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How can we transpose this problem to music?
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Auditory Attention Decoding

Study Case:

Detect and characterize auditory attention to an instrument in polyphonic music.

Useful for

improving MIR tasks such as music transcription, score following, source separation...

However...

e musical stimuli are complex;
e musical stimuli are intrinsically different from speech;
e there is a lack of data.

o previous works: [Treder et al., 2014].
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Dataset

MAD-EEG!: 20-channel surface electroencephalographic (EEG) signals recorded from
8 subjects while they were attending to a particular instrument in polyphonic music.

Each attended instrument was previously heard in solo, as part of a training phase.
Features

o well-synchronized musical stimuli and EEG responses;

e real music compositions;

Stimuli variants

e number and type of instruments in the mixture;
o melody/rhythmical pattern that is played;
e music genre;

o spatial rendering.

1G. Cantisani, G. Trégoat, S. Essid, G. Richard, “MAD-EEG: an EEG dataset for decoding auditory attention to a target instrument in
polyphonic music”, SMM19 workshop, 2019



Goal & Pipeline
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For each of the 8 subjects train on 14 solos, test on 40 duets and 24 trios.



Stimulus Reconstruction

A stimulus representation § is estimated from multi-channel neural data r through a
model g which behaves like a multi-channel Wiener filter:
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The filter is learned by solving a linear regression problem: 3=, > /[s(t, f) — §(t, f)]?



Results & Discussion




Research questions

o Are we tracking attention or a general music entertainment?
o Are we tracking the target instrument?
o Which is the most suitable audio descriptor for such a task?

o How much variants in the stimuli influence the performances?



Reconstruction performances
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Figure 1: Pearson’s correlation coefficients of the reconstructed stimulus with the
attended source (blue), the unattended one (pink) and the mixture (orange) for the
three audio descriptors.



Reconstruction performances - variants
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Figure 2: r.itended and runattended Scores for the all the stimuli variants. Only MAG
and MEL descriptors are considered. rasrended @nd Funattended distributions are

significantly different for all the variants (p < 0.001, Wilcoxon test).



Decoding performances

F1 score (%)
ensemble melody/rhythm rendering genre
duets | trios same diff mono | stereo pop classic
AE S, & 58 * 37ns. | 48ns. | B3 * 8 < 48 n.s. | 54 * 48 n.s.
MAG | 72 *¥* | 74 ** | 66 ** 76 ** 65 ** | 73 *x | 72 ** 64 ** | 79 **
MEL | 73 ** | 79 ** | 73 ** 79 ** 60 ** | 74 *¥* | 71 ** 60 ** | 83 **

all

Table 1: F1 scores for different subsets of the test set corresponding to variants in
the stimuli and different audio descriptors. " **” denotes high (p < 0.001), "*" good
(p < 0.01), and "n.s.” no (p > 0.05) statistical significance of the results.
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Reconstruction performances

descriptor = MAG descriptor = MEL
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Figure 3: ritrended against rypastended (only duets) for the MAG and MEL descriptors.
The instruments are marked with different colors.
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Conclusions




Conclusions

Take-home

e the model is tracking attention and not a general entertainment to the music;
e the neural activity tracks musically relevant features of the attended source;

o MAD-EEG: a new dataset to study the problem (soon available online!).

Limitations

o limited generalization capability;
o the model is tracking mostly the pitch/harmonic contour of the attended source;

e the more instruments in the mixture, the more difficult is the attention task.
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Contributions

e G. Cantisani, S. Essid, G. Richard, “EEG-based decoding of auditory attention to
a target instrument in polyphonic music”, WASPAA, 2019

e G. Cantisani, G. Trégoat, S. Essid, G. Richard, “MAD-EEG: an EEG dataset for
decoding auditory attention to a target instrument in polyphonic music”,
SMM19, 2019

Data soon available on our lab's web page
https://wuw.tsi.telecom-paristech.fr/aao/en/2019/07/19/mad-eeg/
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https://www.tsi.telecom-paristech.fr/aao/en/2019/07/19/mad-eeg/

Thank you for the attention!
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