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Abstract 

The liver is one of the most important organs, both in terms of the different metabolic processes (energy, lipid, ferric, 
uric, etc.) and of its central role in the processes of detoxification of substances of food origin or noxious substances 
(alcohol, drugs, antibiotics, etc.). The development of a relevant model that reproduces some of the functions of this 
tissue has become a challenge, in particular for human medicine. Thus, in recent years, most studies aimed at pro-
ducing hepatocytes in vitro with the goal of developing hepatic 3D structures have been carried out in the human 
model. However, the tools and protocols developed using this unique model can also be considered to address physi-
ological questions specific to this tissue in other species, such as the pig, chicken, and duck. Different strategies are 
presently being considered to carry out in vitro studies of the hepatic metabolism of these agronomic species.
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1 Introduction
The liver is a multifunctional organ that is central in con-
trolling the metabolism of carbohydrates (conversion of 
glucose to glycogen), lipids (production of cholesterol 
and associated proteins), and amino acids (by regulat-
ing their circulating levels); in the synthesis of certain 
essential proteins (albumin, coagulation factors, etc.); in 
regulating the levels of circulating iron; and in convert-
ing ammonia to urea and bile by capturing bile acids. The 
liver also plays a key role in the detoxification of exog-
enous substances, such as antibiotics, alcohol, drugs, or 

other toxic substances. The multiple physiological func-
tions of this organ are mainly ensured by hepatocytes, 
which constitute more than 80% of the cells of the liver 
and are organized in lobules. Other morphotypes are pre-
sent in the liver, such as cholangiocytes in the bile ducts, 
endothelial cells, Kupffer cells (which are considered as 
hepatic macrophages) and hepatic stellate cells (which 
are resident lipid-storing cells) [1, 2]. During develop-
ment, the hepatic outline appears on the ventral side of 
the distal end of the anterior intestine and results from 
complex interactions between mesoderm and endoderm 
cells at the intra- and extraembryonic junction of the yolk 
sac. Certain growth factors, such as Fibroblast growth 
factor (FGF), Bone morphogenetic proteins (BMPs), 
WNT signaling and retinoids allow the cellular signaling 
that is necessary for this differentiation of the hepatic lin-
eage during development with a rapid dynamic [3–5].

Hepatocytes are extremely polarized epithelial cells 
that are organized into lobules. Lobules are anatomo-
physiological structures that are more or less well defined 
morphologically according to animal species, with large 
disparities observed between humans and pigs includ-
ing fibrotic bridges between periportal zones [6]. The 
basolateral side of the lobules is irrigated by the hepatic 
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sinusoids, which are specialized capillaries organized 
around a vascular structure, i.e., a central vein that is 
connected with the other central veins of each lobule; 
together, these vascular structures end up constitut-
ing the major vascular system of the liver, the vena cava 
hepatic. The apical surface of the hepatocytes is in greater 
contact with the bile ducts, which produce the bile that 
flows into the duodenum. Thus, this particularly vascu-
larized assembly ensures the very important blood flow 
of this organ.

One of the most original and unique properties of 
the liver tissue is its regenerative capacity. In the event 
of injury, this tissue regenerates in a process that takes 
between 1 and 2  weeks in humans, and becomes indis-
tinguishable from the original tissue after a few weeks. 
The main factors that have been identified as being 
involved in this regenerative process are the hepatocyte 
growth factor (HGF), insulin, the transforming growth 
factor-alpha (TGFα), the epidermal growth factor (EGF), 
interleukin-6 (IL-6), and norepinephrine. Some of these 
factors and their receptors may have redundant roles 
depending on the species [7]. While the participation of 
tissue stem cells is undeniable in this regenerative pro-
cess, the nature of these cells has been the subject of 
numerous studies and controversies [8, 9].

2  Induced pluripotent stem cells, a source 
of hepatoblasts

The approaches that have been used to develop liver 
organoids are two-fold, as in many tissues. An organoid 
is defined as an in  vitro three-dimensional structure 
that self-organizes from stem cells and has the capacity 
to self-renew and to differentiate to give rise to the dif-
ferent constitutive morphotypes of the tissue it aims to 
mimic and to reproduce at least some of its physiologi-
cal functions. For liver organoids, there are protocols for 
obtaining spheroids/organoids from hepatic cell lines, 
such as HepG2 or HepaRG cells [10, 11], from biop-
sies or from already formed tissue [12–15]. In this first 
approach, the structures obtained depend on the quality 
of the samples, and their establishment requires an extra-
cellular matrix and occurs over 4−8  weeks. The second 
approach is based on the use of pluripotent stem cells 
(PSCs). Adaptations of the protocols were made to allow 
the initial induction of those cells into a final endoderm, 
from which the hepatoblasts and then the hepatocyte-
like cells are derived using a maturation process in the 
presence of various inducers and growth factors, but with 
a greater or lesser homogeneity in the cell types obtained 
[16–19]. The process that starts from PSCs is longer 
(10−15 weeks), but leads to a hepatic organoid structure 
that is more complex and closer to the functional level 
of liver tissue. The comparison of the two approaches 

revealed the advantages and disadvantages of each of the 
approaches [20].

Concomitantly, direct somatic reprogramming made it 
possible to obtain liver cells in both murine and human 
species using different combinations of genes, including 
FOXA3, HNF1A, and HNF4A [21, 22], or more complex 
systems, such as HNF1A, HNF4A, and HNF6 supple-
mented with maturation factors (i.e., ATF5, PROX1, and 
CEBPα) [23]. A complementary and original approach 
consisted in the use of a single reprogramming fac-
tor (HNF1α) in the presence of different molecules that 
control specific signaling pathways [24]. This strategy 
resulted in the production of cells with markers and sev-
eral hepatocyte functions in vivo.

If the cultures were initially developed into two-
dimensional adherent cells, three-dimensional culture 
approaches have appeared more recently to allow the 
production of hepatic organoids and their long-term mat-
uration. Thus, these recently described protocols allowed 
the establishment of structures that are maintained over 
time and for some of them reproduced “mature liver 
properties, including serum protein production, drug 
metabolism and detoxifying functions, active mitochon-
drial bioenergetics, and regenerative and inflammatory 
responses” by stably expressing several highly specific 
markers including ALB, SERPINA1, TTR, HNF4a, etc.… 
[25, 26]. The different steps of getting hepatocytes from 
PSCs are almost similar between the 2D and 3D cultures 
with the additional step of producing floating embryoid 
bodies for the 3D approach. The further steps of endo-
derm induction, endoderm specification, hepatoblast 
induction and hepatocyte maturation are more or less 
identical with changes in duration between the different 
reported protocols [19, 25, 26]. However, differences are 
indeed observed between both systems with advantages 
and disadvantages as summarized in Table 1. These same 
protocols are also starting to reproduce the complexity 
of the liver tissue, as mentioned above. In fact, this com-
plexity supposes that all hepatocyte functions are ulti-
mately represented in these derived structures in  vitro, 
including the presence of vascularization and bile ducts 
[27–31]. Synthesis of the recent reported protocols is 
available [32].

The challenge of producing the most relevant hepatic 
organoids in relation to the hepatic tissue is particularly 
important for different approaches, such as the open 
perspective in regenerative medicine, but also as mod-
els for physiological studies of many hepatic patholo-
gies, including viral infections such as hepatitis [33] and 
metabolic disorders such as fibrosis and cirrhosis that 
could both be due to chronic injuries, nonalcoholic fatty 
liver disease (NAFLD), the most prevalent chronic liver 
disease leading to the non-alcoholic steatosis (NASH), 
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affecting millions of people around the world [34–36]. 
In this context, generation of hepatic stellate cells from 
PSC has been reported to also contribute to the modeling 
of liver fibrosis [37]. The hepatic organoid model is also 
becoming a reference in toxicology, because these struc-
tures appear to be a major advancement in the predic-
tive approach to the evaluation of the toxicity of a known 
molecule or in therapeutic testing [38, 39].

3  Applications in other species
Most of the studies and protocols published for generat-
ing organoids were performed using mouse and human 
models; thus, proportionally, the data available for other 
species, in particular species of agronomic interest, are 
scarce [40]. To highlight the interest of developing the 
hepatic organoid model in these species, it is also neces-
sary to identify the similarities and the differences and 
therefore to compare the hepatic metabolisms between 
the different species, including humans. If the metabolic 
pathways are generally very close, the nutritional lever 
is also used in domestic animals, in particular to control 
carbohydrate metabolism and lipidogenesis which does 
not take place exclusively in the liver for mammals with 
fat deposits in peripheral tissues [41, 42].

Although the pig is often considered a possible alter-
native as an organ donor in xeno-transplantation 
approaches, few studies have been published on the for-
mation of porcine hepatic organoids/spheroids [43], with 
rare exceptions, such as the bioartificial liver model that 
was developed for studying acute liver failure (ALF) that 
could be caused by various toxic compounds, chemicals 
or viruses that may induce a massive necrosis of paren-
chyma, responsible of ALF [44]. Conversely, the pig was 
also used as a test of the functionality of human liver 
organoids in this same ALF model [45]. However, there 

seems to be little use of this model in toxicological or 
nutritional approaches.

Another example is the production of hepatic orga-
noids from tissue biopsies in cats, to propose a model for 
studying NASH [46]. As previously mentioned, modeling 
this disease is still a challenge [36] and even if numerous 
rodent models are developed as well as in vivo assays on 
minipigs, few in vitro assays with organoids of mamma-
lian domestic animals were presently reported [42, 47, 
48].

Various studies have also been carried out in the fish 
model, in particular for the generation of hepatic trout 
organoids in toxicological screening approaches [49–51].

All the current organoids obtained from species other 
than murine and human have been derived from tissue 
precursors, with PSCs and induced pluripotent stem cells 
(iPSCs) being neither described nor available in these 
species with the same properties as those observed in 
murine and human models. Recent advances in deriving 
PSCs in those species are summarized in the introductive 
chapter of this series, entitled “Organoids in domestic 
animals: with which stem cells?”. Therefore, despite those 
progresses, this obstacle of getting robust PSCs limits the 
development of original protocols in these species.

In avian species, the importance of lipid metabolism 
in the body composition, nutritional egg quality, and 
adaptation of birds to environmental changes such as 
feed composition changes [51–53], or during steato-
sis processes, render the liver an important tissue to be 
studied, as it is the major organ in lipid synthesis in con-
trast to mammals [41, 42]. As an example and as stated 
by Surugihalli et  al., “the chicken liver is subjected to 
intense lipid burden from high rates of yolk-lipid oxida-
tion and also from the accumulation of the yolk-derived 
and newly synthesized lipids from carbohydrates”. High 

Table 1 Comparison between 2 and 3D cultures for generating liver in vitro liver models

Such analysis can be extrapolated for other organoid models as well.

2D culture 3D culture

Morphology Monolayer Organized aggregates with multiple layers

Amplification Easy and convenient More complex
Stable long-term cultures

Differentiation Directed but limited on flat and surface
Constrained morphogenesis

Self-organization
Feasibility of mixed 3D structures of hepatoblast, mesenchymal 

and vascular cells

Genes and Proteins Hepatoblast and hepatocyte with embryonic phenotypes More mature hepatocytes—adult-like phenotypes

Advantages Fast and rapid establishment
Relatively inexpensive,
Well adapted to high throughput capacity

Partially mimicking the in vivo microenvironment
Reproducing the apical-basal polarity in multicellular structures
Control of factor gradient by microfluidic approaches

Disadvantages Flat surface
Automatic apical-basal polarity not mimicking the tissue 

structure

Costly and more laborious
High throughput capacity to be optimized
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rates of hepatic lipid oxidation and lipogenesis are also 
central features of non-alcoholic fatty liver disease 
(NAFLD) in both rodents and humans, but is associated 
with impaired insulin signaling, dysfunctional mitochon-
drial energetics and oxidative stress” [54]. Numerous 
studies have investigated the molecular basis of the avian 
hepatic metabolism by deciphering mainly the hepatic 
lipid metabolism and the associated genes [55–57]. In 
this context, organoids in avian species would be of great 
interest for studying the regulatory mechanisms of lipid 
metabolism. Furthermore, chicken has diverged from 
mammals more than 300 M years ago and is widely used 
to evaluate the level of gene conservation between spe-
cies during evolution, with this conservation being a sign 
of a major biological role. Examples of lncRNA have been 
also reported for liver and adipose tissue as well [58].

In avian species, few data are available at the level of 
the preparation of hepatocytes and their maintenance 
in culture for several days, but in each case, they were 
derived from adult tissue [59–62]. However, the develop-
ment of organoids in avian species has not been reported. 
As embryonic stem cells were obtained and described 
in chicken [63–65], we initiated the induction of the dif-
ferentiation of these PSCs in the hepatic pathway based 

on the human and murine models. Validated in the 
human model with hiPSCs, we developed a protocol 
that allows the establishment of hepatic organoids that 
produce albumin (Figure 1). In a preliminary study, this 
same protocol does not seem to be compatible with bird 
PSCs and no long-term liver organoids were obtained, 
even if hepatic markers were weakly detected (Figure 2). 
Therefore, adaptations of each step have been carried 
out, starting from the formation of cell aggregates that 
are transferred into an endodermic induction medium. 
These structures exhibited a pattern of proliferation and 
induction of markers that is specific to the engagement 
into this lineage. Additional work is needed.

4  Conclusion
The development of hepatic organoids represents a real 
challenge for mimicking the complexity of hepatic tis-
sue and its multiple physiological functions. Additional 
challenges remain to be overcome for domestic species, 
including the plasticity of pluripotent stem cells and 
the adaptation of the protocols currently described and 
used in the human model. We can hope that significant 
progress will be made in the years to come to have such 
in vitro models in these species.

Figure 1 A schematic description of the generation of liver organoïds from hiPSC. A hiPSC were induced into definitive endoderm before 
being turned into hepatoblast and more mature hepatocyte following an adaptation of the Rashidi et al., protocol [22]. B The expression of different 
markers was detected by qRT-PCR and illustrates the loss of pluripotent marker (OCT4), the appearance of endoderm ones (SOX17, FOXA2) and 
then more specific hepatic markers (HNF4, AFP, ALB). C On mature organoïds, Albumin (ALB) is detectable by immunocytochemistry.
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