START_REF] Boyer | Experimental assessment of timing verification techniques for AFDX[END_REF]. Basically, given bounds on emission rates of each end node of the network and hypotheses on the scheduling policy implemented in each switch, Network Calculus computes sound bounds on the time taken by any packet to travel between any two nodes.

Network Calculus is based on tropical algebra, more precisely the min-plus dioid of functions on real numbers (used to represent both time and amounts of data). Thus, as an intermediate step in the analysis, the method produces algebraic formulas in this dioid, whose computation eventually gives actual numerical bounds. Soundness of the bounds then crucially relies on both the soundness of the Network Calculus theory and of those computations. The soundness of Network Calculus theory is outside the scope of this paper [START_REF] Rakotomalala | Formal Verification of Real-time Networks[END_REF], we will focus here on verification of computations of algebraic operators in the min-plus dioid of functions.

Efficient algorithms are known for these computations and a few effective implementations do exist [START_REF] Bouillard | COINC library: a toolbox for the network calculus[END_REF][START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF][START_REF] Boyer | PEGASE, A Robust and Efficient Tool for Worst Case Network Traversal Time[END_REF]. However, these algorithms are rather tricky, hence the interest in formal proofs to greatly increase the level of confidence in their results. We use the proof assistant Coq [START_REF]The Coq proof assistant reference manual[END_REF] to provide formal proofs of correctness of such results. To avoid a costly entire reimplementation of the algorithms, we adopt a skeptical approach, using existing implementations as Supported by the ANR/DFG Project RT-proofs (ANR-17-CE25-0016).

untrusted oracles and only providing verified implementations of verifiers for each algebraic operation.

Sections 2 and 3 introduce a few notations and give an overview of the objects and operations manipulated throughout the paper. Then, Section 4 recalls the state of the art. Sections 5 and 6 detail the formalization of these objects, while Sections 7 and 8 prove some of their fundamental properties. Finally Section 9 prove the core soundness arguments of the expected verifiers, Section 10 discuss the implementation and Section 11 concludes.

Notations

Let R denote real numbers,

R + = R ∩ [0; +∞[ and R = R ∪ {-∞, +∞}. Let Q denote rational numbers, Q + = Q ∩ [0; +∞[ and Q + = Q + \ {0}.
Let N denote rational numbers, N = N \ {0} and F denote functions from R + to R. Let ∨ denote the logical or and ∧ the logical and. For any finite set S, let #S ∈ N denote its cardinal and for any sequence s, last (s) denote its last element.

In Coq code appearing in this paper, nat will stand for N, R for R, Rbar for R, R+ for R + , Q for Q, Q+ for Q + , Q+ * for Q + and && for logical conjunction ∧.

We also use some list manipulating functions of Coq: nth, head and last. nth x0 l i returns the element of index i (starting at 0) of the list l or x0 if l contains less than i elements. n.+1 and n.-1 are the successor and the predecessor of any natural number n (the predecessor of 0 is 0). The notation %/ is used for euclidean division. To ease readability of the Coq code, we omit scope annotations in the paper. For each result, we give the name of its Coq implementation: for instance F_UPP for Definition 1 below. The code is available at https://www.onera.fr/sites/default/files/447/NCCoq.tar.

(min, plus) Operators on Functions

Network Calculus handles functions in F and uses (min, plus) operations over this set: addition, minimum, convolution and deconvolution. We assume that +∞ + -∞ = +∞. We first present these operators. Then, we introduce subclasses of F stable for these operators and amenable for effective computations.

(min, plus) Operators

The addition f +g and the minimum min (f, g) of two functions f and g of F are pointwise extensions of the corresponding operators on R, that is f + g = t → f (t) + g(t) and min (f, g) = t → min(f (t), g(t)). We also use two operators, the convolution f * g and the deconvolution f g that are not pointwise operators, defined as:

f * g = t → inf u,v 0 u+v=t (f (u) + g(v)), f g = inf {h|f h * g} . (1) 
f t g t f * g Fig. 1: Two functions f, g (on the left) and their convolution f * g (on the right).

Intuitively, the convolution of two functions can be obtained by sliding one function along the other and taking the minimum hull.

where inf on a set S ⊆ F is inf{S} = t → inf {f (t)|f ∈ S}. On Figure 1, we plot an example of convolution. Details can be found in chapter 2 of [START_REF] Bouillard | Deterministic Network Calculus: From Theory to Practical Implementation[END_REF], dedicated to (min, plus) theory.

Sub-classes of Functions for Effective Computation

Network Calculus tools do not manipulates the complete F class but only subclasses with good stability properties and effective computations [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF].

In Network Calculus, it is quite common to have periodic behaviors. To describe them, we use functions that are ultimately pseudo-periodic (UPP), denoted F UPP . A function f belongs to the set F UPP if, given a point T (an initial segment), a period d and an increasing element c, it holds, for all t greater than T that f (t + d) = f (t) + c. To have a description of these functions, it is sufficient to have the values of T , d and c and the description of the function on the initial segment plus one period.

We consider the sub-class of F made of the Piecewise Affine (PA) functions, denoted F PA . For these functions, it is sufficient to give, for each piece, the point of discontinuity, the slope and the offset. These parameters can be recorded in a list although this list can be infinite.

We define F UPP-PA = F UPP ∩ F PA . Its elements can be finitely represented by giving T, d and c from F UPP and the initial segment of the list from F PA representing the function on [0; T + d).

The contributions of this paper are:

a formalization in Coq of F UPP-PA in Sections 5 and 6 and stability properties under (min, plus) operations in Sections 7 and 8. a check for correctness of addition, minimum and convolution in Section 9.

Intuitively, with the addition, if some tool provides three functions f , g and h and claims that f + g = h, we want to check this relation with a finite number of 

f : t → min 2t, t 2 + t 4
Finite representation:

-T = 4, d = 4, c = 3, -discontinuities: • abscissa [0, 1, 2, 4, 6],
• ordinate [0, 2, 2, 3, 5], slopes [2, 0, 0, 0, 0] offsets [0, [START_REF] Bertot | Canonical big operators[END_REF][START_REF] Boldo | Coquelicot: A user-friendly library of real analysis for coq[END_REF][START_REF] Bouillard | Deterministic Network Calculus: From Theory to Practical Implementation[END_REF][START_REF] Bouillard | COINC library: a toolbox for the network calculus[END_REF].

g : t → min 1 3 t, t+8 11 
Finite representation:

-T = 4, d = 4, c = 4 11 , -discontinuities: • abscissa [0, 3], • ordinate [0, 1], -slopes 1 3 , 1 11 -offsets [0, 1].
Fig. 2: f (solid) and g (dotted) are UPP-PA functions. Given a UPP-PA function h with compatible parameters, to prove the equality f

+ g = h, it is enough to check f (t i ) + g(t i ) = h(t i
) for a list of t i : [0; 0.1; 0.9; 1; 1.1; 1.9; 2; 2.1; 2.9; 3; 3.1; 3.9; 4; 4.1; 5.9; 6; 6.1; 7.9]. tests. To this end, we will prove that checking the equality f (t i ) + g(t i ) = h(t i ) on a set of points t 1 , ..., t n , plus some compatibility tests on initial segments, periods and increments, is enough to ensure the equality on R + . We illustrate this on Figure 2. The minimum and convolution can be checked using similar arguments. Regarding the deconvolution, in practice Network Calculus only requires, given two functions f and g, a function h such that h f g. It is then enough to check that h * g f , that is min(f, h * g) = f which only involve checking a minimum and a convolution.

State of the Art

There exist two main classes of curves used in network calculus: the set of concave or convex piecewise linear functions, C[x]PL [START_REF] Sariowan | SCED: A generalized scheduling policy for guaranteeing quality-of-service[END_REF], and the, strictly larger, set of ultimately pseudo-periodic piecewise linear functions UPP-PA, commonly known as UPP [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF].

The class of the CPL linear functions has nice mathematical properties: it is stable under the addition and the minimum, and moreover, the convolution can be implemented as a minimum plus a constant. The data structure and related algorithms are so simple that they, to our knowledge, have never been published. The class of convex piecewise linear functions has very similar properties, replacing minimum by maximum, and its (min,plus) convolution can also be implemented very efficiently [START_REF] Bouillard | Deterministic Network Calculus: From Theory to Practical Implementation[END_REF]Sect. 4.2]. Nevertheless, they cannot accurately model packetized traffic, whereas the UPP-PA class gives better results at the expense of higher computation times [START_REF] Boyer | PEGASE, A Robust and Efficient Tool for Worst Case Network Traversal Time[END_REF].

An open implementation of the operators on the C[x]PL class can be found in the DISCO network calculus tool [START_REF] Bondorf | The DiscoDNC v2 -A Comprehensive Tool for Deterministic Network Calculus[END_REF].

The algorithms of the operators on the UPP-PA class are given in [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF]. An open implementation has been developed but is no longer maintained [START_REF] Bouillard | COINC library: a toolbox for the network calculus[END_REF] to our knowledge. An industrial implementation exists, which is the core of the network calculus tool PEGASE [START_REF] Boyer | The PEGASE Project: Precise and Scalable Temporal Analysis for Aerospace Communication Systems with Network Calculus[END_REF]. The UPP-PA implementation can be accessed through an on-line console [START_REF]RealTime-at-Work online Min-Plus interpreter for Network Calculus[END_REF].

The Real-Time Calculus toolbox (RTC) does performance analysis of distributed real-time systems [START_REF] Wandeler | Modular performance analysis and interface based design for embedded real time systems[END_REF][START_REF] Wandeler | Real-Time Calculus (RTC) Toolbox[END_REF]. Its kernel implements minimum, sum, and convolution on Variability Characterization Curves (VCC's), a class very close to UPP-PA, but no explicit comparison of those two classes has been done up to now.

None of these implementations were formally proved correct.

The first works on the formal verification of network calculus computation were presented in [START_REF] Mabille | Towards certifying network calculus[END_REF]. The aim was to verify that a tool was correctly using the network calculus theory. An Isabelle/HOL library was developed, providing the main objects of network calculus (flows and servers, arrival and service curves) and the statement of the main theorems, but not their proofs. They were assumed to be correct, since they have been established in the literature for long. Then, the tool was extended to provide not only a result, but also a proof on how that network calculus has been used to produce this result. Then, Isabelle/HOL was in charge of checking the correctness of this proof.

Another piece of work, presented in [START_REF] Rakotomalala | Formal Verification of Real-time Networks[END_REF], consists in proving, in Coq, the network calculus results themselves: building the min-plus dioid of functions, the main objects of network calculus and the main theorems (statements and proofs).

The PROSA library also provides proofs of correctness for the response time of real-time systems, but focuses on scheduling tasks for processors [START_REF] Cerqueira | PROSA: A case for readable mechanized schedulability analysis[END_REF].

Ultimately Pseudo Periodic Functions

We now present the formal definition of the set of UPP functions.

Definition 1 (Ultimately Pseudo Periodic Functions, F_UPP). F UPP is the set of functions f ∈ F such that there exists

T ∈ Q + , d ∈ Q + and c ∈ Q for which ∀t ∈ R + , t T =⇒ f (t + d) = f (t) + c. (2) 
Remark 1. The values of T, d and c could have been in R. However, we know from [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF] that F UPP is stable over more operators if T, d and c are rationals. It is not a practical restriction since Q is the set used in computation.

We represent F UPP in Coq as follows.

Record This code means that a value of type F_UPP is: line 2 a function F_UPP_val from nnR to Rbar. The notation :> is a Coq notation for coercion: Coq introduces automatically F_UPP_val whenever we give a value of type F_UPP when a function from R+ to Rbar is expected. line 3 F_UPP_T, F_UPP_d and F_UPP_c, the three parameters T, d and c of (2). lines 4 and 5 the property [START_REF] Bertot | Canonical big operators[END_REF]. We use toR to cast a rational as a real.

The command Record creates a constructor of F_UPP named Build_F_UPP. To declare a value in F_UPP, Coq will require a function, three parameters and a proof of (2).

UPP and Piecewise Affine Functions

We briefly presented in section 3 the set F UPP-PA of functions that are both UPP and P A. We give in this section a formal definition.

In [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF], this set was introduced as the intersection of two sets of functions: F UPP and F PA , the set of PA functions. In this paper, we rather choose to formalize the subset of functions in F UPP that are PA, as this greatly simplifies the formalization.

To define PA functions, we need to record points of discontinuities and change of slopes: jump sequences.

Definition 2 (Jump Sequence, JS). For any n ∈ N * , we call Jump Sequence (JS) a tuple a ∈ Q n + such that a 0 = 0 and: ∀i ∈ {0, . . . , n -2} , a i < a i+1 . We call n the size of the JS and the set of JS of size n is denoted JS n .

We represent jump sequences in Coq as follows.

Record JS := { JS_list :> seq Q+; _ : (JS_list != [::]) && (head 0 JS_list == 0) && sorted < JS_list }.
A JS is a list: JS_list of Q + that is not an empty list (denoted by [::] ), whose initial element is 0 and which is sorted by the usual strict order <. The function head is a total function: it returns the first element of a list or a default value when empty, here 0. Each piece is linear on an interval with a slope and an offset.

Definition 3 ((ρ, σ)-affine on, r_s_affine_on). Given ρ, σ ∈ Q and x, y ∈ Q + , a function f ∈ F is called (ρ, σ)-affine on ]x; y[ when, for all t ∈ ]x; y[:

f (t) = ρ(t -x) + σ. (3) 
We state this definition in Coq as follows.

Definition r_s_affine_on (f : F) (rho sigma : Q) (x y : Q+) := ∀ t : R+, x < t < y → f t = toR rho * (tx) + toR sigma.

We want to define a subset of F = R + → R. So, our functions can return infinite values. The next definition formalizes this point.

Definition 4 (Affine on, affine_on). A function f ∈ F is affine on ]x; y[ if

(∀t ∈ ]x; y[ , f (t) = +∞) (4) 
∨ (∀t ∈ ]x; y[ , f (t) = -∞) (5) 
∨ (∃ρ, σ ∈ Q, f is (ρ, σ)-affine on ]x; y[). (6) 
We state this definition in Coq as follows.

Variant affine_on (f : F) (x y :

Q+) := | affine_on_p_infty of ∀ t : R+, x < t < y → f t = +∞ | affine_on_m_infty of ∀ t : R+, x < t < y → f t = -∞ | affine_on_finite rho sigma of r_s_affine_on f rho sigma x y.
We use Variant that is a disjunctive version of Record.

PA are then functions that are affine on all intervals of a JS.

Definition 5 (JS of a Function, JS_of). Let n ∈ N , a ∈ JS n and f ∈ F. We say that a is a JS of f , denoted a ∈ JS(f ), when for all i < n -1, f is affine on ]a i ; a i+1 [.
We state this definition in Coq as follows.

Definition JS_of a (f :

F) := ∀ i, (i.+1 < size a) → r_s_affine_on f (nth 0 a i) (nth 0 a i.+1).
So, according to the previous definition, each PA function is associated to a JS but it is not unique. We illustrate this in Figure 3. Also notice that a function f ∈ F with a ∈ JS(f ) is a PA function at least up to the last point of a. 

∈ JS(f ). We notice that c = {0, 2, 4} ∈ JS but c / ∈ JS(f ).
Definition 6 (UPP-PA Functions, F_UPP_PA). The set F UPP-PA of UPP-PA functions is the set of functions f ∈ F UPP with T for initial segment and d for period, such that there exists a ∈ JS(f ) and last (a) = T + d.

We represent F UPP-PA in Coq as follows.

Record F_UPP_PA := { F_UPP_PA_UPP :> F_UPP; F_UPP_PA_JS : JS; _ : JS_of F_UPP_PA_JS F_UPP_PA_UPP; _ : last 0 F_UPP_PA_JS = F_UPP_T F_UPP_PA_UPP + F_UPP_d F_UPP_PA_UPP }.

The functions presented in Figure 2 belong to F UPP-PA . The list of abscissas of discontinuities given in the caption are jump sequences of the functions.

A UPP-PA function with initial segment T and period d is PA in [0; T + d[ by construction, and also PA after T + d by periodicity. This point is developed in the following property.

Lemma 1 (F_UPP_PA_JS_upto_spec in Coq). Let f ∈ F UPP-PA with a ∈ JS(f ).
For any l ∈ Q + such that last (a) l, there exists a ∈ JS such that a ∈ JS(f ) and last (a ) = l.

Stability of UPP Functions by (min, plus) Operators

We now want to prove stability of F UPP over (min, plus) operators: addition, minimum and convolution. These operators have been presented in Section 3. We need another operator on rational numbers: a notion of least common integer multiple such that, for any d, d ∈ Q, there exists k, k

∈ N satisfying kd = k d = lcm Q (d, d ). Definition 7 (lcm Q + ). For all d, d ∈ Q + , for all a, a ∈ Z and b, b ∈ N such that d = a b and d = a b , we define lcm Q + (d, d ) = lcm a lcm(b,b ) b , a lcm(b,b ) b lcm(b, b ) ( 7 
)
where lcm is the least common multiple on Z.

Lemma 2 (dvdq_lcml in Coq). For d, d ∈ Q + , there is k ∈ N s.t. lcm Q + (d, d ) = k d.
We state this lemma in Coq as follows.

Definition lcm_Q

(d d' : Q) : Q := fracq (lcmz (numq d * (lcmz (denq d) (denq d') %/ denq d)) (numq d' * (lcmz (denq d) (denq d') %/ denq d')), lcmz (denq d) (denq d')). Program Definition lcm_posQ (d d' : Q+ * ) : Q+ * := mk_posQ (lcm_Q d d') _. Lemma dvdq_lcml d d' : ∃ k : nat, lcm_posQ d d' = k * d.
We first define lcm_Q: the definition of lcm Q + on Q. The functions fracq, numq and denq are respectively the constructor and destructors of Q. The command Program Definition is similar to Definition except that it accepts holes _ and automatically generates the corresponding proof obligations.

To ease notations, we want to transform this binary operator, into a set operator such as

3 i=1 i = (1 + 2) + 3.
There exists a library in Coq designed with this objective: the bigop theory of Mathcomp [START_REF] Bertot | Canonical big operators[END_REF]. To fully use this library, we need to prove that lcm Q + satisfies the monoid laws. In other words, we need to prove that lcm Q + is associative and has a neutral element. However, lcm Q + does not have a neutral element. The lcm on N has a neutral element 1. It is not the case for lcm

Q + : for instance lcm Q + 1, 2 3 = 2.
To get out of it, we need to extend the definition of lcm Q + :

Definition olcm_posQ (x y : option Q+ * ) : option Q+ * := match x, y with | None, _ ⇒ y | _, None ⇒ x | Some x, Some y ⇒ Some (lcm_posQ x y) end.
The option type is used to extend the type of Q+ * with a None element. Then, this element is the neutral element for this optional definition of lcm Q + . We add then a Notation for the big operator.

Notation "\biglcm_posQ_ ( i < n ) F" := (odflt one_posQ (\big[olcm_posQ/None]_(i < n) some F)) : ring_scope. \big[oclm_posQ\None]_(i < n) some F
is the iterated application of oclm_posQ for all i such that i < n on some F. The function odflt removes the option when it is Some and returns a default value otherwise.

The following lemmas prove stability of F UPP by addition, minimum and convolution.

Lemma 3 (F_UPP_n_add in Coq

). Let n ∈ N , f ∈ F n UPP with initial segments T ∈ Q n + , periods d ∈ (Q + ) n and increments c ∈ Q n respectively. The sum i f i is a UPP function with an initial segment max i {T i }, a period lcm Q + i (d i ) and an increment lcm Q + i (d i ) i ci di . Lemma 4 (F_UPP_n_min in Coq). Let n ∈ N and f ∈ F n UPP with initial seg- ments T ∈ Q n + , periods d ∈ (Q + ) n and increments c ∈ Q n respectively. Defining: s = min i∈[0;n-1] c i d i I = i ∈ [0; n -1] c i d i = s (8) 
and assuming there exists M ∈ Q and m ∈ Q n such that:

∃i ∈ I, ∀t ∈ [T i ; T i + d i [ , f i (t) M + s t (9) ∀i / ∈ I, ∀t ∈ [T i ; T i + d i [ , m i + c i d i t f i (t) (10) 
the function min n i=1 {f i } is UPP with an initial segment T , a period d and an increment c

with d = lcm Q + i∈I (d i ), c = d s and T = max max i / ∈I M -m i ci di -s , max j∈[0;n-1] {T j } .
These lemmas are a straightforward generalization of Proposition 6 in [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF] where it is proved for binary addition and minimum. This generalization is useful for the next lemma on convolution of two UPP functions.

Remark 2. In the case of PA functions, it is easy to find values for M and m i satisfying ( 9) and ( 10) by computing the bounds sup t∈[Ti;Ti+di[ {f i (t) -s t} and

inf t∈[Ti;Ti+di[ f i (t) -ci di t . Lemma 5 (F_UPP_conv in Coq). Let f, f ∈ F UPP with initial segments T, T ∈ Q + , periods d, d ∈ Q + and increments c, c ∈ Q respectively. For all M, M , m, m ∈ Q such that M sup t∈[T,T +d[ f (t) - c d (t + T ) + f (T ) (11) 
m inf t∈[0,T [ f (t) - c d t + inf t∈[T ,T +d [ f (t) - c d t (12) 
and similarly for M and m, by permuting the primed and non-primed variables, the convolution f * f is a UPP function with a period

d = lcm Q + (d, d ), an increment c = d min c d , c
d and an initial segment:

T =            T + T + lcm Q + (d, d ) if c d = c d max M -m c d -c d , T + T + lcm Q + (d, d ) if c d < c d max M -m c d -c d , T + T + lcm Q + (d, d ) if c d < c d ( 13 
)
This lemma is proved into Coq as F_UPP_conv. It generalizes Proposition 6 of [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF] by expliciting the initial value giving a value for T . Remark 2 also applies here.

Stability of UPP-PA Functions by (min, plus) Operators

We are now focusing on stability of F UPP-PA by (min, plus) operators. Let us first define the union of two jump sequences.

Definition 8 (Union of two JS, union). For any n, m ∈ N * , a ∈ JS n , b ∈ JS m , the tuple of size # ({a i |0 i < n} ∪ {b j |0 j < m}) containing the elements of {a i |0 i < n} ∪ {b j |0 j < m} sorted by increasing order, is called union of the jump sequences a and b. This union is denoted a ∪ b.

If jump sequences are implemented by lists, the union can be implemented by the merge part of a merge sort, followed by a removal of duplicates. We state this definition in Coq as follows.

Program Definition union (a b : JS) := @Build_JS (undup (merge a b)) _.

The following Lemma gives a jump sequence for the sum of PA functions.

Lemma 6 (JS of n-ary Addition, JS_of_n_add). For n ∈ N , for f ∈ F n and for a ∈ JS n , if for all i, a i ∈ JS(f i ) and all the last points of a are equal (∀i, j, last

(a i ) = last (a j )), then i a i ∈ JS ( i f i ).
We state this lemma in Coq as follows.

Lemma JS_of_n_add n (f : 'I_n.+1 → F) (a : 'I_n.+1 → JS) :

(∀ i, JS_of (a i) (f i)) → (∀ i j, last 0 (a i) = last 0 (a j)) → JS_of (\bigcup_i a i) (\sum_i f i).
The term bigcup_i is the notation for i . Thanks to Lemma 1, the equality of last points can always be satisfied. Stability of F UPP-PA by n-ary addition can then be derived from this Lemma and Lemmas 1 and 3.

Whereas the jump sequence of a sum is the union of the jump sequences, the minimum can introduce new points as shown in Figure 4. The following definition gives such a jump sequence. Definition 9 (Union min, union min). Let f and f ∈ F with a ∈ JS(f ) and a ∈ JS(f ) such that last (a) = last (a ). Set c = a ∪ a . We define the ∪ min operator as

∪ min (f, f , a, a ) = c ∪        c i + σ -σ ρ -ρ ∃i, i < #c -1 ∧ f is (ρ, σ) -affine on ]c i , c i+1 [ ∧ f is (ρ , σ ) -affine on ]c i , c i+1 [ ∧ ρ = ρ ∧ c i < c i + σ -σ ρ-ρ < c i+1 .        (14) 
Using this ∪ min operator, we can establish a JS for n-ary minimum.

Lemma 7 (JS_of_n_min in Coq). For all n ∈ N and f ∈ F n , if for all i, a i ∈ JS(f i ) and all the last points of a are equal then

  i,j∈[0,n-1] ∪ min (f i , f j , a i , a j )   ∈ JS min i {f i } . ( 15 
)
Just as we mentioned for the addition, this Lemma and Lemmas 1 and 4 are sufficient to prove stability of F UPP-PA by n-ary minimum under mild conditions 1 .

We are now interested in the convolution of two UPP-PA functions. Like in [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF], we rely on the property that: ∀f, g, h ∈ F, min(f, g) * h = min(f * h, g * h). Then, any UPP-PA function can be decomposed as the minimum of elementary functions whose convolution is easy to compute.

In the following, we give such a decomposition.

Definition 10 (Cutting Operator, cutting_operator ). Given f ∈ F, a ∈ JS(f ) and i ∈ N such that i < #a -1, we define the cutting operator:

(f ↓ a) i = t → f (t) if t ∈ [a i ; a i+1 [ +∞ otherwise . (16) 
We state this definition in Coq as follows.

Definition cutting_operator (f : F) a i : F := fun t ⇒ if i.+1 < size a && (nth 0 a i t < nth 0 a i.+1) then f t else +∞ . The convolution of two functions (f ↓ a) i and (f ↓ a ) j can be computed by case disjunction in the same way as in Figure 5 but considering possible discontinuities lead to more than two sub-cases.

We need a last definition to specify the previous cutting operator.

Definition 11 (Cutting Below, cutting_below). Let f ∈ F and l ∈ R + , we denote f <l the function that is equal to f up to l and +∞ afterwards.

Lemma 8 (cutting_operator_spec in Coq). Given f ∈ F and a ∈ JS(f ), we have f <last(a) = min i<#a-1 (f ↓ a) i .
We can now give the decomposition of the convolution using these operators.

Lemma 9 (Piecewise Affine Convolution, PA_conv). Let f, f ∈ F with a ∈ JS(f ) and a ∈ JS(f ) and let l such that l = last (a) = last (a ). We have

(f * f ) <l = min i,j (f ↓ a) i * (f ↓ a ) j <l . ( 17 
)
9 Finite Equality Criteria on UPP-PA

In Sections 5 to 8, we proved in Coq slight variations of results from the literature.

Here are the main results: the finite equality tests briefly introduced in Figure 2.

Definition 12 (Equality on a Segment, eq_segment). For all a ∈ JS, i ∈ N and f, g ∈ F, we define eq segment(a, i, f, g), the following property:

f (a i ) = g(a i ) ∧ ∃x, y ∈ ]a i ; a i+1 [ , x = y ∧ f (x) = g(x) ∧ f (y) = g(y). ( 18 
)
We state this definition in Coq as follows.

Definition eq_segment (a : JS) i (f g :

F) := f (a i) = g (a i) ∧ ∃ x y : R+, a i < x < a i.+1 ∧ a i < y < a i.+1 ∧ x = y ∧ f x = g x ∧ f y = g y.
This definition is useful to check equality on an interval. Given two functions f, g both affine on ]a i ; a i+1 [, eq segment(a, i, f, g) ensures that f = g on [a i ; a i+1 [. Combined with previous results, we get an equality criteria for the addition.

Proposition 1 (UPP_PA_n_add in Coq). For all n ∈ N , f ∈ F n UPP-PA , f ∈ F UPP-PA with initial segments T ∈ Q n + and T ∈ Q + , periods d ∈ (Q + ) n and d ∈ Q + , increments c ∈ Q n and c ∈ Q respectively, we define l = max{max i {T i }, T } + lcm Q + lcm Q + i (d i ), d , and u = ( i a i ) ∪ a , where for all i, a i ∈ JS(f i ) and last (a i ) = l, a ∈ JS (f ) and last (a ) = l. If i ci di = c d then ∀i < #u -1, eq segment   u, i, j f j , f   ( 19 
)
is a sufficient condition for i f i = f .
The condition [START_REF] Sariowan | SCED: A generalized scheduling policy for guaranteeing quality-of-service[END_REF] happens to be also necessary but we do not need to prove it.

Remark 3. This criteria can be computed in finite time. a i and a can be obtained using Lemma 1. To check eq segment(a, i, f, f ), one can take x = ai+ai+1 2 and y = ai+x 2 . We get similar criteria for the minimum and the convolution. d,d ) and u = i,j ∪ min (f <l i , f <l j , a i , a j ) ∪ a , where for all i, a i ∈ JS (f i ) and last

(a i ) = l, a ∈ JS (f ) and last (a ) = l. If c d = c d , then: ∀i < #u -1, eq segment u, i, min j (f j ), f (20) 
is a sufficient condition for

min i (f i ) = f . Proposition 3 (F_UPP_conv in Coq). Let f, f ∈ F UPP-PA . For all f ∈ F UPP-PA with initial segment T ∈ Q + , period d ∈ Q + and increment c ∈ Q, assume M, M
, m and m ∈ Q satisfying hypotheses of Lemma 5 and define T , d, c as in Lemma 5. We define l = max( T , T ) + lcm Q + ( d, d ). Assume a ∈ JS (f ) and last (a) = l, a ∈ JS (f ) and last (a ) = l, a ∈ JS (f ) and last (a ) = l and define k = #a -1 and k = #a -1. Assuming ã ∈ JS {0,...,k-1}×{0,...,k -1} such that for all i, i , ãi,i ∈ JS ((f ↓ a) i * (f ↓ a ) i ) and last (ã i,i ) = l, define

u =   (i,i ),(j,j ) ∪ min (f ↓ a) i * (f ↓ a ) i , (f ↓ a) j * (f ↓ a ) j , ãi,i , ãj,j   ∪a , (21) if c d = c d then ∀j < #u -1, eq segment u, i, min i,j (f ↓ a) i * (f ↓ a ) j , f (22) 
is a sufficient condition for f * f = f .

Just as for Proposition 1, these sufficient criteria can be checked in finite time.

Implementation

The implementation consists of 6.3k lines of Coq code. It uses the rational numbers defined in the MathComp library [START_REF] Mahboubi | [END_REF] and the real numbers from Coq's standard library [START_REF] Semeria | Nombres réels dans Coq[END_REF]. These real numbers are linked to the algebraic structures from MathComp thanks to the Rstruct.v file of the MathComp Analysis library [START_REF] Rouhling | Formalisation Tools for Classical Analysis -A Case Study in Control Theory[END_REF]. This enables in particular the use of the big operators from MathComp [START_REF] Bertot | Canonical big operators[END_REF]. The extended real numbers R and a few other definitions on real numbers are based on the Coquelicot library [START_REF] Boldo | Coquelicot: A user-friendly library of real analysis for coq[END_REF]. The real numbers from the standard library and Coquelicot could probably now be fully replaced by the MathComp Analysis library, which was in an early development stage when we started this work but now looks much more usable. This would avoid many painful translations back and forth between the two diferent formalizations.

To obtain executable Coq programs, some adjustments were required, such as making the ρ and σ of Definition 5 explicit in the jump sequences. The final executable version consist of 9k lines of Coq (including the previous formalization) and uses the refinement of MathComp's rational numbers by the one in the bignums library [START_REF] Grégoire | A Purely Functional Library for Modular Arithmetic and Its Application to Certifying Large Prime Numbers[END_REF] provided by the CoqEAL library [START_REF] Cohen | Refinements for free![END_REF].

Here is an example proof on the sum of the two functions f and g from Figure 2. We first declare f and g: Then a function h that we want to prove equal to f + g (this function could be obtained from an external oracle):

Let h := F_of_sequpp (mk_sequpp 4 4 (37/11) [:: (0, ( 0, (7/3, 0)));

(1, ( We can then use our new tactic nccoq to automatically prove the equality:

Goal f + g = h. Proof. nccoq. Qed.
This tactic performs proofs by reflection: it reduces the goal to prove down to a computation which is then performed by Coq and whose success concludes the proof. This reduction is done with the help of the machinery provided by the CoqEAL library [START_REF] Cohen | Refinements for free![END_REF].

Conclusion

Confidence in latency bounds computed by Network Calculus tools [START_REF] Boyer | PEGASE, A Robust and Efficient Tool for Worst Case Network Traversal Time[END_REF][START_REF] Schmitt | The DISCO network calculator: a toolbox for worst case analysis[END_REF] relies, among other parts, on the correctness of the evaluation of algebraic expressions on (min, plus) operators [START_REF]RealTime-at-Work online Min-Plus interpreter for Network Calculus[END_REF][START_REF] Bouillard | COINC library: a toolbox for the network calculus[END_REF]. Instead of developing another toolbox, we developed, formalized and proved equality criteria that can be checked in finite time for each algebraic operation involved in actual computation of Network Calculus bounds.

The expected usage of this library is to delegate the evaluation of arbitrary algebraic expressions to an external tool [START_REF]RealTime-at-Work online Min-Plus interpreter for Network Calculus[END_REF] before checking the final result with our Coq contribution. This external tool would then act as an untrusted oracle. This appendix contains pen and paper versions of the proofs formalized in Coq in our code development.

A UPP-PA and Piecewise Affine functions Definition 13 (JS below, JS_below). Let a ∈ JS and l ∈ Q + , the JS below of a at l is the sequence c where, for all i such that a i < l, c i = a i and c last(c) = l. We denote the JS below of a at l by a l . Definition 14 (UPP-PA JS upto definition, F_UPP_PA_JS_upto_def ). Let f ∈ F UPP-PA with T, d as initial segment and period, a ∈ JS(f ) and l ∈ Q + . We call the sequence UPP-PA JS upto the sequence c where, for

a d = {x ∈ a|x > T }, n = l-(T +d) d
and for all i:

c = a n ∈[1;n] {x + n d|x ∈ a d } (23) 
We denote it the sequence a upto l. 

Proof (of

lcm Q + (d, d ) = k a lcm(b,b ) b lcm(b, b ) = kd. Lemma 10 (Commutativity of lcm Q + , lcm_nnQC). lcm Q + is commutative.
Proof. This comes from the commutativity of lcm. 

Lemma 11 (dvdq_lcm). For all d, d ∈ Q + , m ∈ Q, k, k ∈ N, if m = k d and m = k d , then there exists k ∈ N such that m = k lcm Q + (d, d ).
= k lcm Q + (d, d ). Lemma 12 (dvdq_ge_lcm). For all d, d , m ∈ Q + , k, k ∈ N, if m = k d and m = k d , then lcm Q + (d, d ) m.
Proof. According to Lemma 11, there exists

k such that m = k lcm Q + (d, d ). If k = 0 then m = 0 which is impossible so k 1.
Lemma 13 (Associativity of lcm Q + , lcm_nnQA). lcm Q + is associative.

Proof. Given a, b, c ∈ Q + , we want to prove that lcm

Q + a, lcm Q + (b, c) = lcm Q + lcm Q + (a, b), c
. By antisymmetry of , it is enough to prove two inequalities. Let's focus on the proof of lcm Proof. If P is a singleton then k = 1 works, otherwise, by commutativity and as-

Q + a, lcm Q + (b, c) lcm Q + lcm Q + (a,
sociativity of lcm Q + , we have lcm Q + j∈P (d j ) = lcm Q + d i , lcm Q + j∈P,j =i (d j )
and Lemma 2 concludes.

Lemma 15 (U P P extension, UPP_extension). For all f ∈ F UPP with T ∈ Q + , d ∈ Q + and c ∈ Q respectively initial segment, period and increment, for all k ∈ N , f is also U P P with T T , kd and kc respectively initial segment, period and increment.

Proof. Let's assume that we have f ∈ F UPP with T, d and c such that : ∀t T, f (t + d) = f (t) + c. Let k be a natural number different from 0 and let's prove that ∀t T , f (t + kd) = f (t) + kc By induction on k, first case is the definition itself of U P P . Then let's assume that is true for k, we have:

∀t T, f (t + (k + 1)d) = f (t + kd + d) = f (t + kd) + c = f (t) + kc + c = f (t) + (k + 1)c. Proof (of Lemma 3, F_UPP_n_add). Set T = max i {T i }, d = lcm Q + i (d i ) and c = d i ci di .
Let's first prove that for all i and for all t T :

f i t + d = f i (t) + d c i d i .
From Lemma 14, we have k such that d = k d i . So, since t T i , according to Lemma 15, we have:

f i (t + d) = f i (t + k d i ) = f i (t) + k c i = f i (t) + k d i c i d i = f i (t) + d c i d i .
Thus, for all t T :

i f i t + d = i f i (t) + d c i d i = i f i (t) + d i c i d i = i f i (t) + c.
Proof (of Lemma 4, F_UPP_n_min). We know that it exists i 0 ∈ I such that:

∀t ∈ [T i0 ; T i0 + d i0 [ , f i0 (t) M + s t. Let's prove that: ∀t T i0 , f i0 (t) M + s t. Let t T i0 and define k = t-Ti 0 di 0 . Thus t-k d i0 ∈ [T i0 , T i0 + d i0
[ and, according to Lemma 15: 

f i0 (t) = f i0 ((t -k d i0 ) + k d i0 ) = f i0 (t -k d i0 ) + k c i0 M + s(t -k d i0 ) + k c i0 = M + s t since s = ci 0 di 0 . Furthermore, we know that: ∀i / ∈ I, ∀t ∈ [T i ; T i + d i [ , m i + ci di t f i (t). Let's prove that: ∀i / ∈ I, ∀t T i , m i + ci di t f i (t). Let i / ∈ I and t T i and define k = t-Ti di . Thus t -k d i ∈ [T i , T i + d i
f i (t) = f i ((t -k d i ) + k d i ) = f i (t -k d i ) + k c i m i + c i d i (t -k d i ) + k c i = m i + c i d i t.
For all t T , for all i / ∈ I, we have t

M -mi c i d i -s and since s < ci di we have ci di -s t M -m i . So M + s t m i + ci di t. Combined with previous results, this means that f i0 (t) f i (t). Thus ∀t T , n-1 min i=0 {f i (t)} = min i∈I {f i (t)}.
Proving that for all t T and for all i ∈ I we have f i t + d = f i (t) + c will then conclude the proof. According to Lemma 14 there is k such that d = k d i so, according to Lemma 15:

f i t + d = f i (t + k d i ) = f i (t) + k c i = f i (t) + k d i c i d i = f i (t) + d s = f i (t) + c. Lemma 16 (F_UPP_conv_f1_f1 ' , F_UPP_conv_f2_f1 ' , F_UPP_conv_f1_f2 ' , F_UPP_conv_f2_f2 ' , F_UPP_conv_aux ). Let f, f ∈ F UPP functions with initial segments T, T ∈ Q + , periods d, d ∈ Q + and increments c, c ∈ Q respectively. The convolution of f and f satisfies f * f = min(f 1 * f 1 , f 2 * f 1 , f 1 * f 2 , f 2 * f 2 ) (24) 
where

f 1 = t → f (t) when t < T +∞ otherwise f 2 = t → f (t) when t T +∞ otherwise
f 1 and f 2 are defined similarly, replacing f by f . Each term of the minimum above is U P P

-f 1 * f 1 from T + T with period d and increment c -f 2 * f 1 from T + T with period d and increment c -f 1 * f 2 from T + T with period d and increment c -f 2 * f 2 from T + T + lcm Q + (d, d ) with period lcm Q + (d, d ) and increment lcm Q + (d, d ) min c d , c d .
Proof. This is the same as Proposition 6 in [START_REF] Bouillard | An Algorithmic Toolbox for Network Calculus[END_REF]. First, by distributivity of * over min

f * f = min(f 1 , f 2 ) * min(f 1 , f 2 ) = min{f 1 * f 1 , f 2 * f 1 , f 1 * f 2 , f 2 * f 2 }.
Then, let's prove that for all t T + T , we have (

f 1 * f 1 )(t) = +∞. Indeed, (f 1 * f 1 )(t) = inf u+v=t {f 1 (u) + f 1 (v)} and either u T (so f 1 (u) = +∞) or v T (so f 1 (v) = +∞).
Let's prove that for all t T + T , we have (

f 2 * f 1 )(t + d) = (f 2 * f 1 )(t) + c. For all t T + T : (f 2 * f 1 )(t + d) = inf 0 u T {f 2 (t + d -u) + f 1 (u)} = inf 0 u T {f 2 (t -u) + c + f 1 (u)} = (f 2 * f 1 )(t) + c. (f 1 * f 2 ) is similar. Let's prove that for all t T + T + lcm Q + (d, d ), we have: (f 2 * f 2 )(t + lcm Q + (d, d )) = (f 2 * f 2 )(t) + lcm Q + (d, d ) min c d , c d .
For all t T + T + lcm Q + (d, d ): (f 2 * f 2 )(t + lcm Q + (d, d )) = inf T u t+lcm Q + (d,d )-T f 2 (u) + f 2 (t + lcm Q + (d, d ) -u) = min inf T u t-T f 2 (u) + f 2 (t + lcm Q + (d, d ) -u) , inf T +lcm Q + (d,d ) u t-T +lcm Q + (d,d )) f 2 (u) + f 2 (t + lcm Q + (d, d ) -u) = min inf T u t-T f 2 (u) + f 2 (t + lcm Q + (d, d ) -u) , inf T v t-T f 2 (t + lcm Q + (d, d ) -v) + f 2 (v) = min inf T u t-T f 2 (u) + f 2 (t -u) + c d lcm Q + (d, d ) , inf T v t-T f 2 (t -v) + c d lcm Q + (d, d ) + f 2 (v) = min (f 2 * f 2 )(t) + c d lcm Q + (d, d ), (f 2 * f 2 )(t) + c d lcm Q + (d, d ) = (f 2 * f 2 )(t) + min c d , c d lcm Q + (d, d ).
Proof (of Lemma 5, F_UPP_conv). According to Lemma 16, and reusing its notations, it is enough to prove that the following function is UPP:

min{f 1 * f 1 , f 2 * f 1 , f 1 * f 2 , f 2 * f 2 }.
When c d = c d , according to Lemma 4, it is enough that:

∀t ∈ T + T + lcm Q + (d, d ), T + T + 2 lcm Q + (d, d ) , (f 2 * f 2 )(t) M + c d t.
For any

t ∈ T + T + lcm Q + (d, d ), T + T + 2 lcm Q + (d, d ) , we have: (f 2 * f 2 )(t) - c d t = inf u+v=t {f 2 (u) + f 2 (v)} - c d t f (t -T ) - c d t + f (T ) sup t ∈ T +lcm Q + (d,d ),T +2lcm Q + (d,d ) f (t ) - c d (t + T ) + f (T ) sup t ∈[T,T +d[ f (t ) - c d (t + T ) + f (T ) M.
When c d < c d , according to Lemma 4, it is enough that:

∀t ∈ T + T + lcm Q + (d, d ), T + T + 2 lcm Q + (d, d ) , (f 2 * f 2 )(t) M + c d t and ∀t ∈ [T + T , T + T + d [ , m + c d t (f 1 * f 2 )(t).
The former is proved just as above, let's focus on the latter. For any t ∈ [T + T , T + T + d [:

(f 1 * f 2 )(t) - c d t = inf u+v=t f 1 (u) - c d u + f 2 (v) - c d v = inf u+v=t,u<T,v T f (u) - c d u + f (v) - c d v inf u∈[0,T [ f (u) - c d u + inf v∈[T ,T +d [ f (v) - c d v m .
When c d < c d , the proof is similar to the previous case.

C Stability of UPP-PA Functions by (min, plus) Operators

Lemma 17 (Union JS, union_JS_of_l). For all f ∈ F and a, a ∈ JS such that a ∈ JS(f ) and last (a) = last (a ), we have (a ∪ a ) ∈ JS(f ).

Proof. Let i a natural number. Let's prove that f is affine on ](a ∪ a ) i ; (a ∪ a ) i+1 [. We know that it exists j such that ](a ∪ a

) i ; (a ∪ a ) i+1 [ ⊆ ]a j ; a j+1 [. By hypotheses, f is affine on ]a j ; a j+1 [ and so it is on ](a ∪ a ) i ; (a ∪ a ) i+1 [.
Lemma 18 (JS of add, JS_of_add). For two P A functions f and f with a ∈ JS(f ) and a ∈ JS(f ) such that last (a) = last (a ) then a ∪ a ∈ JS(f + f ).

Proof. Let i ∈ N. Using lemma 17, we know that (a ∪ a ) ∈ JS(f ) and last (a) = last (a ). Similarly with commutativity, we have (a ∪ a ) ∈ JS(f ). Then, with last (a) = last (a ) we know that f and f are affine on ](a ∪ a ) i ; (a ∪ a ) i+1 [ and so is f + f . Proof (of Lemma 6). F_PA_n_add] Let n ∈ N and f ∈ F n . By induction on n, initial case is proved using a 1 ∈ JS(f 1 ). Then, using Lemma 18, we have

a n+1 n i a i ∈ JS f n+1 + n i f i
and concludes the proof.

Lemma 19 (Subset of P A functions at t). Let f be a P A function with a ∈ JS(f ). For i a natural number x, y ∈ Q + such that x < y and ]x;

y[ ⊆ ]a i ; a i+1 [, then for any t ∈ ]a i ; a i+1 [ -if f (t) = +∞ then ∀t ∈ ]x; y[ , f (t ) = +∞ else -if f (t) = -∞ then ∀t ∈ ]x; y[ , f (t ) = -∞ -otherwise, f (t) is (ρ, σ)-affine on ]a i ; a i+1 [ and ∃σ ∈ Q, ∀t ∈ ]x; y[ , f (t ) = ρ(t -x) + σ
Proof. Let f ∈ F PA with a ∈ JS(f ), i ∈ N and x, y ∈ Q + such that x < y and ]x; y[ ⊆ ]a i ; a i+1 [.

The first two cases are simple. For any t ∈ ]a i ; a i+1 [ we know that f (t) = +∞ or f (t) = -∞. Then, obviously, for all t ∈ ]x; y[ ⊆ ]a i ; a i+1 [, f (t ) = +∞ and f (t ) = -∞ respectively.

For the case where, for any t ∈ ]a i ; a i+1 [, f (t) is rational meaning that it exists ρ and σ such that f is (ρ, σ)-affine on ]a i ; a i+1 [. Let's define σ = σ + ρ(x -a i ).

We know that: ∀t ∈ ]a i ; a i+1 [ , f (t) = ρ(t -a i ) + σ so, we have

∀t ∈ ]x; y[ ,f (t ) = ρ(t -x) + σ + ρ(x -a i ) f (t ) = ρ(t -a i ) + σ Lemma 20 (∪ min Property). Let f, f ∈ F PA with a ∈ JS(f ) and a ∈ JS(f ), define c = ∪ min (f, f , a, a ) and let i ∈ N. If c i / ∈ (a ∪ a ), then (∀t ∈ ]c i ; c i+1 [ , f (t) < f (t)) ∨ (∀t ∈ ]c i ; c i+1 [ , f (t) < f (t))
Proof. For c = ∪ min (f, f , a, a ), with the hypothesis c i / ∈ (a ∪ a ) and Definition 9, we know that 

f is (ρ, σ)-affine on ]c i ; c i+1 [ f is (ρ , σ )-affine on ]c i ; c i+1 [ ρ = ρ
f (t) -f (t) = (ρ -ρ)(t -(a ∪ a ) k ) + σ -σ = (ρ -ρ)(t -c i ) + σ -σ = (ρ -ρ) t -c i + σ -σ ρ -ρ = (ρ -ρ) >0 (t -c i ) >0 so ∀t ∈ ]c i ; c i+1 [ , f (t) > f (t).
Then, let's assume that ρ < ρ. Similarly, ∀t ∈ ]c i ; c i+1 [ , f (t) > f (t) and concludes the proof.

Lemma 21 (∪ min Property). Let f and f be two P A function with a ∈ JS(f ) and a ∈ JS(f ) and set c = ∪ min (f, f , a, a ). For i ∈ N, if it exists ρ, ρ , σ, σ ∈ Q such that ρ = ρ and f and f are respectively (ρ, σ)-affine and (ρ , σ )-affine on ]c i ; c i+1 [, then:

(∀t ∈ ]c i ; c i+1 [ , f (t) < f (t)) ∨ (∀t ∈ ]c i ; c i+1 [ , f (t) < f (t))
Proof. Define c = ∪ min (f, f , a, a ) and assume that it exists ρ, ρ , σ, σ such that ρ = ρ and f and f are respectively (ρ, σ)-affine and (ρ , σ )-affine on ]c i ; c i+1 [. First assume that c i / ∈ (a∪a ). The direct application of Lemma 20 concludes. Let's then assume that c i ∈ (a ∪ a ). and define x = c i + σ -σ ρ-ρ . For all t ∈ ]c i ; c i+1 [ we have:

f (t) -f (t) = (ρ -ρ )(t -c i ) + σ -σ = (ρ -ρ ) t -c i + σ -σ ρ -ρ = (ρ -ρ )(t -x) By definition, x / ∈ ]c i ; c i+1 [ since x is a point added in c if c i < c i + σ -σ ρ-ρ < c i+1 .
Let's first assume that x c i . As c i < t, we have 0 < t-x. So, let distinguish two cases from ρ = ρ . If ρ < ρ then:

∀t ∈ ]c i ; c i+1 [ , f (t) < f (t). Otherwise, ρ < ρ and: ∀t ∈ ]c i ; c i+1 [ , f (t) < f (t).
Otherwise, c i+1 x. As t < c i+1 , we have t -x < 0. Let's distinguish two cases from ρ = ρ . First is ρ < ρ . Then, for all t ∈ ]c 

i ; c i+1 [ , f (t) < f (t). Otherwise, for all t ∈ ]c i ; c i+1 [ , f (t) < f (t).
i ; c i+1 [ , f (t) = -∞ and so ∀t ∈ ]c i ; c i+1 [ , min(f, f )(t) = -∞ since -∞ is absorbing for min.
By using commutativity of min, we have the same reasoning for f (m i ) = -∞.

Then, let's assume that f (m i ) = +∞. By using the same previous reasoning, we have

∀t ∈ ]c i ; c i+1 [ , f (t) = +∞. It remains two cases possible for f (m i ). First is f (m i ) = +∞ : we have ∀t ∈ ]c i ; c i+1 [ , f (t) = +∞ and so ∀t ∈ ]c j ; c j+1 [ , min(f, f )(t) = +∞. Second, if f (m i ) ∈ R, then for a j such that ]c i ; c i+1 [ ⊆ a j ; a j +1 , it exists ρ and σ such that f is (ρ , σ ) -affine on ]c i ; c i+1 [. Then, g is also (ρ , σ ) -affinei on ]c i ; c i+1 [.
We have the same reasoning for f (m i ) = +∞ by using commutativity of min.

Finally, if f (m i ) ∈ R, using the Definition of ∪ min and Lemma 17, we have ρ, σ ∈ Q such that f is (ρ, σ)-affine on ]c i ; c i+1 [. The only case remaining for f (m i ) is f (m i ) ∈ R and so, with the same use of Lemma 17, it exists ρ , σ ∈ Q such that f is (ρ , σ )-affine on ]c i ; c i+1 [. We want to prove that exists ρ and σ such that, on the interval ]c i ; c i+1 [, the function g = min(f, f ) is (ρ, σ)-affine on ]c i ; c i+1 [. We want to prove that exists ρ and σ such that, on the interval ]c i ; c i+1 [, the function g = f ∧ f is (ρ, σ)-affine on ]c i ; c i+1 [. Let's first assume that ρ = ρ . So, using Lemma 21, we know that:

(∀t ∈ ]c i ; c i+1 [ , f (t) < f (t)) ∨ (∀t ∈ ]c i ; c i+1 [ , f (t) < f (t))
So, in the first case, ρ = ρ, σ = σ and in the other case ρ = ρ , σ = σ . Let's now assume that ρ = ρ . So, let's define ρ = ρ and σ = σ ∧ σ . Since ∧ is distributive over +, we have

∀t ∈ ]c i ; c i+1 [ , g(t) = min{ρ(t -c i ) + σ, ρ(t -c i ) + σ } = ρ(t -c i ) + min{σ, σ }
and that concludes the proof.

Lemma 23 (JS for n-ary minimum, JS_of_n_min_aux ). For all n ∈ N , f ∈ F n PA and a ∈ JS n×n such that for all i, j, a i,j ∈ JS(min(f i , f j )). We have: 

 (i,j)∈[0;n-1] 2 a i,j   ∈ JS min i f i . (25) 
Proof. Define c = (i,j)∈[0;n-1] 2 (a i,j ) and F = min i (f i ). We want to prove that c ∈ JS(F ) that is, for all k < #c -1:

(∀t ∈ ]c k ; c k+1 [ , F (t) = +∞) ∨ (∀t ∈ ]c k ; c k+1 [ , F (t) = -∞) ∨ (∃ρ, σ, ∀t ∈ ]c k ; c k+1 [ , F (t) = ρ(t -c k ) + σ) .
Let k < #c -1 and define the interval

I k = ]c k ; c k+1 [ and a point t 0 = c k +c k+1 2 
. First assume that F (t 0 ) = -∞. So, it exists i 0 such that f i0 (t 0 ) = -∞. By using Lemma 17 and since c = a i0,i0 ∪ (i,j) =(i0,i0) (a i,j ) , we know that it exists k i0 such that:

I k ⊆ (a i0,i0 ) ki 0 ; (a i0,i0 ) ki 0 +1 .
By definition of P A functions and since a i0,i0 is a JS for f i0 , we have:

∀t ∈ (a i0,i0 ) ki 0 ; (a i0,i0 ) ki 0 +1 , f i0 (t) = -∞ and so, ∀t ∈ I k , f i0 (t) = -∞. Thus ∀t ∈ I k , F (t) = -∞
and that concludes that case. Then assume that F (t 0 ) = +∞. So, for all i, f i (t 0 ) = +∞. Let i ∈ [0; n -1]. Using the same reasoning as in the previous case, it exists k i ∈ N such that

I k ⊆ ](a i,i ) ki ; (a i,i ) ki+1 [ and ∀t ∈ I k , f i (t) = +∞.
So, we have, for all t ∈ I k , F (t) = +∞ and it concludes this case.

Finally assume that F (t 0 ) ∈ R. Then it exists i such that F (t 0 ) = f i (t 0 ) and by Definition, with the definition of P A and Lemma 19, we know that for some ρ i ∈ Q and σ i ∈ Q, f i is (ρ i , σ i )-affine on I k . To conclude this case and the proof, let's prove that:

∀j ∈ [0; n -1] , ∀t ∈ I k , f i (t) f j (t) (26) 
Let j be a natural number. First assume that f j (t 0 ) = +∞. Since f j is P A, by Definition and Lemma 19, we can conlude that ∀t ∈ I k , f j (t) = +∞ f i (t). Then assume that f j (t 0 ) = -∞. This case is resolved by contradiction since we know that F (t 0 ) ∈ R and F (t 0 ) f j (t 0 ).

Finally, we have the case where f j (t 0 ) ∈ R. We know that min(f i , f j ) is a P A function with a ij ∈ JS(min(f i , f j )). By Definition and 19, we know that it exists ρ j and σ j such that f j is (ρ j , σ j )-affine on I k . So we want to prove that:

∀t ∈ I k , ρ i (t -c k ) + σ i ρ j (t -c k ) + σ j .
First prove that ∀t ∈ I k , min(f i , f j ) ∈ R. The cases ∀t ∈ I k , min(f i , f j ) = +∞ and ∀t ∈ I k , min(f i , f j ) = -∞ are impossible since f i and f j are resp. (ρ i , σ i )-affine and (ρ j , σ j )-affine on I k . So, for some ρ i,j , σ i,j ∈ Q, we know that min(f i , f j ) is (ρ i,j , σ i,j )-affine on I k .

Then, let's do a disjunction on the order between ρ i and ρ j . First assume that ρ i = ρ j . We know that F (t 0 ) = f i (t 0 ) f j (t 0 ), and so σ i σ j . This case is concluded with compatibility of addition. Then assume that ρ i < ρ j . Define a point x = c k + σi-σj ρj -ρi such that f i (x) = f j (x). An illustration is given in Figure 6a.

From f i (t 0 ) f j (t 0 ), we have: ρ i (t 0 -c k ) + σ i ρ j (t 0 -c k ) + σ j =⇒ σ i -σ j (ρ j -ρ i )(t 0 -c k ) =⇒ x t 0 since ρ i < ρ j

Let's define a point t 1 = t0+c k+1

2

. By definition we have t 0 t 1 and with x t 0 , we finally obtain x t 1 .

x t 1 ⇔ c k + σ i -σ j ρ j -ρ i t 1 =⇒ σ i -σ j (t 1 -c k )(ρ j -ρ i ) =⇒ f i (t 1 ) f j (t 1 ) =⇒ f i (t 1 ) = min(f i , f j )(t 1 )
Knowing that f i (t 0 ) = min(f i , f j )(t 0 ), we can establish this equation system ρ i (t 0 -c k ) + σ i = ρ i,j (t 0 -c k ) + σ i,j

ρ i (t 1 -c k ) + σ i = ρ i,j (t 1 -c k ) + σ i,j
We subtract the first line to the second to obtain ρ i (t 1 -t 0 ) = ρ i,j (t 1 -t 0 )

and so ρ i = ρ i,j since t 1 = t 0 . We apply this results to the first or the second line to obtain σ i = σ i,j . We can conclude that f i = f i ∧ f j on I k and f i f j on I k . Now assume that ρ j < ρ i . Define a point x as we did previously such that ρ i (x -c k ) + σ i = ρ j (x -c k ) + σ j , illustrated in Figure 6b.

From f i (t 0 ) f j (t 0 ), we have ρ i (t 0 -c k ) + σ i ρ j (t 0 -c k ) + σ j =⇒ (ρ i -ρ j )(t 0 -c k ) σ j -σ i =⇒ t 0 x since ρ j < ρ i Define a point t 1 = c k +t0 2 . From t 0 x and t 1 t 0 , we have:

t 1 x ⇔ t 1 c k + σ j -σ i ρ i -ρ j =⇒ f i (t 1 ) f j (t 1 ) =⇒ f i (t 1 ) = f i (t 1 ) ∧ f j (t 1 )
Knowing that f i (t 0 ) = (f i ∧ f j )(t 0 ) on t 0 and t 1 , we have this equation system:

ρ i (t 0 -c k ) + σ i = ρ i,j (t 0 -c k ) + σ i,j ρ i (t 1 -c k ) + σ i = ρ i,j (t 1 -c k ) + σ i,j
and it is concluded as we did previously with ρ i = ρ i,j , σ i = σ i,j and, in conclusion, f i = min(f i , f j ) on I k and so f i f j on I k .

Proof (of Lemma 7, JS_of_n_min). It is a direct application of Lemmas 22 and 23.

Proof (of Lemma 8). Let t ∈ R + . To prove f <last(a) (t) = min i<#a-1

((f ↓ a) i ) (t),
first assume that t / ∈ a. Then, we have last (a) < t so f <last(a) (t) = +∞ and, for all i, t / ∈ [a i ; a i+1 [ thus (f ↓ a) i = +∞ and concludes this case. Then assume that t < last (t). So, it exists i such that t ∈ [a i ; a i+1 [. We obviously have i > 0 since a is not empty. Thus, it remains to prove that: ∀i prev (a ∪ a , θ + δ) , eq segment(a ∪ a , i, f, f ) is a sufficient condition for f = f .

Proof. It is a direct application of Lemmas 27 and 25. Note that a and a can be found using Lemma 1.

Proof (of Proposition 1, UPP_PA_n_add). From Lemma 3, i f i is U P P from max i {T i } with period lcm Q + i (d i ) and increment lcm Q + i (d i ) i ci di . From Lemma 6, i a i ∈ JS ( i f i ). The conclusion follows from Lemma 28.

Proof (of Proposition 2, UPP_PA_n_min). From Lemma 4, min i (f i ) is U P P from T with period d and increment c. From Lemma 7, u ∈ JS(min i (f i )). The conclusion follows from Lemma 28.

Proof (of Proposition 3, UPP_PA_conv). From Lemma 5, f * f is U P P from T with period d and increment c. From Lemma 9, u ∈ JS(f * f ). The conclusion follows from Lemma 28.

Fig. 3 :

 3 Fig. 3: The function f is piecewise affine. a = {0, 1, 3} and b = {0, 1, 2, 3} are JS of this function: a ∈ JS(f ) and b ∈ JS(f ). We notice that c = {0, 2, 4} ∈ JS but c / ∈ JS(f ).

Fig. 4 :

 4 Fig. 4: Example of point added by the min operator in a JS. f and f are respectively (ρ, σ)-affine and (ρ , σ )-affine on ]c i ; c i+1 [ with different slopes ρ and ρ . Since we have c i + σ -σ ρ-ρ ∈ ]c i ; c i+1 [, this point must be added to the jump sequence.

Fig. 5 :

 5 Fig. 5: Convolution of two segments. Let f and f be two functions that are respectively (ρ, σ)-affine on [x; y[ and (ρ , σ )-affine on [x ; y [ and +∞ elsewhere. We plot the two cases of f * f on [x + x , y + y [ : left is for ρ < ρ and right is ρ < ρ.

Proposition 2 (

 2 UPP_PA_n_min in Coq). Let n ∈ N and f ∈ F n UPP-PA . For all f ∈ F UPP-PA with initial segment T ∈ Q + , periods d ∈ Q + and increment c ∈ Q, assume M and m satisfying the hypotheses of Lemma 4 and define T , d and c as in Lemma 4. We define l = max( T , T ) + lcm Q + (

  Let f := F_of_sequpp (mk_sequpp 4 (* T *) 4 (* d *) 3 (* c *) [:: (0, (0, (2, 0))); (1, (2, (0, 2))); (2, ( 2, (0, 3))); (4, ( 3, (0, 5))); (6, ( 5, (0, 6)))]). Let g := F_of_sequpp (mk_sequpp 4 4 (4/11) [:: (0, (0, (1/3, 0))); (3, (1, (1/11, 1)))]).

Lemma 1 ,

 1 F_UPP_PA_JS_upto_spec). Take a l = c l . a ∈ JS(f ) is proved by induction on n, defined in Definition 14 and last (a ) = l comes from Definition of c l . B Stability of UPP functions by (min, plus) operators Proof (of Lemma 2). Let d, d ∈ Q + . Let's prove that it exists k ∈ N such that lcm Q + (d, d ) = k d. By Definition of lcm, it exists k ∈ N such that lcm a lcm(b, b ) b , a lcm(b, b ) b = k a lcm(b, b ) b Thus, dividing both sides by lcm(b, b ),

Proof.

  Noting a b = d and a b = d as well as x = a lcm(b,b ) b , and y = a lcm(b,b ) b , we have m lcm(b, b ) = k x and m lcm(b, b ) = k y. Notice that x and y are integers. Let's prove that lcm(x, y) divides k x. By definition of lcm this is true when both x and y divide k x, that is when y divides k x which is true since k y = k x = m lcm(b, b ). Thus, there exists some k such that m lcm(b, b ) = k x = k lcm(x, y) and dividing by lcm(b, b ), we get m = k lcm(x,y) lcm(b,b )

  b), c , the proof of the other inequality being similar. Let's denote m = lcm Q + lcm Q + (a, b), c By Lemma 2, there exist k such that m = k lcm Q + (a, b) and k such that lcm Q + (a, b) = k a and k such that lcm Q + (a, b) = k b and k such that m = k c. Thus m = k k a = k k b = k c. Lemma 11 gives some k such that m = k lcm Q + (b, c) and Lemma 12 concludes. Lemma 14 (dvdq_biglcm). For all n ∈ N, d ∈ (Q + ) n , P ⊆ [0; n -1] and for all i ∈ P , it exists k ∈ N such that lcm Q + j∈P (d j ) = kd i .

  [ and, according to Lemma 15: 

  and, for x = c i + σ -σ ρ-ρ , we have x ∈ ]c i ; c i+1 [ and c i+1 . By case disjunction on ρ = ρ , we first assume that ρ < ρ . By definition of c i+1 , c i+1 (a ∪ a ) k+1 so ]c i ; c i+1 [ ⊆ ](a ∪ a ) k ; (a ∪ a ) k+1 [. So for all t ∈ ]c i ; c i+1 [:

Lemma 22 ( 2 .

 222 JS of min, JS_of_min). Let f and f ∈ F with a ∈ JS(f ) and a ∈ JS(f ), if last (a) = last (a ) then we have ∪ min (f, f , a, a ) ∈ JS (min(f, f )).Proof. Let i be a natural number and pose c = ∪ min (f, f , a, a ). Assume that last (a) = last (a ) and pose m i = ci+ci+1 Then, let's assume that f (m i ) = -∞. By Definition, we know that for j a natural number, we have ]ci ; c i+1 [ ⊆ ](a ∪ a ) j ; (a ∪ a) j+1 [ and by using Lemma 17, we have j such that ]c i ; c i+1 [ ⊆ ](a ∪ a ) j ; (a ∪ a ) j+1 [ ⊆ ]a j ; a j +1 [ So, by using Definition of P A functions, we have ∀t ∈ ]c

Fig. 6 :

 6 Fig. 6: Illustration of impossible cases of x and c k

f

  <last(a) (t) = min (f ↓ a) i (t), min j =i,j<#a-1(f ↓ a) j (t)(27)Let j < #a -1. Since j = i and t ∈ [a i ; a i+1 [, we have t / ∈ [a j ; a j+1 [ and so minj =i,j<#a-1 (f ↓ a) j (t) = +∞. Finally, f <last(a) (t) = f (t) and (f ↓ a) i (t) =f (t) by Definition 10 and 11 respectively.Lemma 24 (Cutting Below Convolution, cutting_below_conv ). Let f, f ∈ F and l ∈ Q + . We have (f * f ) <l = f <l * f <l <l . Proof. Prove that for t ∈ Q + , (f * f ) <l (t) = f <l * f <l <l (t).It is verified by Definition 11 for l t. So, we have t < l. So, let's prove that:inf u>0,u t {f (u) + f (t -u)} = inf u>0,u t {f <l (u) + f <l (t -u)}Lemma 27 (UPP_equality). For all f, f ∈ F UPP with initial segment T and T , period d and d and increment c and c respectively. Let θ = max{T, T } andδ = lcm Q + (d, d ). If c d = c d and for all t ∈ [0; θ + δ[, f (t) = f (t) then we have ∀t, f (t) = f (t).Proof. Using Lemmas 15 and 2, f and f are U P P with same period δ and increment c d (lcmQ + (d, d )) = c d (lcm Q + (d,d)). The conclusion follows from Lemma 26. Lemma 28 (Finite Equality Criterion on U P P -P A, UPP_PA_equality ). For all f, f ∈ F UPP-PA with initial segment T and T , period d and d and increment c and c respectively, we define θ = max{T, T }, δ = lcm Q + (d, d ), l = θ + δ and u = a ∪ a . Assume a ∈ JS(f ) and a ∈ JS(f ) such that last (a) = last (a ) = l. If c d = c d , then:

which is a alternative definition of convolution. It is verified since u > 0 and so t -u < l.

Proof (of Lemma 9). Using Lemma 24 and 8, we have

and the proof is concluded since * is distributive over min.

D Finite Equality Criteria on UPP-PA

Lemma 25 (Inter JS Equality criterion on P A, PA_equality_on_segment ). Let f and f be two P A functions. Let a and a be JS such that a ∈ JS(f ), a ∈ JS(f ) and last (a) = last (a ). We define c = a ∪ a . For all i < #c -1, we have:

Proof. This follows from Definition 12.

Lemma 26 (UPP_same_d_c_equality ). For all f, f ∈ F UPP with initial segment T and T respectively, the same period d and the same increment c, let θ = max{T, T }. If for all t ∈ [0; θ + d[, f (t) = f (t), then we have ∀t, f (t) = f (t).

Proof. Let f and f be two U P P function with initial segment T and T respectively, the same period d > 0 and the same increment c. Let's define θ = max{T, T }. Let's assume that for all t ∈ [0; θ + d[, f (t) = f (t). Let's prove that for all t ∈ R + , we have f (t) = f (t). Let t ∈ R + .

If t < θ, then by hypothesis, f (t) = g(t). If t θ, then let's define k ∈ N a natural number such that:

Then, because ∀a ∈ R, a a < a + 1, we have k t-θ d < k + 1. Since 0 < d, we have kd t -θ < (k + 1)d and finally θ t -kd < θ + d Thus, according to Lemma 15: