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L1-THEORY FOR REACTION-DIFFUSION HELE-SHAW FLOW
WITH LINEAR DRIFT

NOUREDDINE IGBIDA†

Abstract. The main goal of this paper is to prove L1-comparison and contraction principles for weak
solutions (in the sense of distributions) of Hele-Shaw flow with a linear Drift. The flow is considered
with a general reaction term including the Lipschitz continuous case, and subject to mixed homogeneous
boundary conditions : Dirichlet and Neumann. Our approach combines a renormalization proceedings
à la DiPerna-Lions with Kruzhkov device of doubling and de-doubling variables. The L1-contraction
principle allows afterwards to handle the problem in a general framework of nonlinear semigroup theory
in L1, taking thus advantage of this strong theory to study existence, uniqueness, comparison of weak
solutions, L1-stability as well as many further questions.

1. Introduction and preliminaries

1.1. Introduction and main contributions. Let Ω ⊂ IRN be a bounded open set. We are interested
in the existence and uniqueness as well as the L1-comparison principle for the weak solution concerning
the PDE of the type

(1.1)


∂u

∂t
−∆p+∇ · (u V ) = g(t, x, u)

u ∈ Sign(p)

in Q := (0, T )× Ω.

Here, Sign is the maximal monotone graph defined in IR by

Sign(r) =

 1 for any r > 0
[−1, 1] for r = 0
−1 for any r < 0,

V and g are the given velocity field and the reaction term respectively, satisfying besides assumptions
we precise next (including at least the common case of Lipschitz continuous reaction term). In the
case of nonnegative solution (one phase problem), the problem may be written in the widespread form

(1.2)


∂u

∂t
−∆p+∇ · (u V ) = g(t, x, u)

0 ≤ u ≤ 1, p ≥ 0, p(u− 1) = 0

in Q.

The linear version of the problem which ties into the case where Sign’s graph is superseded by
the identity ; that is to take p = u, the problem corresponds to Fokker-Planck equation. Existence,
uniqueness and stability of weak solutions for this case is studied in [31] with possibly linear degenerate
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2 N. IGBIDA

diffusion, additive noise and BV−vector fields V in IRN . One can see moreover the work [36] where
the case of irregular coefficient and the associated stochastic differential equation are touch on.

In general, the problem is of elliptic-hyperbolic-parabolic type. Despite the broad results on this class
of nonlinear PDE, the structure of (1.1) and (1.2) exclude them definitely out the scope of the current
literature, at least concerning uniqueness (cf. [2, 7, 8, 20, 34, 42], see also the expository paper [9] for
a complete list on refs). In spite of the ”hard” non-linearity connected to the sign graph, the Fokker-
Planck look of the equation with linear drift seems to be very fruitful for the analysis based on gradient
flow in the space of probability measures equipped with Wasserstein distance (the distance arising in
the Monge-Kantorovich optimal transport problem) in the one phase case (1.2) with no-flux Neumann
boundary condition and no-reaction ; i.e. g ≡ 0. Numerous results on the existence, properties and
estimates on the weak solution were elaborate in the last decade (one can see for instance [40] and the
references therein). Other interesting progress on qualitative properties of a solution were obtained
using the notion of viscosity solution (one can see for instance [1] and the references therein). The key
utility of the viscosity concept is the skill to describe the pointwise behaviour of the free boundary
evolution. Nonetheless, the uniqueness is still an open problem and seems to be harshness in general.
In the case of monotone velocity field V, the uniqueness of absolute continuous solution in the set of
probability equipped with Wasserstein distance (solutions in AC([0;T ), (P (Ω),W2)) has been obtained
craftily in [27] for (1.2), in the framework of gradient flow in euclidean Wasserstein space again in the
case of Neumann boundary condition and g ≡ 0.

Our main results in this paper concern the L1-comparison and contraction principles for the reaction-
diffusion-transport equation of the type (1.1) subject to mixed homogeneous boundary conditions :
Dirichlet and Neumann. This allows to handle the problem in the context of nonlinear semigroup
theory in L1(Ω) to prove thus existence, uniqueness, comparison of weak solutions, L1-stability as
well as many other questions. We’ll not cover all the possibilities with this framework here, but let
us mention at least its prospect to tackle the continuous dependence with respect to the Sign graph,
including for instance the connection between this problem and the so called incompressible limit of
the porous medium equation even in the singular case. This subject would be likely touch on in
forthcoming works. We tackle the problem using a renormalisation approach of DiPerna-Lions type
(cf. [28]) combined with Kruzhkov device of doubling variables. To avoid much more technicality
of the paper, we restrict ourself to the case of ingoing vector field velocity on the boundary which
remains practically useful for many applications like in crowd motion. Although, we do believe that
our arguments may be generalized and used for general V with reasonable regularity. They can be
extended also to the case where Ω = IRN as well as to more general maximal monotone graph β instead
of Sign.

Among the propose of this paper, let us mention the treatment of the equation with a reaction
term g. Besides existence, uniqueness and comparison results for weak solutions, we supply sufficient
condition on g(t, x, 1) and g(t, x,−1) to avoid a congested regime and cover the solution of (4.1) by
the purely transport equation :

(1.3)
∂u

∂t
+∇ · (u V ) = g(t, x, u), in Q.

The one phase problem (1.2) will be concerned as well with sufficient condition of the type g(., 0) ≥ 0
a.e. in Q. For the application in crowd motion, the conditions on g(., 1) may be heuristically connected
to the reaction of the concerned population at the position x ∈ Ω and time t > 0 within ”congested”
circumstance. Performing its value regarding to the divergence of the velocity vector field V, may avoid
the congestion in the transportation phenomena for crowed motion.
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1.2. Motivation and related works. By means of the diffusion term, the nonlinear equation of
the type (1.1) is usually called Hele-Shaw Flow. Indeed, in the case where V ≡ 0, the equation is a
free-boundary problem modeling the evolution of a slow incompressible viscous fluid moving between
slightly separated plates (cf. [30, 43, 44, 29, 26, 47] for physical and mathematical formulation). The
equation appears also as the viscous incompressible limit of the porous medium equation (see for
instance [33, 32, 13] and the references therein).

The study of the Hele-Shaw flow with a reaction term (without drift) goes back to [14] and [15] in the
study of the limit of the m−porous medium equation as m → ∞. Concrete models with a dissimilar
typical reaction term appeared after in the study of the tumor growth (cf. [45]). The emergence
of a drift in the Hele-Shaw flow appeared for the first time in the study of congested crowd motion
(cf. [37, 38, 39]). In this case, the function u is assumptive to be nonnegative to model the density
of population and the constraints on u prevents an evolution beyond a given threshold. Notice also
that the occurrence of nonlocal drift in the Hele-Shaw flow appears in some biological applications to
describe the so called aggregation phenomena (one can see the paper [19] for a review and references
in this direction).

Completed with boundary condition (Dirichlet, Neumann or mixed Dirichlet-Neumann) and initial
data, the questions of existence and uniqueness of a weak solution is well understood by now in the case
where V ≡ 0, under general conditions on g (cf [14, 15], one can see also [45] for a different structure
of a reaction term). For general V, though the existence of a solution seems to be more or less well
understood, the uniqueness question seems to be very delicate and challenging. The main difficulties
comes from the combination between the ”hard” non-linearity Sign (so called hard-congestion) and the
arbitrary pointing of velocity field for the drift. Although the first order term is linear, one notices the
hyperbolic character of the equation (outside the congested region). This motivates the questions of
existence and uniqueness of a weak solution, and challenges new as well as standard techniques for first
order hyperbolic equations and second order hyperbolic-parabolic structures as well. In particular, one
sees that setting

b =
(
I + Sign−1

)−1 and β = (I + Sign)−1 ,

v := u− p, the problem (1.1) falls into the scope of diffusion-transport equation of the type

(1.4)
∂b(v)

∂t
−∆β(v) +∇ · (V (x)Φ(v)) = f in Q := (0,∞)× Ω.

The study of this class of degenerate parabolic problems has under-gone a considerable progress in the
last twenty years, thanks to the fundamental paper of J. Carrillo [20] in which the Kruzhkov device of
doubling of variables was extended to this class of hyperbolic-parabolic-elliptic problems. In [20], the
appropriate notion of solution was established : the so called weak-entropy solution. This definition
(or, sometimes, parts of the uniqueness techniques of [20]) led to many developments, we refer to the
expository paper [9] for a survey and complete references on this subject. As much as restrictive it
is, the approach of [20] serves out primarily and ingeniously the case where V does not depend on
space and homogeneous Dirichlet boundary condition. Strengthened with L1-nonlinear semi-group
techniques (cf. [9]), the approach of [20] enables to achieve successful as well the uniqueness of weak
solution in the ”weakly degenerate” convection-diffusion problems of parabolic-elliptic type ; that is
[β = 0] ⊆ [Φ = 0]. As far as Dirichlet boundary condition are concerned (cf. [20, 34, 7, 7, 9]), the
case of homogeneous Neumann was treated in [6]. Yet, the notion of entropic solution à la Carillo is
definitively the suitable notion for general problem of the type (1.4). Nevertheless, following the theory
of hyperbolic equation, the case of linear drift is a particular case for which one expects the uniqueness
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of weak solution. As far as we are aware of, this case remains to be out of the scope of the current
literature on this subject.

In spite of the serving of the second order term, we can not pass over the forcefulness of the first
order term, which is here linear and carrying away along a vector field V with an arbitrary pointing in
Ω. Heuristically, in the likely case p ≡ 0, the PDE turns into a linear initial-boundary value problem for
continuity equation. In general, one guess the uniqueness of weak solution under reasonable assumption
on V , like bounded total variation coefficients. As far as the regularity of V is involved, the way how to
handle the boundary condition is hooked to the proofs of uniqueness and adduce different difficulties
to the problem. The treatment of boundary conditions is definitely a crucial step in the proof of
uniqueness. This is closely connected in some sens to the regularity of the solution as well as to the
pointing of V on the boundary. This affects the manner to treat the weak/strong trace of the flux
on the boundary (see the papers [3], [5], [10], [21],[23]and by [5], [8], [6]). The approach based on the
concept of renormalized solution introduced in 1989 by Lions and DiPerna [28] for tangential velocity
field seems to be unmissable and powerful in general for the proof of uniqueness of weak solution for
this kind of problem. This concept was extended to bounded domains in IRN with inflow boundary
conditions and velocity field with a kind of Sobolev regularity in [16], [17] and [41]. These results were
generalized to velocity fields with BV regularity in [3, 4, 5, 24]. The concept was used also in [31]
and [36] to tackle the existence and uniqueness of weak solutions for Fokker-Planck equation and its
associated stochastic differential equation in some extreme cases like linear degenerate diffusion with
irregular coefficient, additive noise and BV−vector fields V .

In this paper, we show how to use this approach in the presence of second order term of Hele-Shaw
type to prove the uniqueness of weak solution in the contest of mixed Dirichlet-Neuman boundary
condition with an outward pointing (possibly tangential) velocity fields V on the boundary. The case
of strict inward pointing velocity fields V on the boundary need more careful, and possible delicate,
treatment of the trace of the flux on the boundary. Taught, we do believe that it is possible adapt
carefully our techniques to the case of strict inward pointing with the additional assumption uV ·ν = 0
on the boundary, which can be heuristically interpreted as (a weak version of) u = 0 on the boundary.

1.3. Plan of the paper. In the following subsection, we give the main assumptions we’ll use through-
out the paper and the definition of weak solution we are dealing with. Section 2, is devoted to the
L1-comparison principle for the weak solution. We introduce renormalized like formulations and use
them with doubling and de-doubling variable techniques à la Kruzhkov inside Ω, to prove first that
weak solutions satisfies some kind of local Kato’s inequalities. Then, linking the incoming assumption
on the velocity field V on the boundary with the distance-to-boundary function, we prove that we can
go with our Kato’s inequalities up to the boundary proving thus L1-comparison principle, and then
deduce the uniqueness. In section 3, we prove the existence of a weak solution by using nonlinear semi-
group theory governed by L1-accretive operator. Here the main ingredient is to use the L1-contraction
principle for weak solution of stationary problem associated with the ε−Euler implicit time discretiza-
tion of the evolution problem. Then, we pass to the limit in the so called ε−approximate solution and
prove that the limit is the weak solution of the evolution problem. In section 4, we treat the equation
with reaction term g(t, x, u). Using again nonlinear semigroup theory in L1(Ω), we prove the existence
and uniqueness of a weak solution under a general condition on g including the Lipschitz continuous
case. Then, using the L1−comparison principle we show how some natural result concerning the exis-
tence and uniqueness of weak solution for some particular cases like one phase problem (1.2) as well
the purely transport equation (1.3) (i.e. p ≡ 0) may be wrap up by this approach. Section 5 is devoted
to some remarks, comments and possible extensions. At last, in Section 6, for completeness we give a
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complement for the proof of de-doubling variables process to handle space dependent vector field with
arbitrary pointing out.

1.4. Preliminaries, remarks and and main assumptions. We assume that Ω ⊂ IRN is a bounded
open set, with regular boundary splitted into ∂Ω = ΓD ∪ ΓN , such that ΓD ∩ ΓN = ∅ and

LN−1(ΓD) > 0.

For any h > 0, we denote by

(1.1) ξh(t, x) =
1

h
min

{
h, d(x, ∂Ω)

}
and νh(x) = −∇ξh, for any x ∈ Ω,

where d(., ∂Ω) names the euclidean distance-to-the-boundary function. We see that ξh ∈ H1
0 (Ω) is a

regular (as well as the boundary is) concave function, 0 ≤ ξh ≤ 1 and

νh(x) = −1

h
∇ d(., ∂Ω), for any x ∈ Ω s.t. d(x, ∂Ω) < h ≤ h0 (small anough).

In particular, for such x, we have hνh(x) = ν(π(x)), where π(x) design the projection of x on the
boundary ∂Ω, and ν(y) represents the outward unitary normal to the boundary ∂Ω at y.

We denote by Sign+ the maximal monotone graph given by

Sign+(r) =

 1 for r > 0
[0, 1] for r = 0
0 for r < 0.

Moreover, we define Sign0 and Sign±0 , the discontinuous applications defined from IR to IR by

Sign0(r) =

 1 for r > 0
0 for r = 0
−1 for r < 0,

, Sign+
0 (r) =

{
1 for r > 0
0 for r ≤ 0

Sign−0 (r) =

{
0 for r ≥ 0
1 for r < 0

Throughout the paper, we assume that u0 and the velocity vector filed V satisfy the following
assumptions :

• u0 ∈ L∞(Ω) satisfies 0 ≤ |u0| ≤ 1 a.e. in Ω.

• V ∈W 1,1
loc (Ω)N , ∇ · V ∈ L∞(Ω) and V satisfies (inward pointing velocity vector field condition

on the boundary)

(1.2) V · ν ≤ 0 on ∂Ω.

Then, we denote by H1
D(Ω) the Sobolev space

H1
D(Ω) =

{
u ∈ H1(Ω) : u = 0, LN−1-a.e. in ΓD

}
.

Remark 1. (1) Since V ∈ W 1,1
loc (Ω)N and ∇ · V ∈ L∞(Ω), then V · ν needs to be understood in a

weak sense, like∫
Ω
V · ∇ξ dx+

∫
Ω
∇ · V ξ dx ≤ 0, for any 0 ≤ ξ ∈ D(Ω).

One can see also the papers [21, 23] for more details and expressions in this direction. In
particular, this condition implies that

(1.3) lim inf
h→0

∫
Dh

ξ V (x) · νh(x) dx ≤ 0, for any 0 ≤ ξ ∈ L∞(Ω),
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where, for any 0 < h ≤ h0, Dh is a neighbour of ∂Ω.
(2) In some models of congested crowd motion, the vector field velocity may be given by

(1.4) V = −∇d(.,ΓD), in Ω.

This means that the pedestrian choose the euclidean geodesic trajectory to the escape door to get
away from the environment Ω. See in this case that the condition (1.4) is completely satisfied.
This example constitute a typical practical situation (among many others) for which all the
results of this paper may be applied.

To begin with, we consider first the problem

(1.5)



∂u

∂t
−∆p+∇ · (u V ) = f

u ∈ Sign(p)

}
in Q

p = 0 on ΣD := (0, T )× ΓD

(∇p+ u V ) · ν = 0 on ΣN := (0, T )× ΓN

u(0) = u0 in Ω,

where f ∈ L1(Q) is given.

Definition 1.1 (Notion of solution). A couple (u, p) is said to be a weak solution of (1.5) if (u, p) ∈
L∞(Q)× L2

(
0, T ;H1

D(Ω)
)
, u ∈ Sign(p) a.e. in Q and

d

dt

∫
Ω
u ξ +

∫
Ω

(∇p− u V ) · ∇ξ =

∫
Ω
f ξ, in D′(0, T ), ∀ ξ ∈ H1

D(Ω).

We’ll say plainly that u is a solution of (1.5) if u ∈ C([0, T ), L1(Ω)), u(0) = u0 and there exists
p ∈ L2

(
0, T ;H1

D(Ω)
)
such that the couple (u, p) is a weak solution of (1.5).

Remark 2. The assumptions we suppose on V look alike to be stronger regard to the literature on
(linear) continuity equation. We think it is possible to extend our results for weak solution to more
general V. But, in the presence of the second order term, the problem seems to be heavy and much more
technical. Let us give here at least a short reminder on the uniqueness of weak solution for continuity
equation, which could comprise some possible extensions (open questions !) for the Hele-Shaw flow with
a linear Drift.

(1) The analysis of the continuity equation (without a second order term) in the case when V has low
regularity has drawn considerable attention. For an overview of some of the main contributions,
we refer to the lecture notes by Ambrosio and Crippa [4] (see also [24] for more references on
this subject). Counter-example for the uniqueness when V is not enough regular (up to the
boundary) may be found in [24]. Indeed, regardless the orientation of V at the boundary,
uniqueness may be violated as soon as V enjoys BV regularity in every open set ω ⊂⊂ Ω, but
not at the boundary of Ω (cf. [24] for more details and discussions on this subject).

(2) When the vector filed is outward pointing, heuristically the solution would not be worst at/near
the boundary. Indeed, at least in the smooth case the solution may simply “carried out” of the
domain along the characteristics and, consequently, the behaviour of the solution inside the
domain is not substantially affected by what happens close to the boundary. However, examples



L1-THEORY FOR REACTION-DIFFUSION HELE-SHAW FLOW 7

are given in [24] discussing that even if V is outward pointing at ∂Ω, then uniqueness may be
violated as soon as the BV regularity deteriorates at the boundary.

2. L1−Comparison principle

In this section, we focus first on the uniqueness and L1−Comparison principle of weak solution. Our
first main result is the following.

Theorem 2.1. If (u1, p1) and (u2, p2) are two weak solutions of (1.5) associated with f1, f2 ∈ L1(Q)
respectively, then there exists κ ∈ L∞(Q), such that κ ∈ Sign+(u1 − u2) a.e. in Q and

(2.1)
d

dt

∫
Ω

(u1 − u2)+ dx ≤
∫

Ω
κ (f1 − f2) dx, in D′(0, T ).

In particular, we have
d

dt
‖u1 − u2‖1 ≤ ‖f1 − f2‖1, in D′(0, T ).

Moreover, if f1 ≤ f2, a.e. in Q, and u1, u2 are two corresponding solutions satisfying u1(0) ≤ u2(0)
a.e. in Ω, then

u1 ≤ u2, a.e. in Q.

The main tool to prove this result is doubling and de-doubling variables. Since the degeneracy of
the problem, we prove first that a weak solution satisfies some kind of (new) renormalized formulation,
and then carry out trickily doubling and de-doubling variables device to prove (2.1).

Recall that, the merely transport equation case correspond to the situation where p ≡ 0. In this
case, the renormalized formulation reads

∂tβ(u) + V · ∇β(u) + u∇ · V β′(u) = f β′(u) in D′(Q),

for any β ∈ C1(IR), where from now on, for any z ∈ L1(Ω) the notation V · ∇z needs to be understood
in the sens of distribution as follows

(2.2) V · ∇z = ∇ · (z V )− z ∇ · V .

Proposition 2.1. If (u, p) is a weak solution of (1.5), then

(2.3)
∂tβ(u)−∆p+ + V · ∇β(u) + u∇ · V (β′(u) χ[p=0] + Sign+

0 (p))

≤ f (β′(u) χ[p=0] + Sign+
0 (p)) in D′(Q)

and

(2.4)
∂tβ(u)−∆p− + V · ∇β(u) + u∇ · V (β′(u) χ[p=0] − Sign−0 (p))

≤ f (β′(u) χ[p=0] − Sign−0 (p)) in D′(Q),

for any β ∈ C1(IR) such that 0 ≤ β′ ≤ 1.

Remark 3. The formulations (2.3) and (2.4) describe some kind of renormalized formulation for the
solution u. For the one phase Hele-Shaw problem this formulation reads simply as follows

∂tβ(u)−∆p+ V · ∇β(u) + u β′(u)∇ · V χ[p=0] +∇ · V χ[p 6=0]

≤ f (β′(u) χ[p=0] + χ[p 6=0]) in D′(Q),

for any β ∈ C1(IR) such that 0 ≤ β′ ≤ 1.
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We prove this results in two steps, we begin with the case where β ≡ 0. Then proceeding skillfully
with the positive and negative part of p, and using a smoothing procedure with a commutator à
la DiPerna-Lions (cf. [28], see also [3]), we prove that any weak solution u satisfies renormalized
formulations (2.3) and (2.4).

Lemma 2.1. If (u, p) is a weak solution of (1.5), then the renomalized formulations (2.3) and (2.4)
are fulfilled with β ≡ 0 in D′((0, T )× Ω). That is

(2.5) −∆p+ + (∇ · V − f)Sign+
0 (p) ≤ 0 in D′((0, T )× Ω),

and

(2.6) −∆p− + (∇ · V + f)Sign−0 (p) ≤ 0 in D′((0, T )× Ω).

Moreover, we have

(2.7) ∂tu−∆p+ +∇ · (u V ) +∇ · V Sign−0 (p) ≤ f (1− Sign−0 (p)) in D′(Q),

Proof. We extend p onto IR×Ω by 0 for any t 6∈ (0, T ). Then, for any h > 0 and nonnegative ξ ∈ H1(Ω)
and ψ ∈ D(IR), we consider

Φh(t) = ξ ψ(t)
1

h

∫ t+h

t
H+
ε (p((s)) ds,

where H+
ε is given by

H+
ε (r) = min

(
r+

ε
, 1

)
, for any r ∈ IR,

for arbitrary ε > 0. It is clear that Φh ∈ W 1,2
(

0, T ;H1
D(Ω)

)
∩ L∞(Q) is an admissible test function

for the weak formulation, so that

(2.8) −
∫∫

Q
u ∂tΦ

h +

∫∫
Q

(∇p− V u) · ∇Φh =

∫∫
Q
f Φh.

See that

(2.9)
∫∫

Q
u ∂tΦ

h =

∫∫
Q
u ∂tψ

1

h

∫ t+h

t
H+
ε (p((s)) ds+

∫∫
Q
u(t)

H+
ε (p(t+ h))−H+

ε (p(t))

h
ψ(t) ξ.

Moreover, using the fact that for a.e. t ∈ (0, T ), −1 ≤ u(t) ≤ 1, H+
ε ≥ 0 and H+

ε (0) = 0, we have
u(t, x)H+

ε (p(t, x)) = H+
ε (p(t, x)) and u(t, x)H+

ε (p(t+ h, x)) ≤ H+
ε (p(t+ h, x)) a.e. (t, x) ∈ Q. So, for

any h > 0 (small enough), we have∫∫
Q
u(t)

H+
ε (p(t+ h))−H+

ε (p(t))

h
ψ(t) ξ ≤

∫∫
Q

H+
ε (p(t+ h))−H+

ε (p(t))

h
ψ(t) ξ

≤
∫∫

Q

ψ(t− h)− ψ(t)

h
H+
ε (p(t)) ξ.

This implies that

lim sup
h→0

∫∫
Q
u(t)

H+
ε (p(t+ h))−H+

ε (p(t))

h
ψ(t) ξ ≤ −

∫∫
Q
∂tψ H+

ε (p(t)) ξ,
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so that, by letting h→ 0 in (2.9), we get

lim
h→0

∫∫
Q
u ∂tΦ

h ≤ 0.

Then, by letting h→ 0 in (2.8)

(2.12)
∫∫

Q
(∇p− V u) · ∇(H+

ε (p(t)) ξ)−
∫∫

Q
f H+

ε (p(t)) ξ ≤
∫∫

Q
f H+

ε (p(t)) ξ.

On the other hand, using again the fact that uH+
ε (p) = H+

ε (p), a.e. in Q, we have∫∫
Q

(∇p− u V ) · ∇
(
H+
ε (p) ξ

)
ψ =

∫∫
Q
H+
ε (p)∇p · ∇ξ ψ +

∫∫
Q
|∇p|2 (H+

ε )′(p) ξ ψ

−
∫∫

Q
V · ∇(ξH+

ε (p)) ψ

≥
∫∫

Q
H+
ε (p)∇p · ∇ξ ψ +

∫∫
Q
∇ · V (ξH+

ε (p)) ψ,

where we use (1.2) and the fact that |∇p|2 (H+
ε )′(p) ≥ 0. Thanks to (2.12), this implies that∫∫

Q
∇p · ∇ξ H+

ε (p) ξ ψ +

∫∫
Q
∇ · V ξH+

ε (p) ψ ≤
∫∫

Q
f H+

ε (p(t)) ξ.

Letting now ε→ 0, we get (2.5). As to (2.6), it follows by using the that (−u,−p) is also a solution of
(1.5) with f replaced by −f, and applying (2.5) to (−u,−p). At last, recall that
(2.13) ∂tu−∆p+∇ · (u V ) = f in D′(Q).

So, summing (2.6) restrained to D′(Q) and (2.13), we get (2.7). �

Now, in order to prove the proposition by using (2.5) and (2.7), we prove the following technical
lemma.

Lemma 2.2. Let u ∈ L1
loc(Q), F ∈ L1

loc(Q)N and J1 ∈ L1
loc(Q) be such that

(2.14) ∂tu+ V · ∇u−∇ · F ≤ J1 in D′(Q)

where V · ∇u is taken in the sens V · ∇u = ∇ · (u V )− u∇ · V, in D′(Q). If

(2.15) −∇ · F ≤ J2 in D′(Q),

for some J2 ∈ L1
loc(Q), then

(2.16) ∂tβ(u) + V · ∇β(u)−∇ · F ≤ J1β
′(u) + J2(1− β′(u)) in D′(Ω),

for any β ∈ C1(IR) such that 0 ≤ β′ ≤ 1.

Proof. We set Qε := {(t, x) ∈ Q : d((t, x), ∂Q) > ε} . Moreover, for any z ∈ L1(Q), we denote by zε
the usual regularization of z by convolution given and denoted by

zε := z ? ρε, in Qε,

where ρε is the usual mollifiers sequence defined here in IR × IRN . It is not difficult to see that (2.14)
and (2.15) implies respectively

(2.17) ∂tuε + V · ∇uε −∇ · Fε ≤ J1ε + Cε in Qε
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and

(2.18) −∇ · Fε ≤ J2ε in Qε,

where Cε is the usual commutators given by

Cε := V · ∇uε − (V · ∇u)ε.

Using (2.2), here (V · ∇u)ε needs to be understood in the sense

(V · ∇u)ε = (u V ) ?∇ρε − (u∇ · V ) ? ρε, in Qε.

Multiplying (2.17) by β′(uε) and (2.18) by 1− β′(uε) and adding the resulting equations, we obtain

β′(uε) ∂tuε + β′(uε) V · ∇uε −∇ · Fε ≤ Cε β′(uε) + J1εβ
′(uε) + J2ε(1− β′(uε)) in Qε

and then

(2.19) ∂tβ(uε) + V · ∇β(uε)−∇ · Fε ≤ Cε β′(uε) + J1εβ
′(uε) + J2ε(1− β′(uε)) in Qε.

Since V ∈ W 1,1
loc (Ω) and ∇ · V ∈ L∞(Ω), it is well known by now that, by taking a subsequence if

necessary, the commutators converges to 0 in L1
loc(Q), as ε → 0 (see for instance Ambrosio [3]). So,

letting ε→ 0 in (2.19), we get (2.16). �

Now, let us prove how to get the renormalized formulations (2.3) and (2.4).

Proof of Proposition 2.1. Thanks to Lemma 2.1, by using the fact that

∇ · V Sign−0 (p) = −u∇ · V Sign−0 (p) and ∇ · V Sign+
0 (p) = u∇ · V Sign+

0 (p),

we see that (2.14) and (2.15) are fulfilled with

F := ∇p+, J1 := (f − u∇ · V )(1− Sign−0 (p))

and
J2 := (f − u∇ · V ) Sign+

0 (p).

Thanks to Lemma 2.1, for any β ∈ C1(IR) such that 0 ≤ β′ ≤ 1, we deduce that

∂tβ(u)−∆p+ + V · ∇β(u) + (u∇ · V − f)(1− Sign−0 (p))β′(u)

+(f − u∇ · V ) Sign+
0 (p)(β′(u)− 1) ≤ 0 in D′(Q),

Using again the fact that ∇ · V Sign+
0 (p) = u∇ · V Sign+

0 (p) this implies that

∂tβ(u)−∆p+ + V · ∇β(u) + u∇ · V (1− Sign−0 (p))β′(u) + u∇ · V Sign+
0 (p)(1− β′(u))

≤ f(Sign+
0 (p)(1− β′(u)) + (1− Sign−0 (p))β′(u)) in D′(Q).

That is
∂tβ(u)−∆p+ + V · ∇β(u) + u∇ · V (β′(u)(1− Sign−0 (p)− Sign+

0 (p)) + Sign+
0 (p))

≤ f(β′(u)(1− Sign−0 (p)− Sign+
0 (p)) + Sign+

0 (p)) in D′(Q),

and then
∂tβ(u)−∆p+ + V · ∇β(u) + u∇ · V (β′(u)χ[p=0] + Sign+

0 (p))

≤ f(β′(u)χ[p=0] + Sign+
0 (p)) in D′(Q).
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Thus (2.3). At last, using the fact that the couple (−u,−p) is a solution of (1.5) with f replaced by
−f, and applying (2.3) to (−u,−p), we deduce (2.4).

�

See here that the attendance of a nonlinear second order term creates an obstruction to use standard
approaches for the uniqueness of weak solutions based effectively on the linearity of the first order term.
In order to prove uniqueness in our case, we proceed by doubling and de-doubling variable techniques.
To this aim, we’ll use the fact that the renormalized formulation implies some kind of local entropic
inequalities. This is the aim of the following Lemma.

Lemma 2.3. If (u, p) is a weak solution of (1.5), then we have

(2.20)
∂t(u− k)+ −∆p+ +∇ · ((u− k)+ V ) + k ∇ · V Sign+

0 (u− k)

≤ f Sign+
0 (u− k) in D′(Q), for any k < 1

and

(2.21)
∂t(u− k)− −∆p− +∇ · ((k − u)+V )− k ∇ · V Sign+

0 (k − u)

≤ (u− f)Sign+
0 (k − u) in D′(Q) for any k > −1

Remark 4. See here that our entropic inequalities (2.20) and (2.21) are local and do not proceed
up to the boundary like in [20]. Indeed, in contrast of Carillo’s approach, we are intending here to
handle the boundary condition separately. In particular, as we’ll see this would reduce the technicality
of de-doubling variables process (see Proposition 2.2).

Proof of Lemma 2.3. Let us consider

βε(r) = H̃ε(r − k), for any r ∈ IR,
where

H̃ε(r) =


1

2ε
r+2 for r ≤ ε

r − ε

2
elsewhere .

In this case, β′ε(1) = H+
ε (1) = 1, for any 0 < ε ≤ ε0 (small enough), and we have

β′ε(u) = H+
ε (u− k)→ Sign+

0 (u− k), as ε→ 0.

For any k < 1, since
Sign+

0 (u− k) χ[p=0] + Sign+
0 (p) = Sign+

0 (u− k),

letting ε→ 0, in (2.3) where we replace β by H̃ε, we get

∂t(u− k)+ −∆p+ + V · ∇(u− k)+ + u∇ · V Sign+
0 (u− k)

≤ f Sign+
0 (u− k) in D′(Q),

which implies (2.20).
For the second part of the Lemma, we use again the fact that see that (ũ := −u, p̃ := −p) is a weak
solution of (1.5) with f replaced by f̃ := −f. So, using (2.20) for (ũ, p̃) with f̃ , for any k < 1, we have

−∆p̃+ +∇ · ((ũ− k)+V ) + k ∇ · V Sign+
0 (ũ− k)

≤ (f̃ − ũ)Sign+
0 (ũ− k) in D′(Q)
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Which implies that, for any −1 < s, we have

∂t(s− u)− −∆p− +∇ · ((s− u)+V )− s∇ · V Sign+
0 (s− u)

≤ (u− f)Sign+
0 (s− u) in D′(Q).

Thus the result of the lemma. �

Now, we are able to prove some kind of ”local” Kato’s inequality which mold our L1−approach for
the uniqueness.

Proposition 2.2 (Kato’s inequality). If (u1, p1) and (u2, p2) are two couples of L∞(Q) ×
L2
(
0, T ;H1

D(Ω)
)
satisfying (2.20) and (2.21) corresponding to f1 ∈ L1(Q) and f2 ∈ L1(Q) respec-

tively, then there exists κ ∈ L∞(Q), such that κ ∈ Sign+(u1 − u2) a.e. in Q and

(2.22) ∂t(u1 − u2)+ −∆(p+
1 + p−2 ) +∇ ·

(
(u1 − u2)+ V

)
≤ κ(f1 − f2) in D′(Q).

Proof. The proof of this lemma is based on doubling and de-doubling variable techniques. Let us give
here briefly the arguments. To double the variables, we fix τ > 0, and since u1(s, y) − τ < 1, we use
the fact that (u1, p1) satisfies (2.20) with k = u1(s, y)− τ, we have

d

dt

∫
(u1(t, x)− u2(s, y) + τ)+ ζ +

∫
(∇xp+

1 (t, x)− (u1(t, x)− u2(s, y) + τ)+ V (x) · ∇xζ

+

∫
Ω
∇x · V u2(s, y)ζSign+

0 (u1(t, x)− u2(s, y) + τ) ≤
∫
f1(t, x)Sign+

0 (u1(t, x)− u2(s, y) + τ) ζ,

for any 0 ≤ η ∈ D(Ω× Ω). See that
∫
∇yp−2 (s, y) · ∇xζ dx = 0, so that

d

dt

∫
(u1(t, x)− u2(s, y) + τ)+ ζ +

∫
(∇xp+

1 (t, x) +∇yp−2 (t, x)) · ∇xζ −
∫

(u1(t, x)− u2(s, y) + τ)+ V (x) · ∇xζ

+

∫
∇x · V u2(s, y) ζ Sign+

0 (u1(t, x)− u2(s, y) + τ) ≤
∫
f1(t, x)Sign+

0 (u1(t, x)− u2(s, y) + τ) ζ.

Denoting by

u(t, s, x, y) = u1(t, x)− u2(s, y) + τ, and p(t, s, x, y) = p+
1 (t, x) + p−2 (s, y),

and integrating with respect to y, we obtain

d

dt

∫
u(t, s, x, y)+ ζ +

∫ ∫
(∇x +∇y)p(t, s, x, y) · ∇xζ −

∫ ∫
u(t, s, x, y)+ V (x) · ∇xζ

+

∫ ∫
∇x · V u2(s, y) ζ Sign+

0 u(t, s, x, y) ≤
∫ ∫

f1(t, x)Sign+
0 u(t, s, x, y) ζ.

On the other hand, since u1(t, x) + τ > −1, using the fact that (u2, p2) satisfies (2.21) with k =
u1(t, x) + τ, we have

d

ds

∫
u(t, s, x, y)+ ζ +

∫
(∇yp−2 (s, y)− u(t, s, x, y)+ V (y) · ∇yζ

−
∫

Ω
∇y · V u1(t, x)ζSign+

0 (u(t, s, x, y)) ≤ −
∫
f2(s, y)Sign+

0 (u(t, s, x, y)) ζ.
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Working in the same way, we get

d

ds

∫
u(t, s, x, y)+ ζ +

∫ ∫
(∇x +∇y)p(t, s, x, y) · ∇yζ −

∫ ∫
u(t, s, x, y)+ V (y) · ∇yζ

−
∫ ∫
∇y · V (y) u1(t, x) ζ Sign+

0 (u(t, s, x, y)) ≤ −
∫ ∫

f2(s, y)Sign+
0 (u(t, s, x, y)) ζ.

Adding both inequalities, we obtain

(2.23)

(
d

dt
+

d

ds

)∫ ∫
u(t, s, x, y)+ ζ +

∫ ∫
(∇x +∇y)p(t, s, x, y) · (∇x +∇y)ζ

−
∫ ∫

u(t, s, x, y)+ (V (x) · ∇xζ + V (y) · ∇yζ)

+

∫ ∫
(∇x · V (x) u2(s, y)−∇y · V (y) u1(t, x)) ζ Sign+

0 (u(t, s, x, y))

≤
∫ ∫

(f1(t, x)− f2(s, y))Sign+
0 (u(t, s, x, y)) ζ.

Now, we can de-double the variables t and s, as well as x and y, by taking as usual the sequence of
test functions

ψε(t, s) = ψ

(
t+ s

2

)
ρε

(
t− s

2

)
and ζλ(x, y) = ξ

(
x+ y

2

)
δλ

(
x− y

2

)
,

for any t, s ∈ (0, T ) and x, y ∈ Ω. Here ξ ∈ D(Ω), ψ ∈ D(0, T ), ρε and δλ are sequences of usual
mollifiers in IR and IRN respectively. See that(

d

dt
+

d

ds

)
ψε(t, s) = ρε

(
t− s

2

)
ψ̇

(
t+ s

2

)
and

(∇x +∇y)ζλ(x, y) = δλ

(
x− y

2

)
∇ξ
(
x+ y

2

)
Moreover, for any h ∈ L1((0, T )2 × Ω2) and Φ ∈ L1((0, T )2 × Ω2)N , it is not difficult to prove that

• lim
λ→0

lim
ε→0

∫ T

0

∫ T

0

∫
Ω

∫
Ω
h(t, s, x, y) ζλ(x, y) ρε(t, s) =

∫ T

0

∫
Ω
h(t, t, x, x) ξ(x) ψ(t).

• lim
λ→0

lim
ε→0

∫ T

0

∫ T

0

∫
Ω

∫
Ω
h(t, s, x, y) ζλ(x, y)

(
d

dt
+

d

ds

)
ρε(t, s) =

∫ T

0

∫
Ω
h(t, t, x, x) ξ(x) ψ̇(t).

• lim
λ→0

lim
ε→0

∫ T

0

∫
Ω

∫
Ω

Φ(t, s, x, y) · (∇x +∇y)ζλ(x, y) ρε(t, s) =

∫ T

0

∫
Ω

Φ(t, t, x, x) · ∇ξ(x) ψ(t) dtdx.

So replacing ζ in (2.23) by ζλ, testing with ψε and, letting ε→ 0 and λ→ 0, we get

−
∫ T

0

∫
Ω

{
(u1 − u2)+ ξ ψ̇ +∇(p+

1 + p−2 ) · ∇ξ ψ − (u1 − u2 + τ)+ (V · ∇ξ +∇ · V ξ )ψ
}

≤
∫ T

0

∫
Ω
κτ (x)(f1 − f2) ξ ψ + lim

λ→0

∫ T

0

∫
Ω

∫
Ω
u(t, t, x, y)+ (V (x)− V (y)) · ∇yζ ψ,

where κτ ∈ L∞(Q) is such that κ ∈ Sign+(u1 − u2 + τ) a.e. in Q. Notice here that the emergence of
κτ follows from the L1−compactness of the term u and the L∞ − weak∗ compactness of Sign+

0 (u), as
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well as the monotonicity of the graph Sign+. Thus

(2.24)

d

dt

∫
(u1 − u2 + τ)+ ξ +

∫
∇(p+

1 + p−2 ) · ∇ξ −
∫

(u1 − u2 + τ)+ (V · ∇ξ +∇ · V ξ)

≤
∫
κ(x)(f1 − f2) ξ + lim

λ→0

∫
Ω

∫
Ω
u(t, t, x, y)+ (V (x)− V (y)) · ∇yζ.

To pass to the limit in the last term corresponding to the vector filed V, we use moreover the technical
result of Lemma 6.8 (cf. Appendix) which is more or less well known. We put back its proof in the
Appendix. This implies that

d

dt

∫
(u1(t, x)− u2(t, x) + τ)+ ξ dx+

∫
∇(p+

1 + p−2 ) · ∇ξ dx

−
∫

(u1 − u2 + τ)+ V · ∇ξ dx ≤
∫
κτ (f1 − f2) ξ dx.

Letting then τ → 0, and using again the fact that κτ → κ weakly to L∞(Q), with κ ∈ Sign+(u1− u2),
a.e. in Q, the result of the proposition follows. �

The aim now is to process with the sequence of test function ξh given by (1.1) in Kato’s inequality
and let h→ 0, to cover (2.1).

Lemma 2.4. Under the assumption (1.3), if (u, p) is a weak solution of (1.5), then for any 0 ≤ ψ ∈
D(0, T ), we have

lim inf
h→0

∫ T

0

∫
Ω
∇p± · ∇ξh ψ(t) dtdx ≥ 0.

Proof : Using (2.5), we see that, for any 0 ≤ ψ ∈ D(0, T ) we have∫ T

0

∫
Ω
∇p+ · ∇ξh ψ dtdx = −

∫ T

0

∫
Ω
∇p+ · ∇(1− ξh) ψ dtdx

≥
∫ T

0

∫
Ω

(∇ · V − f)(1− ξh)Sign+
0 (p) ψ dtdx

Then, letting h → 0 and using the fact that ξh → 1 in L∞(Ω) − weak∗, we deduce that

lim inf
h→0

∫ T

0

∫
Ω
∇p+(t) · ∇ξh ψ dtdx ≥ 0. The proof for p− follows in a similar way by using (2.6).

�

Lemma 2.5. If (u1, p1) and (u2, p2) are two couples of L∞(Q) × L2
(
0, T ;H1

D(Ω)
)
satisfying (2.20)

and (2.21) corresponding to f1 ∈ L1(Q) and f2 ∈ L1(Q) respectively, then there exists κ ∈ L∞(Q),
such that κ ∈ Sign+(u1 − u2) a.e. in Q and (2.1) is fulfilled.

Proof. See that

d

dt

∫
Ω

(u1 − u2)+ dx−
∫
κ(f1 − f2) = lim

h→0

d

dt

∫
Ω

(u1 − u2)+ ξh dx−
∫
κ(f1 − f2)ξh dx

=: I(h).
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Taking ξh as a test function in (2.22), we have

I(h) ≤ −
∫ (
∇(p+

1 + p−2 )− (u1 − u2)+ V
)
· ∇ξh dx.

Using Lemma 2.4, this implies that

lim
h→0

I(h) ≤ lim
h→0

∫
(u1 − u2)+ V · ν(x) dx

≤ 0

where we use the ingoing velocity vector field assumption (1.3). Thus (2.1). �

Proof of Theorem 2.1. It clear that the first part follows by Lemma 2.5. The rest of the theorem is a
straightforward consequence of (2.1). �

3. Existence for the evolution problem

Our main result here concerns existence of a solution.

Theorem 3.2. For any f ∈ L2(Q) and u0 ∈ L∞(Ω) be such that |u0| ≤ 1 a.e. in Ω, the problem (1.5)
has a unique weak solution (u, p) such that u ∈ C([0, T ), L1(Ω)) and u(0) = u0. Moreover, the solution
satisfies all the properties of Theorem 2.1.

Thanks to Theorem 3.2 and Theorem 2.1, we have the following practical particular results.

Corollary 3.1. Let f ∈ L2(Q), u0 ∈ L∞(Ω) be such that |u0| ≤ 1 a.e. in Ω, and u be the unique weak
solution of the problem (1.5).

(1) If u0 ≥ 0 and f ≥ 0, then (u, p) is the unique weak solution of the one phase problem

∂u

∂t
−∆p+∇ · (u V ) = f

0 ≤ u ≤ 1, p ≥ 0, p(u− 1) = 0

}
in Q

p = 0 on ΣD

(∇p+ u V ) · ν = 0 on ΣN

u(0) = u0 in Ω,

in the sense of Definition 1.1.
(2) For each n = 1, 2, ...., let fn ∈ L2(Q), u0n ∈ L∞(Ω) be such that |u0n| ≤ 1 a.e. in Ω, and un be

the unique weak solution of the corresponding problem (1.5). If u0n → u0 in L1(Ω) and fn → f
in L1(Q), then un → u, in C([0, T ), L1(Ω)), pn → p, in L2(0, T ;H1

D(Ω)) − weak, and (u, p) is
the solution corresponding to u0 and f.

To study the existence, we process in the framework of nonlinear semigroup theory in L1(Ω). In
connection with the Euler implicit discretization scheme of the evolution problem (1.5), we consider
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the following stationary problem :

(3.1)



u−∆p+∇ · (u V ) = f
u ∈ Sign(p)

}
in Ω

p = 0 on ΓD

(∇p+ u V ) · η = 0 on ΓN ,

where f ∈ L2(Ω) and λ > 0 are given. A couple (u, p) ∈ L∞(Ω) ×H1
D(Ω) satisfying u ∈ Sign(p) a.e.

in Ω, is said to be a weak solution of (3.1) if∫
Ω
u ξ +

∫
Ω
∇p · ∇ξ −

∫
Ω
u V · ∇ξ =

∫
Ω
f ξ, ∀ ξ ∈ H1

D(Ω).

As for the evolution problem, we’ll say simply that u is a solution of (3.1) if there exists p such that
the couple (u, p) is a weak solution of (3.1).

As a consequence of Theorem 2.1, we can deduce the following result.

Corollary 3.2. If u1 and u2 are two solutions of (3.1) associated with f1, f2 ∈ L1(Ω), respectively,
then ∫

(u1 − u2)+ ≤
∫

(f1 − f2)+.

In particular, we have
‖u1 − u2‖1 ≤ ‖f1 − f2‖1

and, if f1 ≤ f2, a.e. in Ω, then
u1 ≤ u2, a.e. in Ω.

Proof. This is a simple consequence of the fact that if (u, p) is a solution of (3.1), then it is a solution
of (1.5) with f replaced by f − u. �

For the existence, we consider the regularized problem

(3.2)



u−∆p+∇ · (u V ) = f
u = Hε(p)

}
in Ω

p = 0 on ΓD

(∇p+ u V ) · η = 0 on ΓN ,

for an arbitrary for any ε > 0. See that for any ε > 0, |Hε| ≤ 1, Hε is Lipschitz continuous and satisfies

(I +Hε)−1(r)→ (I + Sign)−1(r), as ε→ 0, for any r ∈ IR.

That is Hε converges to Sign in the sense of resolvent, which is equivalent to the convergence in the
sens of graph (cf. [18]).
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Proposition 3.3. For any f ∈ L2(Ω) and ε > 0, the problem (3.2) has a weak solution (uε, pε) in the
sense that pε ∈ H1

D(Ω), uε = Hε(pε) a.e. in Ω and

(3.3)
∫
uε ξ dx+

∫
∇pε · ∇ξ dx−

∫
uε V · ∇ξ dx =

∫
f ξ dx, for any ξ ∈ H1

D(Ω).

Moreover, as ε→ 0, we have

(3.4) Hε(pε)→ u in L∞(Ω)− weak∗,

pε → p in H1
D(Ω)− weak

and (u, p) is the weak solution of (3.1).

Proof. The existence of a solution for (3.2) is standard. For completeness we give the arguments. Let
us denote by H1

D(Ω)∗ the topological dual space of H1
D(Ω) and 〈., .〉 the associate dual bracket. See

that the operator Aε : H1
D(Ω)→ H1

D(Ω)∗, given by

〈Aεp, ξ〉 =

∫
Hε(p) ξ dx+

∫
∇p · ∇ξ dx−

∫
Hε(p) V · ∇ξ dx, ∀ ξ ∈ H1

D(Ω),

is bounded and weakly continuous. Moreover, Aε is coercive. Indeed, for any u ∈ H1
D(Ω), we have

〈Aεp, p〉 =

∫
Hε(p) p dx+

∫
|∇p|2 dx−

∫
Hε(p) V · ∇p dx

≥
∫
|∇p|2 dx−

∫
|V · ∇p| dx

≥ 1

2

∫
|∇p|2 dx− 1

2

∫
|V |2 dx,

where we use Young inequality. So, for any f ∈ H1
D(Ω)∗ the problem Aεp = f has a solution pε ∈

H1
D(Ω). To let ε→ 0, we see that

(3.9)
∫
|∇pε|2 dx ≤ C(N,Ω)

(∫
|V |2 dx+

∫
|f |2 dx

)
.

Indeed, taking pε as a test function we have∫
uε pε dx+

∫
|∇pε|2 dx =

∫
uε V · ∇pε dx+

∫
f pε dx.

See that using Young inequality we have∫
uε V · ∇pε dx ≤

3

4

∫
|V |2 +

1

3

∫
|∇pε|2 dx

and, by combining Pincaré inequality with Young inequality we have∫
f pε dx ≤ C(N,Ω)

∫
|f |2 +

1

3

∫
|∇pε|2 dx.

Using the fact that uε pε ≥ 0, we deduce (3.9). Now, it is clear that the sequences pε and uε = Hε(pε)
are bounded respectively in H1

D(Ω) and in L∞(Ω). So, there exists a subsequence that we denote again
by pε such that (3.4) and (3.12) are fulfilled. In particular, this implies that u ∈ Sign(p), a.e. and
letting ε→ 0 in (3.3), we obtain that (u, p) is a weak solution of (3.1). �
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To prove the existence, of a weak solution to (1.5), we fix f ∈ L2(Q), and for an arbitrary 0 < ε ≤ ε0,
and n ∈ IN∗ be such that (n+ 1)ε = T, we consider the sequence of (ui, pi) given by the the ε−Euler
implicit schema associated with (1.5) :

(3.10)



ui+1 − ε∆pi+1 + ε∇ · (ui+1 V ) = ui + ε fi
ui+1 ∈ Sign(pi+1)

}
in Ω

pi+1 = 0 on ΓD

(∇pi+1 + ui+1 V ) · η = 0 on ΓN ,

i = 0, 1, ...n− 1,

where, for each i = 0, ...n− 1, fi is given by

fi =
1

ε

∫ (i+1)ε

iε
f(s) ds, a.e. in Ω.

Now, for a given ε−time discretization 0 = t0 < t1 < t1 < ... < tn < tn+1 = T, satisfying ti+1 − ti = ε,
we define the ε−approximate solution by

uε :=
n−1∑
i=0

uiχ[ti,ti+1), and pε :=
n−1∑
i=1

piχ[ti,ti+1).

Thanks to Proposition 3.3 and the general theory of evolution problem governed by accretive operator
(see for instance [12, 11]), we define the operator A in L1(Ω), by µ ∈ A(z) if and only if µ, z ∈ L1(Ω)
and z is a solution of the problem



−∆p+∇ · (z V ) = µ
z ∈ Sign(p)

}
in Ω

p = 0 on ΓD

(∇p+ u V ) · η = 0 on ΓN ,

in the sens that z ∈ L∞(Ω), there exists p ∈ H1
D(Ω) satisfying z ∈ Sign(p) a.e. in Ω and∫

Ω
∇p · ∇ξ −

∫
Ω
z V · ∇ξ =

∫
Ω
µ ξ, ∀ ξ ∈ H1

D(Ω).

As a consequence of Corollary 3.2, we know that the operator A is accretive in L1(Ω). So, thanks
to the general theory of nonlinear semigroup governed by accretive operator, we know that, as ε→ 0,

(3.11) uε → u, in C([0, T ), L1(Ω),

and u is the so called ”mild solution” of the evolution problem ut +Au 3 f in (0, T )

u(0) = u0.

To accomplish the proof of existence for the problem (1.5), we prove that the mild solution u is in
fact the solution of (1.5). To this aim, we use the limit of the sequence pε given by the ε−approximate
solution.
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Lemma 3.6. As ε→ 0,

(3.12) pε → p, in L2(0, T ;H1
D(Ω))

and (u, p) is a weak solution of (1.5).

Proof. Thanks to Proposition 3, the sequence (ui, pi)i=1,...n given by (3.10) is well defined in L∞(Ω)×
H1
D(Ω) and satisfies ui ∈ Sign(pi) and

(3.13)
∫

Ω
ui+1 ξ + ε

∫
Ω
∇pi+1 · ∇ξ − ε

∫
Ω
ui+1 V · ∇ξ = ε

∫
Ω
fi ξ, for any ξ ∈ H1

D(Ω).

Taking pi+1 as a test function in (3.13), working as for the proof of (3.9) and using the fact that
(ui+1 − ui)pi+1 ≥ 0, we get∫

|∇pi|2 dx ≤ C(N,Ω)

(∫
|V |2 dx+

∫
|fi|2 dx

)
.

Thus ∫
|∇pε|2 dx ≤ C(N,Ω)

(∫
|V |2 dx+

∫
|fε|2 dx

)
,

where fε =
n−1∑
i=0

fiχ[ti,ti+1), in Q. This implies that pε is bounded in L∞(0, T ;H1
D(Ω)), and that there

exists p ∈ L∞(0, T ;H1
D(Ω)) such that, taking a subsequence if necessary,

pε → p, in L2(0, T ;H1
D(Ω))− weak.

Combining this with (3.11), we deduce moreover that u ∈ Sign(p), a.e. in Q. Now, as usually used
with nonlinear semigroup theory for evolution problem, we consider

ũε =

n−1∑
i=0

(t− ti)ui+1 − (t− ti+1)ui
ε

χ[ti,ti+1),

which converges to u as well in C([0, T );L1(Ω)). We see that for any test function ξ ∈ H1
D(Ω), we have

d

dt

∫
Ω
ũε ξ +

∫
Ω

(∇pε − uε V ) · ∇ξ =

∫
Ω
fε ξ, in D′([0, T )).

So, letting ε→ 0, and using the convergence of (ũε, uε, pε, fε) to (u, u, p, f), we deduce that (u, p) is a
weak solution of (1.5).

�

4. Reaction-diffusion case

In this section we consider the general case with a reaction term :

(4.1)



∂u

∂t
−∆p+∇ · (u V ) = g(., u)

u ∈ Sign(p)

}
in Q

p = 0 on ΣD

(∇p+ u V ) · ν = 0 on ΣN

u(0) = u0 in Ω,
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where g : Q × IR → IR is a Caratheodory function ; i.e. continuous in r ∈ IR and measurable in
(t, x) ∈ Q. We assume that g satisfies moreover, the following assumptions :

(G1) g+(.,−1) ∈ L2(Q) and g−(., 1) ∈ L2(Q)
(G2) There exists 0 ≤ R ∈ L2(0, T ), s.t. for any a, b ∈ [−1,+1], we have

Sign+
0 (b− a) (g(t, x, b)− g(t, x, a)) ≤ R(t) (b− a)+, for a.e. (t, x) ∈ Q.

On sees in particular that (G2) implies

(4.2) −g−(., 1)−R (1− r) ≤ g(., r) ≤ g+(.,−1) +R (1 + r), for any r ∈ [−1,+1],

so that g(., r) ∈ L2(Q), for any r ∈ [−1,+1].

Remark 5. See that the condition (G2) is fulfilled for instance whenever

∂g

∂r
(t, x, .) ≤ θ in D′([−1, 1]]), for a.a. (t, x) ∈ Q with 0 ≤ θ ∈ C([−1, 1]),

In this case R = max
−1≤r≤1

θ(r).

Theorem 4.3. Under the assumption (G1) and (G2), for any u0 ∈ L∞(Ω) such that |u0| ≤ 1, a.e. in
Ω, the problem (4.1) has a unique weak solution (u, p) in the sense of Definition 1.1 with f = g(., u).
Moreover,

(P1) for any ω1, ω2 ∈W 1,1(0, T ) such that u0 ≤ ω2(0) (resp. ω1(0) ≤ u0) and, for any t ∈ (0, T ),

(4.3) ω̇2(t) + ω2(t)∇ · V ≥ g(., ω2(t)) a.e. in Ω

and

(4.4) (rep. ω̇1(t) + ω1(t)∇ · V ≤ g(., ω1(t)) a.e. in Ω),

we have

u ≤ ω2 (resp. ω1 ≤ u) a.e. in Q.

(P2) If g satisfies moreover

(G3) ∇ · V ≥ g(., 1), a.e. in Q and (G4) ∇ · V ≤ g(.,−1), a.e. in Q,

then p ≡ 0, and u is given by the unique solution of the reaction-transport equation

(4.5)


∂u

∂t
+∇ · (u V ) = g(t, x, u)

|u| ≤ 1

}
in Q

u V · ν = 0 on ΣN

u(0) = u0 in Ω,

in the sense that u ∈ C([0, T ), L1(Ω)), |u| ≤ 1 a.e. in Q and

(4.6)
d

dt

∫
Ω
u ξ −

∫
Ω
u V · ∇ξ =

∫
Ω
g(., u) ξ, in D′(0, T ), ∀ ξ ∈ H1

D(Ω).
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Corollary 4.3. Under the assumptions of Theorem 4.3, assume moreover that 0 ≤ u0 ≤ 1 a.e. in Ω
and

(G5) 0 ≤ g(., 0) a.e. in Q.

then

p ≥ 0 and 0 ≤ u ≤ 1, a.e. in Q.

If, moreover, g satisfies (G3), then the unique solution u is nonnegative and is given by (4.5).

Remark 6. See that (G3) and (G4) constitute sufficient conditions to lessen the so called congestion
phenomena in the transport process. This is an interesting property for the applications in crowed
motion modeling. Indeed, heuristically the reaction term g(t, x, 1) is connected to the reaction of the
population at the position x ∈ Ω and time t, in a ”congested” circumstance. Performing its value
regarding to the divergence of the velocity vector field V, may avoid the congestion in the transportation
phenomena for crowed motion.

To prove Theorem 4.3, we use the following lemma which is a direct consequence of Lemma 1 of
[14].

Lemma 4.7. Let A be an accretive operator in L1(Ω); such that the closure A is m-accretive in L1(Ω)
(i.e. R(I + λA) = L1(Ω), for any λ > 0), u0 ∈ D(A) and F : (0, T )×D(A)→ L1(Ω) satisfying :

i) F is Caratheodory, i.e. t→ F (t, z) is measurable for any x ∈ D(A), z → F (t, z) is continuous
for a.a. t ∈ (0, T )

ii) There exists k ∈ L1
loc(0, T ) such that∫

(F (t, z)− F (t, ẑ)) Sign0(z − ẑ) dx ≤ k(t) ‖z − ẑ‖1, a.e. t ∈ (0, T ),

for every z, ẑ ∈ D(A).
iii) There exists c ∈ L1

loc(0, T ) such that

‖F (t, z)‖1 ≤ c(t), a.e. t ∈ (0, T )

for every z ∈ D(A).

Then, there exists a unique u ∈ C([0, T );X) such that u is the mild solution of
du

dt
+Au 3 f in (0, T )

u(0) = u0,

with f(t) = F (t, u(t)) a.e. t ∈ (0, T ).

Notice that, by the assumptions of Lemma 4.7, F (., u) ∈ L1
loc(0, T ;L1(Ω)) for any u ∈

C([0, T );L1(Ω)). The results of this lemma is well known in the case where F (t, r) = f(t) + F0(r),
with f(t) ∈ L1(Ω), for a.e. t ∈ [0, T ), and F0 a Lipschitz continuous function in IR (since then
A− F0 + kI is m-accretive in L1(Ω)). For the general case, one can see Lemma 1 of the paper [14] for
the proof.
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Proof of Theorem 4.3. Set F : [0, T )× L1(Ω)→ L1(Ω) defined by

F (t, z(.)) = g(t, ., z(.)) a.e. in Ω, for any (t, z) ∈ [0, T )× L1(Ω).

See that F satisfies all the assumptions of Lemma 4.7. In particular, k(t) = R(t). Then, we consider
u ∈ C([0, T ), L1(Ω)) the mild solution of the evolution problem ut +Au 3 f in (0, T )

u(0) = u0,

with f = g(., u). Thanks to (4.2), it is clear that f ∈ L2(Q). Moreover, using Lemma 3.6, there exists
p such that (u, p) is a weak solution of (4.1). The uniqueness follows from the equivalence between
weak solution and mild solution as well as the uniqueness result of Theorem 2.1. Now let us prove the
properties (P1) and (P2).

(P1) Thanks to the L1−comparison principal of Theorem 2.1, and using the fact that (ω2, 0) is a
weak solution of (1.5) with f = ω̇2 + ω2∇ · V , we see that

d

dt

∫
(u− ω2)+ ≤

∫
[u≥ω2]

(g(., u)− ω̇2 − ω2∇ · V )

≤
∫

[u≥ω2]
(g(., u)− g(., ω2))+

≤ R
∫

(u(t)− ω2)+.

Applying Gronwall and using the fact that u(0) ≤ ω2(0), we obtain u(t) ≤ ω2 a.e. in Q. The
proof of u ≥ ω1 in Q follows in the same way by proving that

d

dt

∫
(ω1 − u)+ ≤ R

∫
(ω1 − u)+.

(P2) To prove this assertion, it is enough to prove that the problem (4.5) has a solution in the sense
of (4.6). Then the conclusion follows by the uniqueness of the solution for (4.1). To this aim,
we proceed by using the existence result as well as the comparison principle of the first part of
the theorem. For an arbitrary α > 0, we consider the reaction term gα given by

gα(., r) = α g(., r/α), a.e. in Q, for any r ∈ IR.

It is clear that gα satisfies all the assumptions of Theorem 4.3. So, we can consider (vα, pα) be
a weak solution of

∂vα
∂t
−∆pα +∇ · (vα V ) = gα(., vα)

ṽα ∈ Sign(pα)

}
in Q

pα = 0 on ΣD

(∇pα + vα V ) · ν = 0 on ΣN

vα(0) = α u0 in Ω.

On the other hand, thanks to (4.3), we see that

∂tα+ α∇ · V ≥ gα(., α), in Q.
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Since vα(0) ≤ α, the assertion (P1) of the theorem implies that vα ≤ α a.e. in Q. In a similar
way, we can prove using (4.4), that vα ≥ −α a.e. in Q. So, under the assumptions (4.3)- (4.4),
we have

|vα| ≤ α, a.e. in Q.
In particular, taking 0 < α < 1 arbitrary, this implies that pα ≡ 0 and vα is in fact a solution
of 

∂vα
∂t

+∇ · (vα V ) = gα(t, x, vα)

|vα| ≤ α

}
in Q

vα V · ν = 0 on ΣN

vα(0) = α u0 in Ω.

Thus, taking u = vα/α, we generate the solution of (4.5) as claimed.
�

5. Extension, comments and remarks

(1) Notice here that in our case, the entropic inequalities (2.20) and (2.21) are local and do not
proceed up to the boundary like in [20]. For the case where ΓN = ∅, we do believe that one
can combined our notion of renormalized solution with the entropic inequality à la Carillo [20]
to handle into the entropic formulations the boundary condition p = 0 on ∂Ω. Even more, we
think also that in this case one can avoid the incoming condition of V on the boundary. Indeed,
one sees that (2.3) and (2.4) holds to be true without any condition on V · ν on the boundary.
Using these formulation one can prove that weak solutions satisfy entropic inequality à la Carillo
covering the boundary condition p = 0. Then, using doubling and de-doubling variables in the
manner of [20] one can prove the L1−comparison principle for two weak solutions. Nevertheless,
we assess that the problem would heighten in technicality.

(2) Thanks to the proof of Proposition 2.1, one sees that we can work with ξ ∈ H1
D(Ω), so that

any weak solution (u, p) satisfies

d

dt

∫
β(u) ξ dx+

∫
∇p+ · ∇ξ dx+ 〈V · ∇β(u)), ξ〉+

∫
(u∇ · V (β′(u) χ[p=0] + Sign+

0 (p)) ξ dx

≤
∫
f (β′(u) χ[p=0] + Sign+

0 (p)) ξ dx in D′(0, T ),

and

d

dt

∫
β(u) ξ dx+

∫
∇p− · ∇ξ dx+ 〈V · ∇β(u)), ξ〉+

∫
(u∇ · V (β′(u) χ[p=0] − Sign−0 (p)) ξ dx

≤
∫
f (β′(u) χ[p=0] − Sign−0 (p)) ξ dx in D′(0, T ),

for any 0 ≤ ξ ∈ H1
D(Ω) and β ∈ C1(IR) such that 0 ≤ β′ ≤ 1. In particular, for the case of

Neuman boundary condition ; i.e. ΓD = ∅, these formulations implies that entropic inequalities
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(2.20) and (2.21) hold to be true up to the boundary ∂Ω. That is (2.20) and (2.21) are fulfilled
in D′((0, T ) × Ω)). However, to de-double the variable by taking into account the boundary
becomes unhandy since one needs to handle the trace on the boundary in a strong sense
which is not guaranteed in general (one can see for instance [6] where this kind of approach is
developed for elliptic-parabolic equation with homogeneous boundary condition). By the way,
let us mention here that this case is fruitful for gradient flow approach in euclidean Wasserstein
space. An elegant and promising proof of uniqueness is given in [27] for the one phase problem
under a monotonicity assumption on V. The strength of this approach is the absolute continuity
of weak solution in the set of probability equipped with Wasserstein distance.

(3) For the case where Ω = IRN , one sees that working as in Section 2, it is possible to prove local
Kato’s inequality of the type (2.22) and achieve L1−comparison principle for weak solution like
in Theorem (2.1). However, the existence of weak solutions in L1(IRN ) is not clear yet for us.

(4) Beyond their significant role for the uniqueness, in our opinion formulations (2.3) and (2.4)
remain to be interesting also for qualitative descriptions of the weak solution. As usual for
renormalized formulation, they enable to localize the description of the solution with respect
to its values. For similar description with respect to the values of p, one can see the following
remarks which aims to widen the formulations (2.5) and (2.6).

(5) The renormalization process we use in this paper concerns essentially u. The formulation (2.5)
and (2.6) provide a particular renormalization for p in the region [p 6= 0]. Notice here, that
it is possible to prove mended renormalized formulations for p. As a matter of fact, under
the assumptions of Lemma 2.1, we can prove that for any H ∈ C1(IR) such that H ′ ≥ 0 and
H(0) = 0, we have

(5.10) −∇ · (H(p)∇p) + |H(p)| ∇ · V = −H ′(p) |∇p|2 + f H(p) in D′(Q).

If moreover, H ≥ 0, then

(5.11) −∇ · (H(p)∇p) + |H(p)| ∇ · V ≤ −H ′(p) |∇p|2 + f H(p) in D′((0, T )× Ω).

These formulations improve the description of p with respect to the values of p, and yield
renormalized formulations for p. As we see in Section 2, the case whereH approximates Sign+

0 is
crucial for the proof of uniqueness. The general case may serve out other qualitative description
of the solution. The proof of (5.10) and (5.11) follows more or less similar arguments as for the
proof Lemma 2.1.

(6) Coming back to the approximation (3.2), thanks to Proposition 3.3, we know that weak so-
lutions of the stationary problem of (3.2) depends weak-continuously on the non-linearity Hε.
For the evolution problem, working as in the proof of Proposition 3.3, one can prove that the
problem 

∂u

∂t
−∆p+∇ · (u V ) = f

u = Hε(p)

}
in Q

p = 0 on ΣD

(∇p+ u V ) · ν = 0 on ΣN

u(0) = u0 in Ω,
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has a unique weak solution (uε, pε) ∈ C([0, T ), L1(Ω))×L2(0, T ;H1
D(Ω)), with uε = Hε(pε) a.e.

in Q, and as ε → 0, we have uε → u, in L∞(Q) − weak∗ and pε → p, in L2(0, T ;H1
D(Ω)). We

do believe that the convergence of uε remains to be true strongly in L1(Ω), for both problems
stationary and evolution one. We did not get into these further questions here. This need
more fine estimates on u (like BV−estimates). We’ll touch them in forthcoming works. The
case where one replace Hε by an arbitrary non-linearity which converges to Sign, in the sense
of resolvent, like for instance the porous medium non-linearity ϕ(r) = |r|m−1r, for any r ∈ IR,
with m→∞, is likely concerned.

(7) It is clear that our approach is based on a renormalization process à la DiPerna-Lions. This
corroborates that this concept is still fruitful for the uniqueness of weak solution (solution in
the sense of distribution) for nonlinear versions of Fokker-Planck equation of the type (1.1). As
we quote in the previous remarks, operating with the absolute continuity of weak solution in
the set of probability equipped with Wasserstein distance seems to be promising (cf. [27]) even
if it is actually hampered by conceptual technical assumptions like the sign of the solution,
conservation of the mass and monotone transport field (connected to some kind of convexity
conditions). We do not overlook the L1−kinetic approach, which was developed in [22] for
Cauchy problems of general degenerate parabolic-hyperbolic equations with non-isotropic non-
linearity. The approach could be applied to more general situations and, as far as we know,
this approach has not yet been explored for problems of the type (1.1) and (1.2). At last let us
quote here the very recent work of [25] (that we have just learned through Benoit Perthame)
where the authors deal among other questions with the uniqueness of weak solutions for the
one phase problem (1.2) in IRN , by means of Hilbert’s duality method. This method turns up
to be very restrictive since they need the vector filed V = ∇Φ to be smooth enough (at least
such that ∇∆Φ is a L12/5

loc −Lebesgue function).
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6. Appendix

The aim of this section is to complete the proof of Proposition 2.2 with the proof of de-doubling
variable process concerning the vector field part of (2.24), which is

lim
λ→0

∫
Ω

∫
Ω
u(t, t, x, y)+ (V (x)− V (y)) · ∇yζλ dxdy.

Remember that

ζλ(x, y) = ξ

(
x+ y

2

)
δλ

(
x− y

2

)
,

for any x, y ∈ Ω, where ξ ∈ D(Ω), δλ is a sequence of usual mollifiers in IRN . For instance, take

δλ(x) =
1

λN
δ

(
|x|2

λ2

)
, for any x ∈ IRN

where 0 ≤ δ ∈ D(0, 1) and
1

2N

∫
δ(|z|2) dz = 1. A typical example is given by δ(r) = Ce

−1

1−r2 χ[|r|≤1],

for any r ∈ IRN .
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Lemma 6.8. For any h ∈ L1((0, T )× Ω× Ω), V ∈W 1,1(Ω) and ψ ∈ D(0, T ), we have

lim
λ→0

∫ T

0

∫
Ω

∫
Ω
h(t, x, y) (V (x)− V (y)) · ∇yζλ(x, y) ψ(t) dtdxdy

=

∫ T

0

∫
Ω
h(x, x)∇ · V (x) ξ(x) ψ(t) dtdx.

Proof. We see that

(∇x +∇y)ζ = δλ

(
x− y

2

)
∇ξ
(
x+ y

2

)
.

Since, for any η ∈ IRN ,

∇δλ(η) =
2

λN
z

λ2
δ′
(
|z|2

λ2

)
,

we have

∇δλ
(
x− y

2

)
=

2

λN
x− y
2λ2

δ′

(
|x− y|2

(2λ)2

)
, for any x, y ∈ Ω.

So,

∇yζ(x, y) =
1

2
∇ξ
(
x+ y

2

)
δλ

(
x− y

2

)
− 1

2
ξ

(
x+ y

2

)
∇δλ

(
x− y

2

)

= ∇ξ
(
x+ y

2

)
δλ

(
x− y

2

)
− 1

λN+1
ξ

(
x+ y

2

)
δ′

(
|x− y|2

(2λ)2

)
x− y

2λ

and

(V (x)− V (y)) · ∇yζ =
1

2
(V (x)− V (y)) · ∇ξ

(
x+ y

2

)
δλ

(
x− y

2

)

− 1

λN
ξ

(
x+ y

2

)
δ′

(
|x− y|2

(2λ)2

)
V (x)− V (y)

λ
· x− y

2λ
.

This implies that

lim
λ→0

∫ ∫
h(x, y) (V (x)− V (y)) · ∇yζ dxdy

= lim
λ→0
− 1

λN

∫ ∫
ξ

(
x+ y

2

)
δ′

(
|x− y|2

(2λ)2

)
V (x)− V (y)

λ
· x− y

2λ
dxdy =: I(λ).

Changing the variable by setting

z =
x− y

2λ
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we get x = y + 2λz and dx = (2λ)N dz, so that

−I(λ) = 2N
∫ ∫

h((y + 2λz, y) ξ (y + λz) δ′
(
|z|2
) V (y + 2λz)− V (y)

λ
· z dzdy

= 2N
N∑
i=1

∫ ∫
h((y + 2λz, y) ξ (y + λz) δ′ (|z|) Vi(y + 2λz)− Vi(y)

λ
zi dzdy.

Letting λ→ 0, we get

lim
λ→0

I(λ) = −2N+1
N∑
i=1

∫ ∫
ξ(y) h((y, y)∇Vi(y) · z ziδ′(|z|2) dzdy

= −2N+1
N∑

i,j=1

∫ ∫
ξ(y) h((y, y)

∂Vi(y)

∂yj
zj ziδ

′(|z|2) dzdy

= −2N+1
N∑
i=1

∫ ∫
ξ(y) h((y, y)

∂Vi(y)

∂yj
z2
i δ
′(|z|2) dzdy

= −2N+1

N

∫
ξ(y) h((y, y)∇ · V (y) dy

∫
|z|2 δ′(|z|2) dz,

where we use the fact that (since z ∈ B(0, 1)→ δ(|z|2) is symmetric)∫
zj ziδ

′(|z|2) dz = 0, for any i 6= j

and
N∑
i=1

∫
zi

2δ′(|z|2) dz = N

∫
z1

2δ′(|z|2) dz =

∫
|z|2δ′(|z|2) dz.

At last, we use the fact that

2N+1

N

∫
|z|2 δ′(|z|2) dz = −1.

Indeed, recall that ∫
|z|2 δ′(|z|2) dz =

∫ ∞
0

∫
Sn−1

|rθ|2 δ′(|rθ|2)rn−1dr dsn−1(θ),

where sn−1 is the probability measure defined on the sphere Sn−1 by

sn−1(A) = |{rx : r ∈ [0, 1], x ∈ A}| .
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This implies that ∫
|z|2 δ′(|z|2) dz = |B(0, 1)|

∫ 1

0
r2 δ′(r2)rn−1dr

= |B(0, 1)|
∫ 1

0
δ′(r2)rn+1dr

= −N
2

∫
δ(|z|2) dz.

Thus the result. �
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