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Maximum composite likelihood estimation is a useful alternative to maximum likelihood estimation when data arise from data generating processes (DGPs) that do not admit tractable joint specification. We demonstrate that generic composite likelihoods consisting of marginal and conditional specifications permit the simple construction of composite likelihood ratio-like statistics from which finite-sample valid confidence sets and hypothesis tests can be constructed. These statistics are universal in the sense that they can be constructed from any estimator for the parameter of the underlying DGP. We demonstrate our methodology via a simulation study using a pair of conditionally specified bivariate models.

Introduction

Likelihood-based methods are among the most important tools for conducting statistical inference. However, data generating processes (DGPs) of complex models often do not admit tractable likelihood functions. In such cases, a potential remedy is to specify the model based on more amenable marginal and conditional probability density/mass functions (PDFs/PMFs) of the DGP, instead. This joint specification is often referred to as the composite likelihood (CL) or pseudolikelihood.

The literature regarding CL-based inference has its roots in the works of [START_REF] Besag | Statistical analysis of non-lattice data[END_REF] and [START_REF] Lindsay | Composite likelihood methods[END_REF]. Further developments regarding the theory and application of CL methods can be found in [START_REF] Arnold | Pseudolikelihood estimation: some examples[END_REF], [START_REF] Molenberghs | Models For Discrete Longitudinal Data[END_REF], [START_REF] Varin | An overview of composite likelihood methods[END_REF], [START_REF] Yi | Composite likelihood/pseudolikelihood[END_REF], and [START_REF] Nguyen | Nearly universal consistency of maximum likelihood in discrete models[END_REF], among other works.

We build upon the recent work of [START_REF] Wasserman | Universal inference[END_REF] who demonstrated the construction of sample splitting and sample swapping likelihood ratio statistics that yield finite-sample valid confidence sets and hypothesis tests, and are universal in the sense that they are agnostic to parameter estimators. The inferential constructions are similar to the recently popularized e-values of [START_REF] Vovk | E-values: calibration, combination, and application[END_REF], as well as the s-values of [START_REF] Grunwald | Safe testing[END_REF] and the betting scores of [START_REF] Shafer | Testing by betting: a strategy for statistical and scientific communication[END_REF]. We demonstrate how our CL-based methods can be used via applications to constructing confidence sets and tests for a pair of conditionally specified bivariate models. Here, we consider simulations study regarding the exponential conditional model of [START_REF] Arnold | Conditional Specification of Statistical Models[END_REF] and the log-normal conditional model of [START_REF] Sarabia | Bivariate income distributions with lognormal conditionals[END_REF].

The paper proceeds as follows. In Section 2, we present the CL framework and the universal confidence set and hypothesis test constructions. A simulation study of our methodology is presented in Section 3.

Universal inference via composite likelihoods

Let X ∈ X ⊆ R d be a random variable arising from a parametric distribution characterized by the PDF/PMF (generically, PDF) p (x; θ), where θ ∈ Θ ⊆ R q is a parameter vector (d, q ∈ N). We shall write X = (X 1 , . . . , X d ) to indicate a random variable and x = (x 1 , . . . , x d ) to indicate its realization.

Let 2 [d] be the power set of 

← - T = ← - t 1 , . . . , ← - t ← - T ⊂ [d] and - → T = - → t 1 , . . . , - → t - → T ⊂ [d] \ ← -
T are the 'left-hand' and 'right-hand' subsets of the division T , respectively. We note that

|S d | = 2 d -1 and |T d | = 3 d -2 d+1 + 1.
For each S and T , we assign a non-negative coefficient σ S and τ T , respectively. We call these coefficients the weights, and we put these weights into the vectors σ = (σ S ) S∈S d and τ = (τ T ) T ∈T d , respectively. Assume that

υ = S∈S d σ S + T ∈T d τ T > 0.
Given weights σ and τ , we define the individual CL (ICL) function for X as

p σ,τ (x; θ) = S∈S d [p (x S ; θ)] σ S /υ T ∈T d p x← - T |x-→ T ; θ τ T /υ , where x S = x s1 , . . . , x s |S| , x← - T = x← -t 1 , . . . , x← -t | ← - T |
, and

x-→ T = x-→ t 1 , . . . , x-→ t | - → T |
. Here, p (x S ; θ) is the marginal PDF of X S , and

p x← - T |x-→ T ; θ is the conditional PDF of X← - T conditioned on X-→ T = x-→ T .

Sample splitting and sample swapping

Let X n = (X i ) n i=1 be a sequence of n IID random variables with the same DGP as X, and split X n into two subsamples

X 1 n = X 1 i n1 i=1 and X 2 n = X 2 i n2
i=1 of sizes n 1 and n 2 , respectively, where n = n 1 + n 2 . We assume that X has a DGP that is characterized by the PDF p (x; θ 0 ), for some θ 0 ∈ Θ, and we let Pr θ0 be its corresponding probability measure. Let θ1 n and θ2 n be a pair of generic estimators of θ 0 , computed using only X 1 n or X 2 n , respectively. For k ∈ {1, 2}, we let

L σ,τ θ; X k n = n k i=1 p σ,τ X k i
be the CL function of X k n , as a function of θ. We write the split sample CL ratio statistics (spCLRSs) and the swapped sample CL ratio statistic (swCLRS) as

U k σ,τ (θ; X n ) = L σ,τ θ3-k ; X k n /L σ,τ θ; X k n ,
for each k ∈ {1, 2}, and Ūσ,τ (θ;

X n ) = U 1 σ,τ (θ; X n ) + U 2 σ,τ (θ; X n ) /2, respectively.
For α ∈ (0, 1), let

C α (X n ) = θ ∈ Θ : U 1 σ,τ (θ; X n ) ≤ 1/α and Cα (X n ) = θ ∈ Θ :
Ūσ,τ (θ; X n ) ≤ 1/α be confidence sets based on the spCLRS and the swCLRS, respectively. We have the following result regarding the validity of C α (X n ) and Cα (X n ) (all theoretical results in this work are proved in [START_REF] Nguyen | Universal inference with composite likelihoods[END_REF].

Proposition 1. The set estimators C α (X n ) and Cα (X n ) are finite sample-valid 100 (1 -α) % confidence sets for θ 0 in the sense that

Pr θ0 (θ 0 ∈ C α (X n )) ≥ 1 -α, and Pr θ0 θ 0 ∈ Cα (X n ) ≥ 1 -α,
for any n ∈ N.

We now consider the testing of null and alternative hypotheses

H 0 : θ ∈ Θ 0 and H 1 : θ ∈ Θ 1 , where Θ 0 , Θ 1 ⊆ Θ. Let M X k n = θ ∈ Θ 0 : L σ,τ θ; X k n = max ϑ∈Θ0 L σ,τ ϑ; X k n
be the set of maximizers of the CL function L σ,τ θ; X k n , for each k ∈ {1, 2}, and write θk n ∈ M X k n . We then write the sample splitting and sample swapping test statistics as

V k σ,τ (X n ) = U k σ,τ θk n , and Vσ,τ (X n ) = U 1 σ,τ θ1 n + U 2 σ,τ θ2 n /2,
respectively. Further, define the split sample CL ratio test (spCLRT) and the swapped sample CL ratio test (swCLRT) by the rejection rules: reject

H 0 if V 1 σ,τ (X n ) ≥ 1/α or if Vσ,τ (X n ) ≥ 1/α, respectively.
We have the following result regarding the finite sample-validity of the tests.

Proposition 2. The spCLRT and swCLRT control the Type I error for all α ∈ (0, 1) and n ∈ N in the sense that 

sup θ0∈Θ0 Pr θ0 V 1 σ,τ (X n ) > 1/α ≤ α, and sup θ0∈Θ0 Pr θ0 Vσ,τ (X n ) > 1/α ≤ α.

Simulation study

All numerical computation were conducted in the R programming environment [START_REF] Core | R: a language and environment for statistical computing[END_REF]. The code for the analyses are made available at hiendn/CompositeLikelihoodISI.

Bivariate distribution with exponential conditional distributions

We first consider a simulation study regarding data generated from the bivariate exponential distribution of Arnold et al. [1999, Sec. 4.4]. Here the random variable X = (X 1 , X 2 ) has joint PDF

p (x; θ) = κ (θ) exp {-x 1 -x 2 -θx 1 x 2 } ,
where θ ≥ 0 is the parameter of interest, and

κ (θ) = θ exp {-1/θ} / ∞ 1/θ w -1 exp (-w) dw is an intractable normal- ization constant. However, the conditional PDFs of X k |X 3-k = x 3-k , for k ∈ {1, 2}, can be specified by p (x k |x 3-k ; θ) = f Exp (x k ; 1 + θx 3-k ) ,
where f Exp (x; λ) = λ exp (-λx) is the PDF of the exponential distribution with rate λ > 0. Thus, we can conduct inference regarding this DGP by considering ICLs of the form

p σ,τ (x; θ) = [p (x 1 |x 2 ; θ)] 1/2 [p (x 2 |x 1 ; θ)] 1/2 ,
where σ = 0 and τ = (1/2) 1.

For data X n with identical DGP to X, characterized by θ 0 ∈ {1, 5, 10}, where n 1 = n 2 ∈ {100, 1000, 10000}, we consider the use of the spCLRS and swCLRS confidence sets at the α = 0.05 level. Here, each confidence set is constructed using the maximum composite likelihood estimator (MCLE).

For each pair (n 1 , θ), we replicate the simulation r = 100 times and compute the coverage proportion (CP) and average size (AS) of the confidence intervals for the two set constructions. Here, CP and AS are computed as r -1 r j=1 θ 0 ∈ C j and r -1 r j=1 diam (C j ), where C j is a stand-in for a confidence set constructed from the rth replicate, • are Iverson brackets, and diam (•) is the metric set diameter operator.

The results are presented in Table 1(a). We observe that CP was near perfect, with only one scenario yielding a confidence set that did not contain θ 0 . This supports Proposition 1, although it indicates that the confidence sets are fairly conservative. We observe that AS is decreasing in n 1 , as expected, and increasing in θ 0 . We also find that the swCLRS sets are smaller than the spCLRS sets, which suggests a more efficient use of the data.

Bivariate distribution with log-normal conditional distributions

We now consider the bivariate distribution of [START_REF] Sarabia | Bivariate income distributions with lognormal conditionals[END_REF], which is specified by the PDF

p (x; θ) = κ (c) 2πσ 1 σ 2 x 1 x 2 exp - 1 2 log x 1 -µ 1 σ 1 2 + log x 2 -µ 2 σ 2 2 + c log x 1 -µ 1 σ 1 2 log x 2 -µ 2 σ 2 2 , (1) 
where

θ = µ 1 , σ 2 1 , µ 2 , σ 2 2 , c , with µ 1 , µ 2 ∈ R, σ 2 1 , σ 2 2 > 0, and c ≥ 0. Here, κ (c) = √ 2c/U 1/2, 1, (2c) -1
, where U (a, b, z) is the confluence hypergeometric function, defined as per Abramowitz and Stegun [1972, Eqn. 13.2.5].

Like in the previous example, the normalizing constant of the joint PDF makes it intractable. However, we may again specify the conditional PDFs of

X k |X 3-k = x 3-k , for k ∈ {1, 2}, by p (x k |x 3-k ; θ) = f LN x k ; µ k , σ 2 k / 1 + c log x 3-k -µ 3-k σ 3-k 2 , where f LN x; µ, σ 2 = 1 x √ 2πσ 2 exp - 1 2 log x -µ σ 2
is the PDF of a log-normal distribution with location and scale parameters µ ∈ R and σ 2 > 0, respectively. We can use the conditional PDFs to conduct CL inference via the ICLs of the form

p σ,τ (x; θ) = [p (x 1 |x 2 ; θ)] 1/2 [p (x 2 |x 1 ; θ)] 1/2 ,
where σ = 0 and τ = (1/2) 1.

We simulate data X n , n 1 = n 2 ∈ {100, 1000, 10000} from DGPs that are characterized by the PDF (1), with parameter vector θ 0 = (2, 1, 2, 1, c 0 ), where c 0 ∈ {0, 1, 5}. For each pair (n 1 , c 0 ), we use the spCLRT and swCLRT to test the hypotheses H 0 : c 0 = 0 versus H 1 : c 0 > 0, at the α = 0.05 level. We repeat each simulation pair r = 100 times and compute the proportion of times the null hypothesis was rejected. Here, we again make use of the MCLE.

The results are reported in Table 1 (b). Notice that no false rejections were made when c 0 = 0, thus the size of the test is conservatively controlled, as predicted by Proposition 2. We also see that the tests become increasingly powerful as c 0 increases and as n 1 increases, as would be expected. There is some evidence that the swCLRT is more powerful than the spCLRT, conforming to observations from the previous study.

  [d] = {1, . . . , d}, and letS d = 2 [d] \ {∅}. For each S ∈ S d , let S = s 1 , . . . , s |S| ⊆ [d],where |S| is the cardinality of S. Further, let T d be the set of all divisions of [d] into two nonempty subsets. We represent each element of T d as a pair T = ←

Table 1 :

 1 Simulation results.(a) CP and AS results for the spCLRS and swCLRS 95% confidence sets.

								(b) Proportion of rejections by the spCLRT and
								swCLRT.			
			CP		n 1	AS	n 1		Rej.		n 1
		θ 0 100 1000 10000 100 1000 10000	c 0	100 1000 10000
	spCLRS	1	1	1	1	1.43 0.46	0.14	spCLRT 0	0	0	0
		5	1	1	1	4.60 1.49	0.47	1	0.26	1	1
		10	1	1	1	8.32 2.57	0.82	5	0.98	1	1
	swCLRS 1	1	1	1	1.28 0.40	0.12	swCLRT 0	0	0	0
		5	1	0.99	1	4.13 1.29	0.40	1	0.32	1	1
		10	1	1	1	7.40 2.31	0.73	5	1	1	1