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2D cell cultures are commonly used to rapidly evaluate the therapeutic potential of
various treatments on living cells. However, the effects of the extracellular matrix (ECM)
including the 3D arrangement of cells and the complex physiology of native environment
are missing, which makes these models far from in vivo conditions. 3D cell models
have emerged in preclinical studies to simulate the impact of the ECM and partially
bridge the gap between monolayer cultures and in vivo tissues. To date, the difficulty to
handle the existing 3D models, the cost of their production and their poor reproducibility
have hindered their use. Here, we present a reproducible and commercially available
“3D cell collagen-based model” (3D-CCM) that allows to study the influence of the
matrix on nanoagent uptake and radiation effects. The cell density in these samples
is homogeneous. The oxygen concentration in the 3D-CCM is tunable, which opens the
opportunity to investigate hypoxic effects. In addition, thanks to the intrinsic properties of
the collagen, the second harmonic imaging microscopy may be used to probe the whole
volume and visualize living cells in real-time. Thus, the architecture and composition of
3D-CCMs as well as the impact of various therapeutic strategies on cells embedded in
the ECM is observed directly. Moreover, the disaggregation of the collagen matrix allows
recovering of cells without damaging them. It is a major advantage that makes possible
single cell analysis and quantification of treatment effects using clonogenic assay. In
this work, 3D-CCMs were used to evaluate the correlative efficacies of nanodrug
exposure and medical radiation on cells contained in a tumor like sample. A comparison
with monolayer cell cultures was performed showing the advantageous outcome and
the higher potential of 3D-CCMs. This cheap and easy to handle approach is more
ethical than in vivo experiments, thus, giving a fast evaluation of cellular responses to
various treatments.

Keywords: 3D cell model, collagen, hydrogel, nanoagents, radioenhancement, internalization,
radiosensitization, SHG
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GRAPHICAL ABSTRACT 1 | 3D cell collagen-based model with tunable environment conditions (oxygen concentration, nanodrug exposure or irradiations).

INTRODUCTION

In vitro cell models are commonly used to study the cause and
progression of diseases, to predict treatment effectiveness and
to analyze drug-induced toxicities (Magdeldin et al., 2014; Bell
et al., 2016; Rayner et al., 2019). Monolayer cultures have led to
numerous advances even if success at the bench does not always
translate into success at the bedside. Despite their accessibility
and low cost, the current 2D models do not faithfully mimic
in vivo tissue conditions (Achilli et al., 2012; Lazzari et al., 2017).
Simple spatial organization appears to be a major drawback:
the predominance of the cell-surface attachment allows the cells
to spread which modifies their morphology and behavior (Eke,
2011). In addition, in 2D cultures, cells are bathed in a standard
cell culture medium whose composition differs from that of
the cellular microenvironment. In vivo, cells are surrounded
by a natural structure, the extracellular matrix (ECM), which
acts as a structural and biochemical support. The ECM, which
is primarily composed of water, proteins and polysaccharides,
provides a mechanical framework that influences cell shape,
stiffness and adhesion (Pedersen and Swartz, 2005; Ghosh et al.,
2007; Qiu et al., 2017). The ECM also permits communication
between cells via the transmission of biochemical signals and
plays a crucial role in the regulation of numerous cell functions
such as proliferation, differentiation and gene expression (Even-
Ram and Yamada, 2005; Walker et al., 2018). These essential
communication pathways involving the ECM-cell and cell-cell
interactions cannot be reproduced in 2D cultures. Finally, in 2D
monolayers cells have direct access to molecular oxygen. In this
case, mass transport and diffusion phenomena are too simplistic
and not representative of the various conditions encountered in
the cytoarchitecture of native tissues.

In this perspective, 3D cell models have been developed to
overcome the limitations of the current 2D models. Even if all
aspects of the microenvironment cannot be fully captured such
as vascularization and circulation processes, reticuloendothelial
and hepatic uptakes or local immune repose, in vitro 3D models
recreate numerous features of living cells. The presence of an
ECM makes the models more architecturally and physiologically
relevant and allows a more realistic evaluation of the cell response

(Achilli et al., 2012; Benien and Swami, 2014; Costa et al., 2016;
Nath and Devi, 2016; Cui et al., 2017; Lazzari et al., 2017; Ryu
et al., 2019). For instance, when cells are irradiated in 2D and
3D models, substantial differences in the DNA damage response
are observed (Sedelnikova et al., 2007; Storch et al., 2010; Suzuki
et al., 2010; Zhao et al., 2015), specifically in cell cycle arrest
(Topsch et al., 2007; Walenta and Mueller-Klieser, 2016) and
repair kinetics (Asaithamby et al., 2011; Acheva et al., 2014).

In the field of nanotoxicity, Belli and coworkers (Belli et al.,
2017) showed that monolayer cultures are not fully suitable
to study the nanoparticles (NP) internalization because the
membrane area in contact with NPs is smaller than for 3D
cells. The adhesion of the cells to the plastic substrate induces a
reduction of the exposure area. In 3D, the surface of interaction
is higher because only the parts of cells contact cannot be
exposed to NPs. Moreover, in the absence of ECM, NPs interact
directly with the cell membrane, which may modify their
uptake. So, 3D-CCMs better reproduce the microenvironment
of NPs interacting with cells. Finally, drastic modifications
in cytoskeletal arrangement and cell membrane tension were
observed in cells cultured in 2D models. This effect, avoided
in the case of 3D samples, strongly influences internalization
pathways (Storch et al., 2010).

There is therefore an undeniable interest to model nanoagents
diffusion in the presence of the ECM to better predict in vivo
therapeutics behavior (Leeman et al., 2002; Anderson et al.,
2006; Gomez-Roman et al., 2016). Currently, two types of 3D
cellular models have emerged: (i) scaffold-based 3D models (i.e.,
hydrogels) and (ii) non-scaffold-based 3D models (i.e., spheroids)
(Lazzari et al., 2017; Ferreira et al., 2018; Chaicharoenaudomrung
et al., 2019). In spheroids, ECM is produced after a period of
culture maintenance, whist scaffold-based 3D models dispose of
a pre-existing matrix (Caliari and Burdick, 2016; Costa et al.,
2016; Ferreira et al., 2018). In this study, collagen was used
as matrix because of its biomimetic properties. Biocompatible,
biodegradable and non-toxic, it provides a native viscoelastic
environment for embedded cells, mimicking physiological
conditions (Antoine et al., 2014; Caliari and Burdick, 2016; Dong
and Lv, 2016; Curtin et al., 2018; Catoira et al., 2019). The
hydrogels produced are less fragile and easier to manipulate than
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conventional spheroids (Lin and Chang, 2008; Achilli et al., 2012;
Vadivelu et al., 2017). In the present work, the robustness and
the preparation reproducibility of commercial 3D cell collagen-
based models (3D-CCMs) were assessed. In this purpose, the
structure and the size of the samples were characterized as well
as the viability and the metabolic activity of the cells. By tuning
the oxygen concentration in the environment, we probed the
capacity of the sample to mimic hypoxia tissues, such as found
in highly lethal and radioresistant tumors (Hirayama et al., 2005;
Jiang et al., 2011; Wang et al., 2019). Finally, the performance of
3D-CCM as a tissue-mimicking model was probed by studiying
the cell uptake and toxicity of gadolinium based NPs as well as
NPs impact on radiation effects on HeLa cells.

MATERIALS AND METHODS

Sample Preparation
This 3D model was first implemented using HeLa human
cervical adenocarcinoma cells (ATCC R© CCL-2TM) and most of
the experiments were performed with this immortalized cell line.
For comparison, primary dermal fibroblasts (ATCC R© PCS-201-
010TM) (human fibroblasts derived from the foreskin of male
African newborn with spindle-shaped morphology) were used for
3D-CCM characterization and evaluation of the reproducibility.
All the cells were purchased in 2016 from ATCC© (ATCC France,
Molsheim, France). Several ampoules containing cells at early
passage were then generated and frozen to have a stock. HeLa
cells were used until passage 25 and fibroblasts until passage 15
before returning to stock.

Cell Culture
Adherent cells were cultured in monolayer in complete medium
composed of Dulbecco’s Modified Eagle Medium supplemented
with 10% fetal bovine serum, 1% penicillin and 1% streptomycin
(Life TechnologiesTM). The cells were plated in T-75 flasks and
maintained in an incubator at 37◦C and 5% CO2. Once cells
were confluent, they were harvested using trypsin. Some cells
were seeded on a plastic substrate and maintained in monolayer
conditions for experimental use in 2D models. The remainder
of the cells was collected to prepare 3D-CCMs according to the
protocol described below.

3D-CCM Production
3D-CCM was produced using a RAFTTM kit (Lonza©) according
to the protocol distributed by the manufacturer (Lonza, 2016).

First, the HeLa cell suspension obtained from the cell culture
was centrifuged at 20◦C for 7 min at 1,100 rpm and resuspended
to obtain an appropriate concentration of 2.4–2.6× 107 cells/ml,
as determined by a Luna (Logos Biosystems©) automated cell
counter. This cell solution was homogeneously mixed with 10X
Modified Eagle Medium, neutralizing solution and 2 mg/ml rat-
tail type I collagen solution (diluted in 0.6% acetic acid) to
obtain a mixture of cells embedded in collagen in the liquid
phase with a dilution rate of 4.2%. During this process, all
liquids were maintained at 4◦C and kept on ice to prevent

unwanted polymerization. To reduce uncertainty and batch-
to-batch variability, all samples used in the same experiment
were prepared from the same solution. A volume of 320 µl
from this solution was dispensed into each well of a 96-well
culture plate to seed around ∼350,000 cells per 3D-CCMs. After
15 min in the incubator, RAFTTM absorbers were finally placed
at room temperature on top of each well for 15 min to obtain
the hydrogels. Then, 200 µl of fresh complete medium was
added to each well after collagen gel formation and 3D-CCMs
were maintained in the incubator during 12–36 h prior to the
experiment performed.

For model characterization purposes, 3D-CCMs were also
prepared with human primary dermal fibroblasts following
exactly the same process. These samples were prepared with a
cell suspension at a concentration of 5.3 × 106 cells/ml to obtain
72,000 cells per 3D CCM.

The production of this model is a rapid process (requiring
approximately 2 h) and a simple procedure that can be developed
in conventional biology laboratories.

Microscopy Methods
Structural characterization of 3D-CCMs was performed using
complementary microscopy techniques. Fluorescence techniques
(confocal and multiphoton microscopy) were used to image 3D-
CCM, while transmission images allowed the visualization of cell
morphology on living samples.

Confocal Microscopy
Confocal images of 3D-CCMs were acquired with a LEICA SP5
confocal system. Cell nuclei and the plasma membrane were
stained for 30 min with a 1 µmol/L Hoescht 33342 solution
(exc: 350 nm/em: 461 nm) (Thermo Fisher Scientific©) and
Cell MaskTM Deep Red Actin tracking Stain (InvitrogenTM)
respectively. Data acquisition was performed with a scan speed of
400 Hz. FOV and pixel sizes used were reported in the legend of
the figures. For each sample, transmission images were captured
together with the fluorescent images.

Multiphoton Microscopy
Multiphoton microscopy was the method used to characterize
the model structure. This technique has an improved penetration
depth within scattering samples relative to confocal microscopy.
Thus, 3D images may be recorded along the full depth
of the sample. Moreover, multiphoton microscopy provides
complementary modes of contrast, notably SHG, which allows
specific imaging of fibrillary collagen without any labeling. The
combination of SHG and 2PEF thus enables the simultaneous
detection of the collagen of the 3D sample and the cell nuclei,
without any cross-talk, which results in the availability of
multimodal z-stacks for further analysis (Strupler, 2006).

Sequential 3D acquisitions were performed with a commercial
multiphoton microscope (TriM Scope II, LaVision BioTec)
equipped with two ultrafast oscillators (Mai Tai HP DeepSee,
λ = 690–1040 nm, Spectra Physics and Insight DeepSee, λ = 690–
1300 nm, Spectra Physics) and a low magnification and high
NA microscope objective (25 × 1.05NA, XLPLN25XWMP2,
Olympus). Collagen was imaged using second harmonic imaging
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microscopy derived from a non-linear optic effect termed second
harmonic generation (SHG). The signal is generated by a beam
of the Insight DeepSee laser set at λ = 1150 nm. The SHG
scattered light centered approximately 575 nm was detected
by a photomultiplier tube placed in transmission (H7422-40,
Hamamatsu) and separated from the laser light by a dichroic
mirror (Di02-R635, Semrock) and an interference filter (FF02-
575-25, Semrock). Cell nuclei were mapped by two-photon
excitation microscopy. Two-photon fluorescence (2PEF) was
generated by the fluorophore Hoescht 33342 when irradiated by
the laser beam from the MaiTai set at λ = 830 nm after 30 min of
staining with a 1 µmol/L Hoescht 33342 solution (Thermo Fisher
Scientific©). The signals were collected in epidetection mode by
a photomultiplier tube (H6780-01, Hamamatsu) and separated
from the laser light by a dichroic mirror (T695lpxr, Chroma) and
an interference filter (FF01-450-70 or FF01-460-80, Semrock).
Data acquisition was performed on a 350 µm square field of view
with a pixel size of 0.192 µm and an acquisition frequency of
400 Hz. Images were captured with a z-step of 1 µm.

Image Processing
Two parameters were investigated to determine the
reproducibility of the production method: sample thickness
and cell distribution. The volume and shape of 3D models are
known to be sources of variability that can lead to different
treatment responses (Zanoni et al., 2016). Thus, size uniformity
is a key parameter that was evaluated from sample thickness
measurements. This parameter was calculated from the acquired
SHG stacks according to the determination of a z-range
containing a detectable collagen signal.

In parallel, we developed a Python code (V. 3.7) to analyze the
cell distribution inside 3D-CCMs. Our program is open-access,
available online on Zenodo (doi: 10.5281/zenodo.381436) and
described in detail in the Appendices, Section A. Briefly, each
2PEF image stacks were thresholded to create binary images. The
small areas (<3 pixel × 3 pixel) were removed from the binary
image and all cell nuclei contained in the stack were detected and
isolated. Their three-dimensional position was determined using
a centroid function. Finally, the minimum distance between
two nuclei was calculated for the entire population of nuclei
contained within 3D-CCMs.

Cell Activity in 3D-CCM
Cell Viability
The viability was evaluated 28h after sample creation to
determine the fate of cells embedded in the matrix. To extract
cells from 3D-CCMs, samples were washed with 1X PBS
and disaggregated in 1 mg/ml collagenase purchased from
Clostridium histolyticum (Sigma-Aldrich R©). After 30 min at
37◦C, the collagenase was inactivated with complete medium
and ethylenediaminetetraacetic acid solution (EDTA, Sigma-
Aldrich R©). Cells were stained with trypan blue and counted
with a Luna automatic cell counter (Logos Biosystems©)
which provides total, live and dead cells numbers, and so the
cell viability. Viability study was performed 28 h after the
3D-CCM creation.

Cell Plating Efficiency
Cell plating efficiency (PE) was determined for each type of
culture. For the 3D culturing, this was performed after cells
recovering according to the protocol described in paragraph “Cell
Viability.” In both cases, cells were plated in 100 mm diameter
Petri dishes (Thermo Fisher) to obtain a density of 100 surviving
cells per dish. The PE determined were 37%± 11% (n = 8) for the
cells extracted from the 3D cell culture and 61%± 3% (n = 2) for
the cells from the monolayer culture.

Cell Proliferation Assay
The metabolic activity of the cells was examined using a MTT [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)]
assay. In this goal, 3D-CCMs were prepared to obtain ∼50 000
cells/sample. 3D-CCMs were successively exposed in a 96-well
plate to 125 µl of tetrazolium dye MTT 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide and incubated at 37◦C
for 4 h. Then, 125 µl of lysis buffer were added to dissolve
the formazan crystals. Cellular viability and proliferation were
measured at three time points after the sample creation: 12 h
(Day 0), 33 h (Day 1) and 57 h (Day 2). Absorbance, proportional
to the number of living and metabolically active cells, was
quantified using a Glomax R© Microplate reader (Promega©)
(absorbance 560 nm) and compared to the absorbance of a
negative control treated with 200 µl of a 500 µmol/L toxic
solution of menadione for 4 h.

Oxygen Tunability in 3D-CCM
The oxygen concentration in 3D-CCMs was tuned using the
hypoxia workstation HypoxylabTM (Oxford Optronix©) where
the concentration in oxygen (pO2) and in carbon dioxide (pCO2),
as well as the temperature and the humidity can be set. Before
adding the cell models, each well of a 96-well plate was filled
with 320 µl of supplemented medium and maintained in the
hypoxic workstation overnight to reach the level of the chosen
O2 pressure. 3D-CCMs were then transferred to the wells
inside the hypoxic device. The pO2 in 3D-CCMs was measured
using the in situ sensor OxyliteTM (Oxford Optronic©), which
provides real-time information. A minimum of ten samples
was considered for each measurement. A comparison with 2D
was performed by measuring the pO2 value inside 5 flasks of
monolayer cultures with 3 measurements for each. For each
value, the conversion from mmHg to %O2 was carried out
according to the following formula:

%O2=
[mmHg O2][

atmospheric pressure in mmHg
]
/100

Nanoagent Monitoring in 3D-CCM
3D-CCMs were used to study the migration, uptake and toxicity
of nanoagents. Gadolinium-based NPs called AGuIX R©, which
are currently being tested in the clinic and were provided by
NH TherAguix (Lyon, France) were considered here. AGuIX R©,
composed of a polysiloxane matrix and gadolinium chelates,
have a hydrodynamic diameter of 5 nm and a negative
surface charge (Lux et al., 2018). They can be tagged with a
Cyanine 5.5 fluorescent marker (AGuIX R© -Cy5.5) for microscopy
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experiments (Louis et al., 2005; Bridot et al., 2007). In this
study, all the concentrations of AGuIX R© are expressed in the
concentration of Gd3+, i.e., 1 mmol/L of Gd, which corresponds
to 0.1 mmol/L of NPs.

Internalization Monitoring
The localization of nanoagents in 3D-CCMs was monitored by
confocal microscopy according to the methodology described
in Section “Confocal Microscopy.” From this perspective, the
samples were prepared according to the protocol described in
Section “Confocal Microscopy.” Briefly, 240 µl of 1 mmol/L
AGuIX R©-Cy5.5 was used to expose ∼350,000 HeLa cells/sample
to the agents over 4 h. NPs emission was detected on a 655–
740 nm spectral range upon excitation at 633 nm.

Uptake Monitoring
The mass of gadolinium contained in the samples was determined
at the Ultra Trace Analyses Aquitaine (UT2A) Technological
Center, Pau, France, using an Agilent 7800 ICP-MS (Agilent
Technologies R©). The objective was to determine the relative
amount of AGuIX R© that was internalized by the cells and the
amount of AGuIX R© that was trapped in the collagen. In this
goal, six samples containing cells and collagen (3D-CCMs) were
prepared. All samples were incubated in 240 µl of 1 mmol/L
AGuIX R© solution for 4 h. The composition of the collagen-
based model allowed for sample disaggregation according to the
protocol given in Section “Cell Viability” in order to extract the
cells and make a dosage of the gadolinium contained inside.
Details of the uptake calculation are given in Supplementary
Material, section B.

Cell Response to Radiation Treatment in
3D-CCM
3D-CCMs were used to perform a clonogenic assay to evaluate
treatment-induced cell death. However, sample disaggregation
methodology could also be used to predict the efficacy of
chemotherapy (Alberts et al., 1980; Liu et al., 2020), drugs

(Law et al., 2020) or photothermal therapy (Zhang et al., 2019).
Specifically, we investigated in this work the effect of AGuIX R© on
cellular damage induced by gamma irradiation.

Sample preparation. For each irradiation experiment,
fourteen 3D samples were prepared 36 h before irradiation
according to the protocol described in Section “3D-CCM
Production.” AGuIX R© were added to 3D-CCMs 18 h before
irradiation at a concentration of 0.5 mmol/L in gadolinium. This
concentration is known to be non-toxic to the cells (Lux et al.,
2011; Porcel et al., 2014).

Irradiation. Irradiation was performed under atmospheric
conditions with a 662 keV Cesium (137Cs) gamma source located
at Institut Curie, Orsay (GSR-D1, RadeXp).

Clonogenic assay. Samples were then disaggregated according
to the protocol given in Section “Cell Viability.” For each
irradiation dose, three Petri dishes were prepared. Cells were then
incubated for 15 days before fixation and staining in a solution
of 50% methanol/50% methylene blue. Colonies consisting of
at least 50 cells were counted. The survival fractions (SFs) were
determined as the number of colonies counted divided by the
product of the plating efficiency (PE) with the cell seeding.

Statistical analysis. A statistical analysis of the colony
formation assay results was performed with the software
package CFAssay for R (R Core Team, 2017), R: A Language
and Environment for Statistical Computing. The F-test was
performed based on the maximum likelihood (ML) method,
which was described in 2015 by Braselmann and colleagues
(Braselmann et al., 2015). The complete statistical analysis is
provided in the Supplementary Material, section C.

RESULTS AND DISCUSSION

Structural Characterization
Sample Thickness
3D-CCMs produced in 96-well plates have uniform radial size
of 6.9 mm corresponding to the well diameter. However, due

FIGURE 1 | (A) Thickness of 3D-CCMs composed of HeLa cells (n = 7), (B) Comparison of the coefficient of variation (CV) obtained from the 3D-CCM thickness
measurements (blue dashed line) with the CVs reported in the literature for spheroids of uniform sizes obtained by different methods: pellet culture (in pink), microwell
arrays (in green), microfluidic devices (in red), hanging drop method (in black) or other (in yellow). The use of variation bars instead of square points illustrates the
dependency of the CV to different parameters (cell seeding density, size of the well. . .).
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to the vertical compression exerted by the absorbers during
the production process (see Section “3D-CCM Production”), a
variability in the z direction was expected.

The sample thickness was measured using the SHG collagen
signal of each sample stack. The average thickness obtained on
seven samples was 122 µm ± 4 µm, as shown in Figure 1A.
The coefficient of variation (CV) (%), defined as the standard
deviation divided by the mean height, was equal to 3.2%. This
parameter was directly used to characterize the reproducibility
of the sample preparation and compared with the values of the
literature. A quantitative comparison of CV obtained with 3D-
CCMs and the ones reported in different studies is illustrated in
Figure 1B (Gong et al., 2015; Kang et al., 2015; Chen et al., 2016;
Zanoni et al., 2016; Kwak et al., 2018; Sarkar et al., 2018; Shi et al.,
2018; Thakuri et al., 2019).

Among the methods used to produce spheroids, three of
them resulted in spheroid size uniformity: the pellet culture
method, the hanging drop method and the spheroid preparation
using microfluidic devices (Lin and Chang, 2008; Achilli et al.,
2012; Benien and Swami, 2014; Cui et al., 2017). Zanoni et al.
(2016) estimated the equivalent mean diameter of many of these
spheroids and their associated standard deviations. The pellet
culture method gives the best results in terms of size uniformity.
With a spheroid diameter of 880 µm, the standard deviation of
21 µm leads to a CV of 2.4%. However, this approach is often
neglected because its yield is low, the shear stress induces damage
and the spheroids are difficult to manipulate (Lin and Chang,
2008; Achilli et al., 2012; Lazzari et al., 2017). With the hanging
drop method, the variability is much higher than the one obtained
for 3D-CCM: the standard deviation is 95 µm for a diameter of
359 µm (CV = 26.5%) (Zanoni et al., 2016). The use of patterned
surfaces and microfluidics systems is an attractive strategy despite
the tedious transfer of the created samples and the cost of the
equipment (Lazzari et al., 2017). The samples generated in a
controlled environment, present a uniform size which depends
on the size of the wells (Kang et al., 2015; Lee et al., 2018) or on
the initial cell seeding density (Gong et al., 2015; Chen et al., 2016;

Kwak et al., 2018; Sarkar et al., 2018). The CV depends on these
parameters as illustrated in Figure 1B.

For a concentration similar to ours (i.e., 1 × 106 cells/ml),
Kwak and coworkers obtained a CV of 22% (Kwak et al., 2018).
So, the 3D-CCM CV is one of the lowest, which shows that the
model is one of the most reproducible systems.

Cell Morphology and Distribution in 3D-CCM
The impact of cell morphology on the cell culture is shown in
Figure 2 with HeLa cells cultivated in 2D (Figure 2A) and in
3D-CCM (Figure 2B). In the 3D model, the size of the cell was
found smaller and its shape more spherical than in 2D cultures
(Belli et al., 2017). The cell morphology in 3D-CCMs represents
better the morphology of cells in tissues (Le et al., 2016). This
effect of the culture conditions on the cell shape is explained by
the presence of ECM, which exerts constraints on the cytoplasm,
influences cell spreading and regulates tissue organization and
cell fate (Muncie and Weaver, 2019). A cytoskeletal modification
is induced in 2D cultures due to substrate adhesion. Note that a
modification of morphology may induce a loss of polarity, which,
in turn, may impact growth factor receptors and proliferation
pathways (Yamada and Cukierman, 2007; Belli et al., 2017;
Duval et al., 2017).

The characterization of the cell distribution on the sample
is also a key issue to reproduce at best the spatial organization
of cells in tissues. For HeLa cells, the concentration of 2.4–
2.6 × 107 cells/ml (see Section “3D-CCM Production”) was
optimal to get a tight and homogeneous cell distribution.
For comparison, we investigated the cell distribution with
fibroblasts. In the latter case, a lower cell density was used
to compensate the size difference between the two types of
cells. As shown in the 2PEF/SHG images, Hela and fibroblasts
cells presented the same homogeneous cell distribution in
3D-CCM. The images obtained with HeLa are shown only
(Figure 3A). The number of nuclei obtained in each case,
extracted from SHG/2PEF stack measurements, is plotted
in Figures 3B,C.

FIGURE 2 | HeLa cells morphology in (A) 2D culture and (B) 3D cell collagen-based model. Nuclei and plasma membrane are stained in blue and green respectively.
Panels (A) and (B) were obtained by confocal microscopy (Respective FOV of 82 µm × 84 µm and 123 µm × 83 µm and respective pixel size side of 0.186 µm or
0.312 µm).
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FIGURE 3 | (A) 2PEF/SHG images of HeLa nuclei (in blue) embedded in the fibrillary collagen matrix (in green) (FOV of 350 µm × 350 µm, pixel size of 0.192 µm
side), (B) Number of nuclei as a function of depth for HeLa in 3D-CCMs (n = 3, sample 1 in red, sample 2 in blue, sample 3 in green), (C) Number of nuclei as a
function of depth for fibroblasts in 3D-CCMs (n = 3, sample 1 in gray, sample 2 in purple, sample 3 in yellow).

These data show that the cells were evenly distributed along
the z-axis and did not fall in the bottom of the sample despite
gravity. As expected, more nuclei were found with Hela cells
because of the higher density used in this experiment.

The minimum distance between two nuclei was calculated
to characterize the cell distribution in the 3D model (x-y-
z directions). The median values of the minimum distances
obtained from three different samples are reported in the
Figure 4. These values vary from 14.3 to 15.3 µm with a standard
deviation of 0.5 µm (∼3.3%) for HeLa, and from 21.5 to 23.0 µm
with a standard deviation of 0.8 µm (∼3.7%) for the fibroblasts.

These values are consistent with that reported in the literature.
Internuclear distances of 4–30 µm are reported for the tibialis
anterior muscle in mice (Stroud et al., 2017). Another study based
on hematoxylin and eosin (H&E)-stained images of mouse brain
showed that the internuclear distance is lower than 25 µm (Li
et al., 2018). Yi et al. (2017) reported a method of automatic
extraction of cell nuclei from H&E-stained images of human lung
tumors in which the order of magnitude of the nucleus-nucleus
distance is approximately 10 µm. This distance distribution
between nuclei shows that cells are homogeneously distributed
in 3D-CCMs, thus faithfully mimicking the distribution of
cells in tissues.

Cell Activity
As shown in Figure 5A, a viability higher than 90%, with an
average value close to 93%, was observed for all the samples.
It indicates that cells stayed alive in 3D cultures for several
days. This is confirmed, for instance, by the cell division process

observed in the confocal image (Figure 2B) acquired 48 h after
the sample preparation.

In parallel, a MTT assay was performed to assess the
mitochondrial activity of the cells embedded in the collagen
matrix as function of the time after the 3D-CCMs creation. As
illustrated in Figure 5B, the results (in green) were compared
to a negative control (in red) composed of dead cells. A strong
mitochondrial activity was observed. It proves that the cell
metabolism is not impacted even after 57 h in 3D-CCM. The
activity increase attests of the ability of the cells to proliferate.
Between the first and the second day (i.e., 11 h), the cellular
metabolic activity increased by more than 30%. Between the 2nd
and the 3rd day, it remained stable, which reflects a slow-down of
the cell proliferation. This finding agrees with the literature where
a reduced proliferation is observed for a variety of cell lines in 3D
cultures (Maria et al., 2011; Adcock, 2015).

Oxygen Control
The oxygen concentration in 3D-CCMs was tuned so as to
mimic various tissue environments. In 2D samples, the cells
are typically maintained in incubators to reproduce normoxic
conditions in a controlled atmosphere of 37◦C, 5% CO2,
and 21%-160 mmHg O2. In this condition, pO2 is close to
143 mmHg ± 2 mmHg (19.4% ± 0.2%). In healthy tissues,
pO2 is of the order of 50 mmHg (Wion et al., 2008). In
3D-CCMs, pO2 measured after one night in the incubator
(37◦C, 5% CO2, 21% O2) is 112 mmHg ± 12 mmHg
(14.7% ± 1.5%). This value is close to pO2 observed in
physiological conditions (i.e., 100 mmHg (13.5%) in body lung
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FIGURE 4 | Minimum distance between two nuclei as a function of depth for 3D-CCMs composed of (A) HeLa cells (B) Fibroblasts (n = 3).

FIGURE 5 | (A) Cell viability in 3D-CCMs measured 28 h after model creation. (B) Evolution of the mitochondrial activity in 3D-CCMs (in green) quantified by MTT
assay as function of the time in the sample. The negative control is shown (in red).

alveoli (McKeown, 2014)). The pO2 depletion observed in
3D cultures is attributed to the O2 consumption by the cells
and not to reduced oxygen diffusion in the matrix (Cheema
et al., 2012; Ehsan and George, 2013; Sarem et al., 2019).
Moreover, pO2 was determined using T-25 flasks for 2D samples
and 96 wells plates for 3D-CCMs. Differences of depth from
the medium surface, medium volume and cell density are
expected to affect pO2 (Oze et al., 2012; Zhang et al., 2016;
Place et al., 2017).

We investigated the oxygen control in 3D-CCMs incubated in
different atmospheres. Exposure of 3D samples to a controlled
atmosphere containing 18 mmHg of oxygen (2.3%) allowed to
artificially reproduce the oxygenation conditions in tumors. We
also found that pO2 increased with the time of exposure of 3D-
CCM to hypoxic conditions. pO2 varied from 0.6 ± 0.3 mmHg
after 1 h exposure, to 1.3 ± 1.4 mmHg after 3 h and to
5.6 ± 2.3 mmHg after 5 h. Values below 8 mmHg (1%)
are associated to a “pathological hypoxia” (McKeown, 2014).
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FIGURE 6 | pO2 measured in 3D and 2D samples (red bold bar) (n = 10). It is compared to pO2 reported in the literature (McKeown, 2014) for tumoral (square) and
healthy tissues (circle), such as pancreas (blue), cervix (green), head & neck (black), prostate (orange) and breast (pink). For the values reported from literature, an
error bar was represented when several studies were considered.

Figure 6 summarizes the pO2 values measured in 2D and 3D
cultures in Hela cells exposed to different oxygen conditions
(normoxic and hypoxic). They are compared to values reported
in the literature for various tissues.

This experiment demonstrated that 3D-CCM is fully adapted
to study the impact of treatments on cells growing in hypoxic
tissues such as tumors.

Evaluation of Drugs/Nanoagents Uptake
in Living Cells
The cellular uptake of AGuIX R© in Hela cells embedded in
3D-CCMs was followed using confocal microscopy (Figure 7).
The images show the NPs infiltration in the collagen matrix
(Figure 7B) and cells (Figure 7C) after incubation with
0.5 mmol/L AGuIX R© for 18 h. We observe that the NPs are
homogenously distributed in the collagen matrix. Although the
collagen is a natural barrier that hampers the transport of
nanoagents (Belli et al., 2017) and limits the internalization
of nano-objects (Fallica et al., 2012; Costa et al., 2016), we
found AGuIX R© aggregates in cells, in the cytoplasm exclusively.
No nanoparticles were observed in the nucleus, as already
reported in 2D cultures (Figure 7A) (Porcel et al., 2014;
Štefančíková et al., 2014).

The quantification of nanoagents internalized in cells and
trapped in the collagen was performed by ICP-MS. In
this perspective, 3D-CCM were disaggregated (see Section
“Cell Viability”). The results are presented in Table 1. This
measurement indicates that, in these conditions of incubation
(see Section “Uptake Monitoring”), 1.2× 1013 NPs penetrated in
3D-CCMs, from which 5.9 × 1011 were internalized in the cells
(20 times less). It corresponds to internalizations close to 0.1%
of NPs in 3D-CCMs and 0.004% in the cells. This result is in
agreement with the microscopy observations presented above.

This experiment confirms that 3D-CCM is suitable for
investigating nanoagents uptake in tissue-mimicking samples. In
particular, it demonstrates that, at even low amounts, AGuIX R©

diffuses through the collagen and is partially engulfed in cells
embedded in the matrix.

Quantification of Radiation Effect on Cell
Survival
The robustness of 3D-CCMs to study external treatments effects
on cells was evaluated by investigating the effects of gamma rays
on cell survival and, also, the influence of nanoagents on the
radiotoxicity. In this perspective, the samples were disaggregated
(see Section “Cell Viability”) after the irradiation to proceed with
clonogenic assay analysis. This method is the gold standard of
radiobiology to quantify the effect of radiation on cell death and
proliferative loss. The survival curves are presented in Figure 8.

The cell response function was simulated using a linear
quadratic law, where α is associated with the contribution of
the directly lethal lesions induced in the cell and β with the
accumulation of additive sublethal lesions (Tubiana et al., 1986).
The parameters of the theoretical fits are given in Table 2.

TABLE 1 | Quantification of AGuIX R© determined by ICP-MS in (A) collagen + cells
(3D-CCMs) and (B) cells extracted from 3D-CCM.

COLLAGEN + CELLS CELLS

Mass of Gd (µg)/sample 0.031 ± 0.005 0.002 ± 0.001

NPs (#)/sample 1.2 E + 13 5.9 E + 11

Concentration of Gd per cell
(pmol/L per cell)

− 0.056

Uptake/sample (%) 0.1 0.004
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FIGURE 7 | Confocal microscopy images of HeLa cells exposed to AGuIX R© in (A) a 2D culture (FOV of 110 µm × 101 µm, pixel size of 0.229 µm side) and (B,C)
3D-CCMs (FOV of 140 µm × 140 µm and 41 µm × 41µm, pixel size of 0.273 and 0.080 µm side). Each image results from superimposition of the transmission
and fluorescence images. Nuclei and NPs are labeled in blue and red respectively. The black holes correspond to cells (absence of collagen).

FIGURE 8 | Survival fractions of HeLa cells irradiated in 2D culture (dashed
curve/empty triangles) and in 3D-CCMs (solid curve/solid triangles). The
influence of AGuIX R© on radiotoxicity was investigated using 3D-CCMs (red
curve). The theoretical uncertainties (area) were determined according to the
standard deviations of the α and β parameters. F-statistical tests, based on
the maximum likelihood method (see details in Supplementary Material,
section C), were performed to compare 2D and 3D models, and, models with
or without AGuIX R©. The differences were significant with a p value of
1.099e-07 (p < 0.05) and 0.03 (p < 0.05).

Comparison of the Results Obtained in 2D and 3D
Models
The 2D culture is the primary reference model used in
radiobiology. Thus, we first compared the results obtained in
2D culture and 3D-CCM. The survival fraction (SF) of the cells
irradiated in 2D cultures decreased exponentially with increasing
irradiation doses, which corresponds to previous studies (Porcel
et al., 2014; Štefančíková et al., 2014). We show here that a similar

trend is observed for cells irradiated in 3D-CCMs. α is close to
0.48 Gy−1 for the 3D culture and 0.31 Gy−1 for the 2D culture. It
demonstrates that the directly lethal damage induced by radiation
are more important for cells embedded in 3D-CCM. On the
contrary, the α value is constant (0.05 Gy−2) in the two cases. In
total, the α/β ratio, a parameter that is representative of the cell
radiosensitivity, is about two times higher for cells in collagen.

This result is different from other studies where cells in
3D models (spheroids for instance) generally present a higher
resistance to radiations (Doctor et al., 2020). Contrary, it is
consistent with results published on the irradiation of cervical
carcinoma cells incorporated in hydrogels based on collagen I,
where the effect of radiation was found higher in 3D than in
2D models (Topsch et al., 2007; Walenta and Mueller-Klieser,
2016). This observation can be attributed to difference in cell
cycle between 2D and 3D cultures. In 3D cultures in particular,
the radiosensitivity of cells is higher because the cells stay in
a prolonged arrest in the G2/M-phase, the most sensitive to
radiations. In addition, the doubling time of cells in 3D samples
(61.2 h) is three times higher than the doubling time cells in 2D
monolayers (17.3 h). Thus, the number of colonies counted in
the clonogenic assay (min 50 cells) may be underestimated for
the 3D cultures.

Application of 3D-CCM to the Evaluation of NPs
Induced Amplification of Radiation Effects
3D-CCM was used to evaluate the influence of nanoagents on
radiation effects. We investigated the response of the HeLa cells
treated with AGuIX R© and by radiation. As shown in Figure 8, the
decrease in cell survival was stronger in the presence of AGuIX R©.

TABLE 2 | Calculated radiobiological coefficients.

SF(D) =

e−(αD+βD2)

α (Gy−1) β (Gy−2) α /β (Gy) R2 SER2Gy

(%)
DEF10%

Control 2D 0.31 ± 0.03 0.05 ± 0.01 7 0.99 N.A N.A

Control 3D 0.48 ± 0.03 0.03 ± 0.01 16 >0.99 N.A N.A

AGuIX R© 3D 0.60 ± 0.03 0.02 ± 0.01 30 >0.99 16 1.09

Dependency R2 values are reported in the table.
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It demonstrates that the exposure to NPs of cells embedded in
3D-CCMs amplifies efficiently radiation effects.

The amplification efficiency of NPs is commonly quantified
using two parameters, namely the radiation Sensitizer
Enhancement Ratio (SER) and the Dose Enhancement Factor
(DEF). Their calculation is detailed in the Supplementary
Material, section C. As reported in Table 2, the survival fraction
at 2 Gy was reduced by 16% for cells incubated with AGuIX R© in
3D-CCMs. Interestingly, the induction of directly lethal damage
doubled in the presence of NPs.

These results demonstrate for the first time in a
tissue-like model, that AGuIX R© improve the quality of
radiotherapy treatments.

Conclusion
This work demonstrates the advantage of the 3D cytoarchitecture
and collagen-based cell model to investigate the impact of
various cell treatments. The production of 3D-CCMs, mimicking
the microenvironment of cells in tissues, requires minimal
material. It is a rapid and robust method which is adaptable to
several cell lines.

We found that the preparation of the samples is highly
reproducible. The size of the models is constant and the
distribution of cells is homogeneous. Thanks to the optical
properties of the collagen matrix, label free multiphotonic
microscopy can be used to characterize the samples and monitor
the internalization of agents (such as gadolinium NPs) in living
cells. Another major advantage of the model is that the oxygen
concentration may be tuned so as to reflect various architectures
and physiologies of tissues.

Many tests, frequently used with monolayer cultures, remain
directly applicable to the 3D cultures such as metabolic activity
assays (MTT). Furthermore, the cells are easily and rapidly
recovered by disaggregation of 3D-CCMs. Thus, the impact
of various treatments on cells may be evaluated using single
cell experiments. As an example, we successfully addressed the
toxicity of external agents (gadolinium NPs) and the effect of
radiation treatment on cancer cells in this tissue-like sample.

In summary, 3D-CCM is an advantageous in vitro model that
may be applied to rapidly assess the effect of novel therapies in
conditions more realistic than 2D cell cultures. This promising
model brings in vitro experiments one stage closer to the
in vivo application, without ethical and financial constraints of
animal experiments.
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