# Decoding auditory attention in polyphonic music based on EEG: a new dataset and a preliminary study

Giorgia Cantisani, Slim Essid, Gaël Richard LTCI, Télécom Paris, Institut polytechnique de Paris, France AESoP Symposium 2019, Leuven, Belgium







MIPFRONTIERS PROJECT

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skodowsa-Curie grant agreement No. 765068.

# **Table of contents**

- 1. Introduction
- 2. Data & Methods
- 3. Results & Discussion
- 4. Conclusions

Introduction

Auditory attention decoding aims at determining, from the brain's activity, which sound source a subject is "focusing on" while listening to a complex auditory scene.

### State of the Art

- Previous works to decode the attended speaker in multi-speaker environments [Mesgarani and Chang, 2012, O'sullivan et al., 2014, Crosse et al., 2016];
- the neural activity tracks dynamic changes in the speech stimulus;
- a feature representation (amplitude envelope, magnitude spectrogram, ...) of the attended speech stimulus is reconstructed from the unaveraged EEG response.

How can we transpose this problem to music?

Auditory attention decoding aims at determining, from the brain's activity, which sound source a subject is "focusing on" while listening to a complex auditory scene.

### State of the Art

- Previous works to decode the attended speaker in multi-speaker environments
  [Mesgarani and Chang, 2012, O'sullivan et al., 2014, Crosse et al., 2016];
- the neural activity tracks dynamic changes in the speech stimulus;
- a feature representation (amplitude envelope, magnitude spectrogram, ...) of the attended speech stimulus is reconstructed from the unaveraged EEG response.

How can we transpose this problem to music?

Auditory attention decoding aims at determining, from the brain's activity, which sound source a subject is "focusing on" while listening to a complex auditory scene.

### State of the Art

- Previous works to decode the attended speaker in multi-speaker environments
  [Mesgarani and Chang, 2012, O'sullivan et al., 2014, Crosse et al., 2016];
- the neural activity tracks dynamic changes in the speech stimulus;
- a feature representation (amplitude envelope, magnitude spectrogram, ...) of the attended speech stimulus is reconstructed from the unaveraged EEG response.

How can we transpose this problem to music?

### **Study Case:**

Detect and characterize auditory attention to an instrument in polyphonic music.

### Useful for

improving MIR tasks such as music transcription, score following, source separation..

### However...

- musical stimuli are complex
- musical stimuli are intrinsically different from speech;
- there is a lack of data
- previous works: [Treder et al., 2014]

### **Study Case:**

Detect and characterize auditory attention to an instrument in polyphonic music.

### Useful for

improving MIR tasks such as music transcription, score following, source separation...

### However...

- musical stimuli are complex
- musical stimuli are intrinsically different from speech
- there is a lack of data.
- previous works: [Treder et al., 2014]

### **Study Case:**

Detect and characterize auditory attention to an instrument in polyphonic music.

### Useful for

improving MIR tasks such as music transcription, score following, source separation...

### However...

- musical stimuli are complex;
- musical stimuli are intrinsically different from speech;
- there is a lack of data
- previous works: [Treder et al., 2014].

# Data & Methods

### **Dataset**

**MAD-EEG**<sup>1</sup>: 20-channel surface electroencephalographic (EEG) signals recorded from 8 subjects while they were attending to a particular instrument in polyphonic music.

Each attended instrument was previously heard in solo, as part of a training phase.

### **Features**

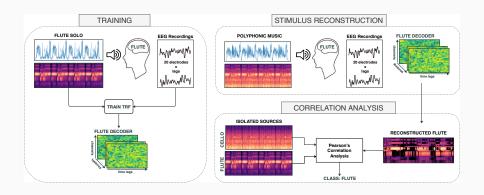
- well-synchronized musical stimuli and EEG responses;
- real music compositions;

### Stimuli variants

- number and type of instruments in the mixture;
- melody/rhythmical pattern that is played;
- music genre;
- spatial rendering.

<sup>&</sup>lt;sup>1</sup>G. Cantisani, G. Trégoat, S. Essid, G. Richard, "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music", SMM19 workshop, 2019

# Goal & Pipeline

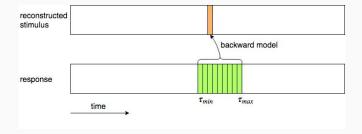


For each of the 8 subjects train on 14 solos, test on 40 duets and 24 trios.

### Stimulus Reconstruction

A stimulus representation  $\hat{s}$  is estimated from multi-channel neural data r through a model g which behaves like a multi-channel Wiener filter:

$$\hat{s}(t,f) = \sum_{n} \sum_{\tau} g(\tau,f,n) r(t-\tau,n)$$



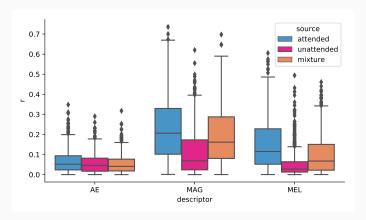
The filter is learned by solving a linear regression problem:  $\sum_t \sum_f [s(t, f) - \hat{s}(t, f)]^2$ 

# Results & Discussion

## Research questions

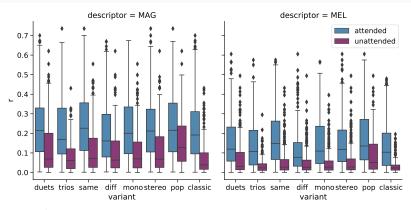
- Are we tracking attention or a general music entertainment?
- Are we tracking the target instrument?
- Which is the most suitable audio descriptor for such a task?
- How much variants in the stimuli influence the performances?

# **Reconstruction performances**



**Figure 1:** Pearson's correlation coefficients of the reconstructed stimulus with the attended source (blue), the unattended one (pink) and the mixture (orange) for the three audio descriptors.

# Reconstruction performances - variants



**Figure 2:**  $r_{attended}$  and  $r_{unattended}$  scores for the all the stimuli variants. Only MAG and MEL descriptors are considered.  $r_{attended}$  and  $r_{unattended}$  distributions are significantly different for all the variants (p < 0.001, Wilcoxon test).

# **Decoding performances**

|     | F1 score (%) |          |         |               |       |           |         |       |         |
|-----|--------------|----------|---------|---------------|-------|-----------|---------|-------|---------|
|     | all          | ensemble |         | melody/rhythm |       | rendering |         | genre |         |
|     |              | duets    | trios   | same          | diff  | mono      | stereo  | pop   | classic |
| AE  | 51 *         | 58 *     | 37 n.s. | 48 n.s.       | 53 *  | 53 *      | 48 n.s. | 54 *  | 48 n.s. |
| MAG | 72 **        | 74 **    | 66 **   | 76 **         | 65 ** | 73 **     | 72 **   | 64 ** | 79 **   |
| MEL | 73 **        | 79 **    | 73 **   | 79 **         | 60 ** | 74 **     | 71 **   | 60 ** | 83 **   |

**Table 1:** F1 scores for different subsets of the test set corresponding to variants in the stimuli and different audio descriptors. "\*\*" denotes high (p < 0.001), "\*" good (p < 0.01), and "n.s." no (p > 0.05) statistical significance of the results.

# **Reconstruction performances**

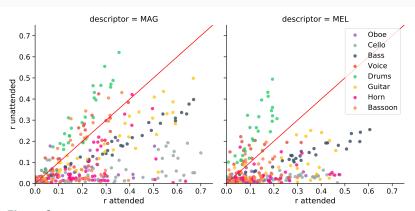


Figure 3:  $r_{attended}$  against  $r_{unattended}$  (only duets) for the MAG and MEL descriptors. The instruments are marked with different colors.

# Conclusions

### **Conclusions**

### Take-home

- the model is tracking attention and not a general entertainment to the music;
- the neural activity tracks musically relevant features of the attended source;
- MAD-EEG: a new dataset to study the problem (soon available online!).

### Limitations

- limited generalization capability;
- the model is tracking mostly the pitch/harmonic contour of the attended source;
- the more instruments in the mixture, the more difficult is the attention task.

### **Contributions**

- G. Cantisani, S. Essid, G. Richard, "EEG-based decoding of auditory attention to a target instrument in polyphonic music", WASPAA, 2019
- G. Cantisani, G. Trégoat, S. Essid, G. Richard, "MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in polyphonic music", SMM19, 2019

Data soon available on our lab's web page https://www.tsi.telecom-paristech.fr/aao/en/2019/07/19/mad-eeg/

\_\_\_\_

Thank you for the attention!

### References i



Crosse, M. J., Di Liberto, G. M., Bednar, A., and Lalor, E. C. (2016).

The multivariate temporal response function (mtrf) toolbox: a matlab toolbox for relating neural signals to continuous stimuli.

Frontiers in human neuroscience, 10:604.



Mesgarani, N. and Chang, E. F. (2012).

Selective cortical representation of attended speaker in multi-talker speech perception.

Nature, 485(7397):233.

### References ii



O'sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B. G., Slaney, M., Shamma, S. A., and Lalor, E. C. (2014).

Attentional selection in a cocktail party environment can be decoded from single-trial eeg.

Cerebral Cortex, 25(7):1697-1706.



Treder, M. S., Purwins, H., Miklody, D., Sturm, I., and Blankertz, B. (2014).

Decoding auditory attention to instruments in polyphonic music using single-trial eeg classification.

Journal of neural engineering, 11(2):026009.