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Introduction



Auditory Attention Decoding

Auditory attention decoding aims at determining, from the brain’s activity, which

sound source a subject is “focusing on” while listening to a complex auditory scene.

State of the Art

• Previous works to decode the attended speaker in multi-speaker environments

[Mesgarani and Chang, 2012, O’sullivan et al., 2014, Crosse et al., 2016];

• the neural activity tracks dynamic changes in the speech stimulus;

• a feature representation (amplitude envelope, magnitude spectrogram, ...) of the

attended speech stimulus is reconstructed from the unaveraged EEG response.

How can we transpose this problem to music?
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Auditory Attention Decoding

Study Case:

Detect and characterize auditory attention to an instrument in polyphonic music.

Useful for

improving MIR tasks such as music transcription, score following, source separation...

However...

• musical stimuli are complex;

• musical stimuli are intrinsically different from speech;

• there is a lack of data.

• previous works: [Treder et al., 2014].
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Data & Methods



Dataset

MAD-EEG1: 20-channel surface electroencephalographic (EEG) signals recorded from

8 subjects while they were attending to a particular instrument in polyphonic music.

Each attended instrument was previously heard in solo, as part of a training phase.

Features

• well-synchronized musical stimuli and EEG responses;

• real music compositions;

Stimuli variants

• number and type of instruments in the mixture;

• melody/rhythmical pattern that is played;

• music genre;

• spatial rendering.

1
G. Cantisani, G. Trégoat, S. Essid, G. Richard, “MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in

polyphonic music”, SMM19 workshop, 2019
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Goal & Pipeline
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For each of the 8 subjects train on 14 solos, test on 40 duets and 24 trios.

5



Stimulus Reconstruction

A stimulus representation ŝ is estimated from multi-channel neural data r through a

model g which behaves like a multi-channel Wiener filter :

ŝ(t, f ) =
∑
n

∑
τ

g(τ, f , n)r(t − τ, n)

The filter is learned by solving a linear regression problem:
∑

t

∑
f [s(t, f ) − ŝ(t, f )]2
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Results & Discussion



Research questions

• Are we tracking attention or a general music entertainment?

• Are we tracking the target instrument?

• Which is the most suitable audio descriptor for such a task?

• How much variants in the stimuli influence the performances?
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Reconstruction performances
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Figure 1: Pearson’s correlation coefficients of the reconstructed stimulus with the

attended source (blue), the unattended one (pink) and the mixture (orange) for the

three audio descriptors.
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Reconstruction performances - variants
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Figure 2: rattended and runattended scores for the all the stimuli variants. Only MAG

and MEL descriptors are considered. rattended and runattended distributions are

significantly different for all the variants (p < 0.001, Wilcoxon test).
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Decoding performances

F1 score (%)

all
ensemble melody/rhythm rendering genre

duets trios same diff mono stereo pop classic

AE 51 * 58 * 37 n.s. 48 n.s. 53 * 53 * 48 n.s. 54 * 48 n.s.

MAG 72 ** 74 ** 66 ** 76 ** 65 ** 73 ** 72 ** 64 ** 79 **

MEL 73 ** 79 ** 73 ** 79 ** 60 ** 74 ** 71 ** 60 ** 83 **

Table 1: F1 scores for different subsets of the test set corresponding to variants in

the stimuli and different audio descriptors. ”**” denotes high (p < 0.001), ”*” good

(p < 0.01), and ”n.s.” no (p > 0.05) statistical significance of the results.
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Reconstruction performances
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Figure 3: rattended against runattended (only duets) for the MAG and MEL descriptors.

The instruments are marked with different colors.
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Conclusions



Conclusions

Take-home

• the model is tracking attention and not a general entertainment to the music;

• the neural activity tracks musically relevant features of the attended source;

• MAD-EEG: a new dataset to study the problem (soon available online!).

Limitations

• limited generalization capability;

• the model is tracking mostly the pitch/harmonic contour of the attended source;

• the more instruments in the mixture, the more difficult is the attention task.
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Contributions

• G. Cantisani, S. Essid, G. Richard, “EEG-based decoding of auditory attention to

a target instrument in polyphonic music”, WASPAA, 2019

• G. Cantisani, G. Trégoat, S. Essid, G. Richard, “MAD-EEG: an EEG dataset for

decoding auditory attention to a target instrument in polyphonic music”,

SMM19, 2019

Data soon available on our lab’s web page

https://www.tsi.telecom-paristech.fr/aao/en/2019/07/19/mad-eeg/
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Thank you for the attention!
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