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Abstract. — In this article we study the null controllability of some abstract
linear parabolic systems in tensor product spaces. This special structure allows us
to reduce our controllability problem to a particular set of equations that looks
like a moment problem, but that does not fall into the previous existing results of
the literature.

We transform this non standard moment problem into an infinite family of more
usual moment problems, yet coupled one from each other. This reformulation is
done with enough care to ensure that the resulting set of equations can be solved,
with suitable estimates, by using the recent “block moment method”. This is based
on a careful analysis of the spectral structure of the underlying operator.

We notably apply our abstract result to show how strong the influence of geom-
etry can be: we provide an example of boundary controlled parabolic system on a
rectangle domain which is null controllable in arbitrary small time if two perpen-
dicular faces of the boundary are controlled, whereas it is never null controllable if
the control acts on only one face.
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Résumé. — Dans cet article nous étudions la contrôlabilité à zéro d’une classe
de systèmes paraboliques linéaires abstraits dans des produits tensoriels. Cette
structure particulière nous permet de réduire la question de la contrôlabilité à un
ensemble particulier d’équations qui ressemble à un problème de moments, mais
qui ne relève pas des résultats existants de la littérature.

Nous transformons ce problème de moments non standard en une famille infinie
de problèmes de moments usuels, mais couplés entre eux. Cette reformulation est
choisie avec soin pour que le nouveau système obtenu puisse être résolu, avec des
bonnes estimations des solutions, en utilisant la méthode des moments par blocs
développée récemment. Tout ce travail est basé sur une analyse spectrale minutieuse
de l’opérateur sous-jacent.

Nous appliquons notamment ce résultat abstrait pour montrer que la position
du domaine de contrôle pour un problème de contrôle au bord de deux équations
de la chaleur couplées peut être déterminante: nous donnons un exemple explicite
d’un tel système posé sur un domaine rectangulaire en 2D qui est contrôlable à
zéro en tout temps si le contrôle agit sur deux bords perpendiculaires du domaine
mais qui n’est jamais contrôlable à zéro si le contrôle n’agit que sur un seul des
bords du domaine.

1. Introduction

This article is devoted to the study of the controllability properties of
some abstract linear systems of parabolic type. The main difficulty when
dealing with the controllability of systems, as opposed to equations, is to
try to control a system with less controls than equations. It is sometimes
called “indirect controllability”. In the last ten years, drastically different
controllability behaviors from what happens for a single heat equation have
been highlighted: non equivalence between distributed and boundary con-
trollability, non equivalence between null and approximate controllability,
existence of a nonzero minimal control time, etc. In the present article the
emphasis will be especially laid on the role played by the geometry of the
control zone. At the abstract level this will be encoded by a tensor product
structure of the state space and of the associated evolution and control
operators. Before detailing more precisely the current literature on this
subject, we think it is appropriate to discuss a simple prototype of par-
abolic systems that possesses the aforementioned structure and to which
our main result applies.

ANNALES DE L’INSTITUT FOURIER



BOUNDARY NULL-CONTROLLABILITY OF MULTI-D PARABOLIC SYSTEMS 3

1.1. Motivating example

A typical example that will be detailed below is provided by the following
misleadingly simple-looking 2× 2 system:

(1.1)



∂y1

∂t
− d∆y1 = 0, in (0, T )× Ω,

∂y2

∂t
− ∆y2 = y1, in (0, T )× Ω,

y1 = 1γu, y2 = 0,

y1(0) = y0
1 , y2(0) = y0

2 ,

on (0, T )× ∂Ω,

in Ω,

where d > 0 is a diffusion coefficient, Ω ⊂ R2 is a rectangle and γ ⊂ ∂Ω
(see Figure 1.1):

(1.2) Ω = (0, X1)× (0, X2), for some X1, X2 > 0.

The main feature of this system, that makes the problem intricate, is that
the control u only acts on the first component of the system and is localized
on a subpart γ of the boundary.

x2

x1

Ω

0

X2

X1ω1

ω2

Figure 1.1. Domain and control region

We will establish in particular that such a system is null controllable in
any arbitrary small time if the control region γ intersects non trivially two
perpendicular faces of the boundary, that is (see also Figure 1.1)

(1.3) γ = (ω1 × {0}) ∪ ({0} × ω2) ,

for some non empty open subsets ω1 ⊂ (0, X1) and ω2 ⊂ (0, X2).
This is radically different from the one-dimensional situation, i.e. when

Ω is an interval, in which case it is known since [5] that the minimal null
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4 Franck BOYER & Guillaume OLIVE

control time, that is denoted by T0(d), can be any element in [0, +∞],
depending on the value of d > 0. We also want to mention that this phe-
nomenon also appears in the two dimension case if the control domain γ is
contained in one single face of the boundary of Ω (in this case it is easily
seen that the minimal null control time of the 2D problem is at least equal
to the one of the corresponding 1D problem).

One of the main achievements of the present paper is thus to show that
the particular geometry of the control domain as in Figure 1.1 prevents us
from the appearance of a nonzero minimal null control time.

In fact, we will provide our result in a quite abstract form that possibly
encompasses many other similar systems. As an example, we will illustrate
our analysis on more general parabolic systems than (1.1), in particular
concerning the structure of the coupling zero-order terms, for which even
in the case d = 1 our result is new.

1.2. Influence of the geometry and the moment method in the
literature

The influence of the geometry on the boundary controllability proper-
ties of parabolic systems already indirectly appeared at a weaker level of
strength in the seminal work [22]. It is shown in that article that the control-
lability of a one-dimensional parabolic system (yet slightly different from
(1.1)) is especially depending on the non resonance of the eigenvalues of
the associated operator, a condition that involves in particular the eigen-
values of the Laplacian, therefore subject to the length of the interval Ω,
and thus to its geometry. A more striking influence of the geometry was
then illustrated in [30], which is in part the motivation of the present work.
Therein, the author investigated the boundary (approximate) controllabil-
ity properties of the parabolic system studied in [22] in higher dimension
in the particular geometry of a rectangle. It is notably shown there that
the controllability properties of such a system strongly depend on the ge-
ometry of the control zone γ (and not only on the geometry of the domain
Ω as in the aforementioned paper). Let us also add that the influence of
the geometry of the control zone is not only restricted to boundary control
problems. It was for instance shown in [11] that similar phenomena may
occur also in distributed control problems.

The work [22] has then attracted again the attention of numerous re-
searchers on the possible use of the so-called moment method to deal with
controllability problems for parabolic systems (see e.g. [4, 5, 6, 16, 31, 13,

ANNALES DE L’INSTITUT FOURIER
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34, 9]), a technique initially used in [21] for the boundary null controllabil-
ity of a one-dimensional heat equation (see also the earlier works [17, 23]).
By pursuing the development of this method in view of the controllability
of parabolic systems, it was notably shown in [5] that a nonzero minimal
time of control may occur, as we have already mentioned before (see also
the earlier result [27], with a different approach). Whereas this fact was
well-known in the case of the one-dimensional heat equation after the pi-
oneering work [15] on pointwise controllability, the papers [27, 5] showed
that a similar complex situation occurs for coupled parabolic systems as
well (even for a bounded control operator). The moment method is still
developed today since in many situations it seems to be the only robust
technique available to tackle controllability issues (in those cases where the
other approaches like Carleman estimates or fictitious control, to name a
few, fail). The usual range of application of the moment method needs that
the spectrum of the underlying operator satisfies a spectral gap estimate
(this means that two distinct eigenvalues cannot be arbitrarily close one
from each other). In the references [27, 5] the analysis was extended to
the case where spectral condensation occurs, which was the reason for the
appearance of a minimal null control time. In the even more recent work
[9], it was shown that it can be necessary not only to look at the condensa-
tion of the eigenvalues but also to the associated eigenfunctions to obtain
an accurate description of the controllability properties of such systems:
this gave birth to the so-called “block moment method” thanks to which a
general formula for the minimal null control time was obtained for a very
large class of scalar control problems. The present work crucially relies on
this block moment method.

Concerning the study of the controllability of (systems of) equations of
parabolic type in particular geometric situation such as rectangular do-
mains, let us mention the pioneering work [20] on the boundary null con-
trollability of the multi-dimensional heat equation in parallelepipedons or
cylinders, the work [30], where the above geometric situation described for
the system (1.1) has been first considered, and [2, 28] for the introduction
of the formalism of tensor product spaces in the controllability of parabolic
systems (see also [8]).

Finally, despite not applicable to our geometric situation let us also men-
tion the work [1], where the first multi-dimensional result for the boundary
controllability of parabolic systems was derived from the corresponding
result on hyperbolic systems by the so-called transmutation method.

TOME 1 (-1), FASCICULE 0



6 Franck BOYER & Guillaume OLIVE

1.3. Tensor product formalism

In order to ease the understanding of the problem as well as the associ-
ated computations, we will express our evolution operator by making use
of a tensor product formulation. This will be a convenient way to handle
simultaneously separation of variables and separation of components in our
system posed on a cartesian product domain.

We have collected in Appendix A.1 a summary of the main definitions
and properties we will need on tensor products of Hilbert spaces and oper-
ators, following [33, 32].

Let us introduce this point of view on the example (1.1) in the geometry
given by (1.2). First of all, we will see the Laplace operator as follows

−∆ ∼=
(
− ∂2

∂x1

)
⊗ Id + Id⊗

(
− ∂2

∂x2

)
,

where we have made the identification (see Remark A.1)

L2(Ω) ∼= L2(0, X1) ⊗̂ L2(0, X2).

This let us separate nicely what happens in each of the two space variables
of the problem.

In order to take into account the fact that we are dealing with vector-
valued unknowns we will proceed to another level of identification by writ-
ing (

−d∆ 0
0 −∆

)
∼=
(

d 0
0 1

)
⊗
((
− ∂2

∂x1

)
⊗ Id + Id⊗

(
− ∂2

∂x2

))
,

where the state space is now

(L2(Ω))2 ∼= C2 ⊗̂ L2(0, X1) ⊗̂ L2(0, X2).

It has to be noted that the pure tensor products in such a space are obtained
as a product of a function of x1, times a function of x2, times a vector in
C2.

More details of the general framework we consider are given in Section
2.2.

1.4. Outline of the paper

The rest of the paper is organized as follows. In Section 2 we recall some
basic facts on abstract control systems (Section 2.1), we describe precisely
the functional setting in which our work takes place (Section 2.2) and we

ANNALES DE L’INSTITUT FOURIER
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state our main result in this quite general abstract framework (Section 2.4).
We present applications immediately after in Section 3, where we come back
to the actual coupled parabolic systems that motivated this work, in the
spirit of the example (1.1) presented above.

Our proofs being based on moment method, it is necessary to accurately
describe the spectrum of the operator under study, this is the main purpose
of Section 4 in which we particularily highlight a graph structure on this
spectrum which will be central in our analysis. With this spectral descrip-
tion at hand we first prove the approximate controllability of our system
in Section 5 and we then prove its null controllability at any time horizon
in Section 6.

We gather the proofs of few technical results as well as reminders on
basic graph theory in appendix.

2. Framework and main result

In this section, we will introduce the standing assumptions on the type
of abstract control systems that we consider in this paper and we will state
our main result. First of all, let us recall some basic general facts about
such systems.

2.1. Background on abstract control systems

All along this section, −A : D(A) ⊂ H −→ H is the generator of a
C0-semigroup (e−tA)t⩾0 on H and B ∈ L(U, D(A∗)′), where H, U are two
complex Hilbert spaces. Here and in what follows, E′ denotes the (anti-
)dual of the complex space E, that is the complex (Banach) space of all
continuous conjugate linear forms (see e.g. [24, Section I.2.2]). We will
use the convention that an inner product of a complex Hilbert space is
conjugate linear in its second argument.

Let us consider the evolution problem associated with the pair (−A,B),
i.e.

(2.1)


d

dt
y(t) +Ay(t) = Bu(t), t ∈ (0, T ),

y(0) = y0,

where T > 0, y(t) is the state at time t, y0 is the initial data and u(t) is
the so-called control at time t.

Since B∗ ∈ L(D(A∗), U) we can define a notion of solution in the space
D(A∗)′ for the system (2.1).

TOME 1 (-1), FASCICULE 0



8 Franck BOYER & Guillaume OLIVE

Definition 2.1 (Solution in D(A∗)′). — Let T > 0, y0 ∈ D(A∗)′ and
u ∈ L2(0, T ; U). We say that a function y : [0, T ] → D(A∗)′ is a solution
to (2.1) if y ∈ C0([0, T ]; D(A∗)′) and
(2.2)

⟨y(τ), zτ ⟩D(A∗)′,D(A∗) −
〈
y0, z(0)

〉
D(A∗)′,D(A∗) =

∫ τ

0
⟨u(t),B∗z(t)⟩U dt,

for every τ ∈ (0, T ] and zτ ∈ D(A∗), where z ∈ C0([0, τ ]; D(A∗)) is the
solution to the so-called adjoint system:

(2.3)

−
d

dt
z(t) +A∗z(t) = 0, t ∈ (0, τ),

z(τ) = zτ ,

i.e. z(t) = e−(τ−t)A∗
zτ .

Observe that the maps

(2.4) zτ 7→
〈
y0, z(0)

〉
D(A∗)′,D(A∗), zτ 7→

∫ τ

0
⟨u(t),B∗z(t)⟩U dt,

are continuous conjugate linear forms on D(A∗). Thus, we have a natural
definition for the map τ ∈ [0, T ] 7−→ y(τ) ∈ D(A∗)′ through the formula
(2.2). It can be proved that this map is also continuous and that it depends
continuously on y0 and u on compact time intervals (see e.g. [14, Theorem
2.37]). This establishes the so-called well-posedness of the abstract control
system (−A,B).

Now that we have a notion of continuous solution for the system (2.1) in
the space D(A∗)′, we can speak of its controllability properties in D(A∗)′.

Definition 2.2 (Controllability). — We say that the system (2.1) is:
• null controllable in time T if, for every y0 ∈ D(A∗)′, there exists

a control u ∈ L2(0, T ; U) such that the corresponding solution y ∈
C0([0, T ]; D(A∗)′) to system (2.1) satisfies

y(T ) = 0.

• approximately controllable in time T if, for every ε > 0 and y0, yT ∈
D(A∗)′, there exists a control u ∈ L2(0, T ; U) such that the corre-
sponding solution y ∈ C0([0, T ]; D(A∗)′) to system (2.1) satisfies∥∥y(T )− yT

∥∥
D(A∗)′ ⩽ ε.

We recall that null controllability implies approximate controllability for
analytic semigroups (thanks to the backward uniqueness property of the
adjoint system).

ANNALES DE L’INSTITUT FOURIER
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When a system is controllable, it is also of interest to measure how much
it costs to control it:

Definition 2.3 (Control cost). — Assume that (−A,B) is null con-
trollable in time T for some T > 0. We call control cost the quantity
costT (−A,B) ⩾ 0 defined by

costT (−A,B) = sup
∥y0∥D(A∗)′ =1

(
min

u∈ET (y0)
∥u∥L2(0,T ;U)

)
,

where ET (y0) is the non empty closed convex subset made of the associated
null controls, defined by ET (y0) =

{
u ∈ L2(0, T ; U), s.t. y(T ) = 0

}
.

Let us conclude this section with a final remark. As we have seen, since
B∗ ∈ L(D(A∗), U), we can always define a notion of solution in the space
D(A∗)′ for the system (2.1). However, in practice it often appears that
there is a “better” space V ′ where this system can be considered (see for
instance Section 3 below). This motivates the introduction of the following
concept.

Definition 2.4 (Admissible subspace). — For any Banach space V

(equipped with its own norm ∥·∥V ) such that

D(A∗) ⊂ V ⊂ H,

with dense and continuous embeddings, we say that V ′ is an admissible
subspace for the system (−A,B) if we have the following two additional
properties:

(i) V is invariant through the adjoint semigroup:

e−tA∗
V ⊂ V, ∀t ⩾ 0.

(ii) The following regularity property holds:

∃τ > 0,∃C > 0,

∫ τ

0
∥B∗z(t)∥2

U dt ⩽ C ∥zτ∥2
V , ∀zτ ∈ D(A∗),

where z ∈ C0([0, τ ]; D(A∗)) is the solution to adjoint system (2.3).

The point of view adopted in this definition puts the emphasis on the
subspace V and not on the control operator B, contrary to what is done in
the current literature. Basic examples of admissible subspaces are D(A∗)′

since B∗ ∈ L(D(A∗), U) and H if B ∈ L(U, H). The previous notions
of solution, controllability etc. can then be extended by simply replacing
D(A∗) by V . It is clear that null controllability in the space D(A∗)′ implies
null controllability in the space V ′, whereas approximate controllability in
the spaces D(A∗)′ and V ′ are equivalent for analytic semigroups.

TOME 1 (-1), FASCICULE 0



10 Franck BOYER & Guillaume OLIVE

2.2. Standing assumptions on the systems considered in this
paper

Let us now describe the kind of abstract control problems that we will
deal with in this paper. Of course, this framework will include the moti-
vating example (1.1) given in the introduction as well as its generalisation
described in Section 3.

Here and in what follows, card E denotes the cardinal of a set E. For
any subset S ⊂ C we define the associated counting function

(2.5) NS(r) = card {λ ∈ S, s.t. |λ| ⩽ r} , ∀r ⩾ 0,

as well as the associated gap

Gap(S) = inf
λ,µ∈S
λ̸=µ

|λ− µ| .

We will also use the notation

C+ = {z ∈ C, s.t. Re z > 0}.

2.2.1. The operator A

Let H1, H2 be two complex Hilbert spaces.
• For i = 1, 2, let Ai : D(Ai) ⊂ Hi −→ Hi be an unbounded linear

operator satisfying the following properties:
(i) Ai is a self-adjoint positive operator with compact resolvent.

We denote its spectrum by Λi and we observe that we have

(2.6) Λi ⊂ R∗
+.

We assume that each eigenvalue is (geometrically) simple.
(ii) Λi satisfies the following gap condition:

(2.7) Gap(Λi) > 0.

(iii) Λi satisfies the following asymptotic behavior: there exist θi ∈
(0, 1) and κi > 0 such that

(2.8) NΛi
(r) ⩽ κir

θi , ∀r > 0,

and

(2.9) |NΛi
(r)−NΛi

(s)| ⩽ κi(1 + |r − s|θi), ∀r, s > 0.

ANNALES DE L’INSTITUT FOURIER
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• We will in addition always assume that

(2.10) θ1 + θ2 ⩽ 1.

Note that this assumption connects both operators, contrary to
the previous ones that only concerned the operators A1 and A2
separately.

• Following the ideas briefly discussed in Section 1.3, we finally intro-
duce the state space we will work with all along this work

H = C2 ⊗̂H1 ⊗̂H2,

where ⊗̂ stands for the tensor product whose main properties are
recalled in Appendix A.1.

We can now introduce an operator from which the generator of our con-
trol system will be built on. For any d > 0, we consider the unbounded
operator

(2.11)
(

d 0
0 1

)
⊗ (A1⊗ Id+Id⊗A2), with domain C2⊗D(A1)⊗D(A2).

The definition of the tensor product of linear operators is also recalled
in Appendix A.1. This operator has the following important properties:

Proposition 2.5. — The operator (2.11) is closable and its closure,
denoted by A0, is a self-adjoint operator with compact resolvent.

The proof of these properties is given in Appendix A.2. Concerning ma-
terial on closable operators we refer for instance to [24, Sections III.5.3 and
III.5.5].

The generator of the control system that will be considered in this work
is now a bounded perturbation of A0 defined as follows.

Definition 2.6. — Let d > 0 and M ∈ R2×2. The operator A : D(A) ⊂
H −→ H is defined by

A = A0 −M ⊗ Id⊗ Id, D(A) = D(A0).

Equivalently,

A = closure of
(

d 0
0 1

)
⊗ (A1 ⊗ Id + Id⊗A2)−M ⊗ Id⊗ Id.

Obviously, D(A) = D(A0) is dense in H, and a computation shows that
the adjoint A∗ is simply given by

(2.12) A∗ = A0 −M∗ ⊗ Id⊗ Id, D(A∗) = D(A).

TOME 1 (-1), FASCICULE 0



12 Franck BOYER & Guillaume OLIVE

2.2.2. The control operator B

Let us now introduce the class of control operators that will be considered
in this paper.

• For i = 1, 2, let Bi ∈ L(C, D(Ai)′) be two scalar control operators.
We assume that the pair (−Ai, Bi) satisfies the so-called Fattorini-
Hautus test, namely

ker(λi −A∗
i ) ∩ ker B∗

i = {0} , ∀λi ∈ Λi,

and, from now on, we save the notation ϕi,λi
to denote the unique

eigenfunction of Ai associated with the (simple) eigenvalue λi ∈ Λi

that satisfies the condition

(2.13) B∗
i ϕi,λi = 1.

This choice of normalization (that has no influence on the results)
is maybe not the most conventional one but it simplifies numerous
computations below. Since B∗

i is continuous from D(Ai) into C, we
deduce the lower bound

(2.14) ∥ϕi,λi
∥Hi

=
∥ϕi,λi∥D(Ai)√

1 + λ2
i

⩾
1

∥B∗
i ∥L(D(Ai),C)

√
1 + λ2

i

, ∀λi ∈ Λi.

We then assume that their norm has the following upper bound:
there exist νi ∈ [0, 1) and C > 0 such that

(2.15) ∥ϕi,λi
∥Hi

⩽ CeCλ
νi
i , ∀λi ∈ Λi.

We will frequently use the notation

νmax = max {ν1, ν2} .

• Next, we consider a particular structure of system associated with
these scalar operators. Our control space will simply be

(2.16) U = H1 ×H2.

The non scalar control operator B : U → D(A∗)′ that we will finally
consider is formally given by

B(u1, u2) =
(

1
0

)
⊗ (L1u1)⊗ b2 +

(
1
0

)
⊗ b1 ⊗ (L2u2),

where L1, L2 are two bounded operators in H1 and H2, respectively and
b1 ∈ D(A∗

1)′, b2 ∈ D(A∗
2)′ are such that bi = Bi1. Observe that this operator

only acts on the first component of the system.
Its precise definition is given by the following result.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.7. — For every L1 ∈ L(H1) and L2 ∈ L(H2), there
exists a unique bounded linear operator B ∈ L(U, D(A∗)′) such that, on
C2 ⊗D(A1)⊗D(A2), we have

(2.17) B∗ =
((

1 0
)
⊗ L∗

1 ⊗B∗
2(

1 0
)
⊗B∗

1 ⊗ L∗
2

)
.

The proof is postponed to Appendix A.3 to ease the presentation.

2.3. The Kalman condition

With the operators defined above, any solution y to (2.1) can be written

y(t) =
(

1
0

)
⊗ y1(t) +

(
0
1

)
⊗ y2(t),

where y1 and y2 satisfy, at least at a formal level,
∂y1

∂t
+ d(A1 ⊗ Id + Id⊗A2)y1 =m11y1 + m12y2

+ (L1u1)⊗ b2 + b1 ⊗ (L2u2),
∂y2

∂t
+ (A1 ⊗ Id + Id⊗A2)y2 =m21y1 + m22y2.

We immediately see that a necessary controllability condition for the
system is the Kalman condition

(2.18) m21 ̸= 0.

Indeed, if m21 = 0, then we observe that y2 satisfies the equation

∂y2

∂t
+ (A1 ⊗ Id + Id⊗A2)y2 = m22y2,

that does not depend on the control nor on the first component of the
system. In particular any trajectory reaching zero at some time T satisfies
y2(t) = 0 for any t, and therefore y2(0) = 0. This proves that not all initial
data can be driven to 0.

From now on, we shall always assume this condition (2.18).
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2.4. Statement of the main result

The main result of the present paper is the following null controllability
result:

Theorem 2.8. — Let A and B be the operators introduced in Definition
2.6 and Proposition 2.7, respectively. Assume the Kalman condition (2.18).
Assume also that for i = 1, 2 the adjoint of the operator Li satisfies the
following Lebeau-Robbiano type inequality: there exist ηi ∈ [0, 1) and C >

0 such that, for every µ > 0 we have

(2.19) ∥z∥Hi
⩽ CeCµηi ∥L∗

i z∥Hi
, ∀z ∈

⊕
λi∈Λi
λi⩽µ

ker(λi −Ai).

Then, the system (−A, B) is null controllable in time T for every T > 0,
with control cost satisfying, for some C > 0,

costT (−A, B) ⩽ C exp
(

C

T
p

1−p

)
, ∀T > 0,

where p = max {θ1, θ2, ν1, ν2, η1, η2}.

Remark 2.9. — The same result remains true if we drop the assumption
(2.9) on the operators A1, A2 but in this case we have to consider p satis-
fying p > max {θ1, θ2} and p ⩾ max {ν1, ν2, η1, η2}. This will be explained
during the proof below.

Let us mention that we will also prove an independent approximate con-
trollability result in Theorem 5.1 below and that a simple but useful “higher
dimensional” version of Theorem 2.8 will be described in Theorem 3.4 be-
low.

3. Application to the boundary null controllability of
coupled linear parabolic systems on cartesian

geometries

As mentioned in the introduction, our main motivation for the abstract
result proved in this paper is its application to actual multi-dimensional
boundary null controllability issues for coupled parabolic systems.
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3.1. A new 2D result

A typical system to which our general analysis applies is the following 2D
two-component system controlled from the boundary by only one control:

(3.1)



∂y1

∂t
− d div (K(x)∇y1) = m11y1 + m12y2 in (0, T )× Ω,

∂y2

∂t
− div (K(x)∇y2) = m21y1 + m22y2 in (0, T )× Ω,

y1 = 1γu, y2 = 0

y1(0) = y0
1 , y2(0) = y0

2

on (0, T )× ∂Ω,

in Ω,

where the domain Ω ⊂ R2 is the rectangle defined in (1.2) (see Figure 1.1)
and the diffusion tensor has the following form

K(x) =
(

k1(x1) 0
0 k2(x2)

)
,

with ki ∈W 1,∞(0, Xi), inf(0,Xi) ki > 0 and d > 0 is a parameter accounting
for the ratio of diffusion between the two components in the system.

The first equation is controlled from the boundary on a non empty rel-
ative open subset γ of ∂Ω. On the other hand, the second equation has
no control, but it is coupled to the first equation via a constant internal
coupling term, so that it is indirectly controlled, as soon as m21 ̸= 0.

We recall that the case d = 1 and K(x) = Id was studied in the literature:
• The approximate controllability of the system (3.1) was studied in

[30] when the underlying operator is the Laplacian.
Notably, it was established in [30, Theorem 2.15] that this sys-

tem is approximately controllable in time T for every T > 0 if the
Kalman condition m21 ̸= 0 holds and if γ satisfies the geometric
condition (1.3), which was introduced in this very paper.

On the other hand, when γ intersects only one face of the bound-
ary ∂Ω, say for instance γ = ω1 × {0}, then it was shown in [30,
Theorem 2.14] that the approximate controllability of the system
is equivalent to the approximate controllability of the 1D reduced
system

(3.2)



∂y1

∂t
− ∂2y1

∂x2 = m11y1 + m12y2, in (0, T )× (0, X1),

∂y2

∂t
− ∂2y2

∂x2 = m21y1 + m22y2, in (0, T )× (0, X1),

y1 = 1{0}u, y2 = 0,

y1(0) = y0
1 , y2(0) = y0

2 ,

on (0, T )× {0, X1} ,

in (0, X1).
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• This second result of [30] was then extended to the null controlla-
bility property in [8, Theorem 1.2].

• As already mentioned, the approximate and null controllability of
the one-dimensional system (3.2) were studied in the seminal work
[22]. More precisely, it was shown in [22, Theorem 1.1] (resp. [22,
Theorem 5.2]) that this system is null (resp. approximately) con-
trollable in time T if, and only if, the Kalman condition m21 ̸= 0
holds and we have the following “non resonance” condition:

(3.3)
(
λ + θ = λ̃ + θ̃ =⇒ λ = λ̃ and θ = θ̃

)
,

∀λ, λ̃ ∈ σ

(
− ∂2

∂x2

)
, ∀θ, θ̃ ∈ σ(M∗).

Note that, if M has only one eigenvalue, then this condition (3.3)
is automatically satisfied.

However, in the case where M has two distinct eigenvalues, the
Kalman condition is not sufficient to ensure null controllability and
it is needed to assume that (3.3) holds.

On the other hand, Theorem 2.8 leads to the following new null control-
lability result.

Theorem 3.1. — Assume that the Kalman condition m21 ̸= 0 holds
and that γ satisfies the geometric condition (1.3) (see also Figure 1.1).
Then, there exists C > 0 such that, for any T > 0, for any y0 ∈ H−1(Ω)2,
there exists u ∈ L2((0, T )× ∂Ω) with the estimate

∥u∥L2((0,T )×∂Ω) ⩽ C exp
(

C

T

)
∥y0∥H−1(Ω)2 ,

such that the corresponding solution to the system (3.1) satisfies y1(T, ·) =
y2(T, ·) = 0.

To the best of our knowledge, Theorem 3.1 is the first and only result con-
cerning the controllability properties of the two-dimensional system (3.1)
for any value of the ratio of diffusions d > 0.

Remark 3.2. — Combined with the results of the literature recalled just
before the statement of Theorem 3.1, we see that this result shows a very
strong influence of the geometry of the control domain: there are some two-
dimensional systems (3.1) which are null controllable in arbitrary small
time if two perpendicular faces of the boundary are controlled, whereas
they are not even approximately controllable if the control acts on only
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one face. An explicit example of such systems is
∂y1

∂t
−∆y1 = 0 in (0, T )× Ω,

∂y2

∂t
−∆y2 = y1 + 3y2 in (0, T )× Ω,

posed on the square domain Ω = (0, π)2, for which we can check that the
non resonance condition (3.3) fails.

Proof of Theorem 3.1. —
This result will be a straightforward consequence of Theorem 2.8 once

we will have checked that we are under the framework of Section 2.2.
Indeed, the system (3.1) corresponds to the abstract control system (2.1)

with the following functional framework
• The state space is

H = C2 ⊗̂ L2(0, X1) ⊗̂ L2(0, X2).

• The operator A is the closure of the operator(
d 0
0 1

)
⊗ (A1 ⊗ Id + Id⊗A2)−M ⊗ Id⊗ Id,

with domain C2 ⊗ D(A1) ⊗ D(A2), where, for i = 1, 2, Ai is the
one-dimensional and scalar positive Dirichlet Laplacian on the space
Hi = L2(0, Xi):

Ai = − ∂

∂xi

(
ki(xi)

∂

∂xi

·
)

,

with domain D(Ai) = H2(0, Xi) ∩H1
0 (0, Xi).

• For γ as in (1.3), the control space can be taken as

U = L2(0, X1)× L2(0, X2),

where for each (u1, u2) ∈ U a control u for (3.1) is simply

u(x) =


u1(x1), if x1 ∈ ω1 and x = (x1, 0),
u2(x2), if x2 ∈ ω2 and x = (0, x2),
0, otherwise.

• For i = 1, 2, we introduce B∗
i ∈ L(D(Ai),C) to be the one dimen-

sional scalar operator

B∗
i z = −ki(0) ∂z

∂x
(0),
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18 Franck BOYER & Guillaume OLIVE

and L∗
i ∈ L(Hi) is simply given by

L∗
i z = 1ωi

z.

Then, it is easily checked that the control operator B defined as in
(2.17) is such that, for any u ∈ U and any ∈ D(A∗), we have

⟨Bu, z⟩D(A∗)′,D(A∗) =

−
∫

ω1

u1(x1)k2(0) ∂z1

∂x2
(x1, 0) dx1 −

∫
ω2

u2(x2)k1(0) ∂z1

∂x1
(0, x2) dx2.

Let us now check the assumptions of Section 2.2.
• We recall that Ai is a positive self-adjoint operator with compact

resolvent and that its spectrum satisfies
– the gap condition

Gap(Λi) > 0,

– the counting function estimates: there exists Ci > 0 such that

NΛi
(r) ⩽ Ci

√
r, ∀r > 0,

|NΛi
(r)−NΛi

(s)| ⩽ Ci(1 +
√
|r − s|).

Those are very classical results; a self-contained proof is for instance
given in [12, Theorem IV.1.3] based on the methodology described
in [3, Section 2]).

Note in particular that, since θ1 = θ2 = 1/2, the condition θ1 +
θ2 ⩽ 1 is fulfilled.

• It is clear that (−Ai, Bi) satisfies the Fattorini-Hautus test and that
the eigenfunction ϕi,λi

of Ai associated with the eigenvalue λi ∈ Λi

which is such that B∗
i ϕi,λi = 1, that is such that

−ki(0)ϕ′
i,λi

(0) = 1,

satisfies
∥ϕi,λi∥L2(0,Xi) ⩽

C√
λi

.

This is also given in [3, Theorem 1.1].
This estimate implies that the upper bound (2.15) holds with

νi = 0.

• The property (2.19) concerning the operators Li holds with

ηi = 1
2 .
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This is nothing but the one-dimensional Lebeau-Robbiano spectral
inequality [26, Theorem 3] (or Turán’s inequality, see [35, Corollary
3.3]).

All the assumptions of Section 2.2 are fulfilled, so that Theorem 2.8
can be applied and shows that the system (3.1) is null controllable in
time T for every T > 0. Moreover, in the present case, we have p =
max {θ1, θ2, ν1, ν2, η1, η2} = 1/2, which leads to the eC/T estimate stated
in Theorem 3.1.

The result is first obtained in the space D(A∗)′ = (H2(Ω)2 ∩H1
0 (Ω)2)′.

In addition, note that
V ′ = H−1(Ω)2

is an admissible subspace for our system (3.1) (see Definition 2.4). This is a
direct consequence of the following well-known elliptic regularity estimate
satisfied by the solution z to the corresponding adjoint system (2.3) in any
time T > 0: there exists C > 0 such that∫ T

0

∫
∂Ω

∥∥∥∥ ∂z

∂n
(t, σ)

∥∥∥∥2

C2
dσdt ⩽ C

∫ T

0
∥z(t, ·)∥2

H2(Ω)2 dt

⩽ C

∫ T

0
∥Az(t, ·)∥2

L2(Ω)2 dt

⩽ C
∥∥zT

∥∥2
H1

0 (Ω)2 , ∀zT ∈ H2(Ω)2 ∩H1
0 (Ω)2,

where ∂/∂n denotes the normal derivative.
□

3.2. A 3D result

Let us present here a higher dimensional result. We consider the 3D
parallelepiped (see e.g. Figure 3.1)

Ω = (0, X1)× (0, X2)× (0, X3), for some X1, X2, X3 > 0,

and we assume all along this section that the diffusion tensor is of the form

K(x) =

k1(x1) 0 0
0 k2(x2) 0
0 0 k3(x3)

 ,

for some ki ∈W 1,∞(0, Xi), inf(0,Xi) ki > 0.
Then, we can control the corresponding system with a boundary control

supported on two non parallel faces.
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x1

x2x3

Figure 3.1. The geometry of the boundary control problem in 3D. The
control domain is the part of the boundary which is represented in
gray.

Theorem 3.3. — Assume that the Kalman condition m21 ̸= 0 holds
and that γ satisfies the geometric condition (see also Figure 3.1)

γ = (ω1 × {0} × ω3) ∪ ({0} × ω2 × ω̂3) ,

for some non empty open subsets ω1 ⊂ (0, X1), ω2 ⊂ (0, X2) and ω3, ω̂3 ⊂
(0, X3).

Then, we have the same conclusion as in the statement of Theorem 3.1.

Similarly to the proof of Theorem 3.1, this 3D result is a straightforward
application of the following abstract result (applied with H3 = L2(0, X3),
A3 = − ∂

∂x3

(
k3(x3) ∂

∂x3
·
)

and L3 = 1ω3 , L̂3 = 1ω̂3):

Theorem 3.4. — Let A be the operator introduced in Definition 2.6.
Assume the Kalman condition (2.18). Let A3 be a self-adjoint operator
with compact resolvent on a complex Hilbert space H3. Set

H̃ = H ⊗̂H3, Ũ = (H1 ⊗̂H3)× (H2 ⊗̂H3).

Let

Ã = closure of A⊗ Id +
(

1 0
0 1

)
⊗ Id⊗ Id⊗A3.

Let B̃ ∈ L(U, D(A∗)′) be the unique bounded linear operator such that, on
C2 ⊗D(A1)⊗D(A2)⊗D(A3), we have

B̃∗ =
((

1 0
)
⊗ L∗

1 ⊗B∗
2 ⊗ L∗

3(
1 0

)
⊗B∗

1 ⊗ L∗
2 ⊗ L̂∗

3

)
,

where L∗
3, L̂∗

3 ∈ L(H3) satisfy the Lebeau-Robbiano type inequality (2.19)
(with i = 3) for some η3, η̂3 ∈ [0, 1).
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Then, the system (−Ã, B̃) is null controllable in time T for every T > 0,
with control cost satisfying, for some C > 0,

costT (−Ã, B̃) ⩽ C exp
(

C

T
p̃

1−p̃

)
, ∀T > 0,

with p̃ = max {p, η3, η̂3} ∈ (0, 1) (we recall that p is defined in Theorem
2.8).

Theorem 3.4 is easily deduced from Theorem 2.8 after using a Fourier
decomposition in the direction of the added dimension. This idea has al-
ready been used many times in the literature (see e.g. [28, 8]). For this
reason, its proof will be omitted.

Let us mention that the construction of B̃ can be done in the same way
as for the operator B (see Proposition 2.7 and Appendix A.3).

4. Spectral analysis

4.1. Description of the spectrum of A∗

First of all let us mention that, by classical perturbation arguments, it is
expected that A has a good spectral theory. For instance, it inherits from
A0 the following properties:

• A has a compact resolvent (see e.g. [18, Proposition III.1.12]).
• −A generates an analytic semigroup on H (see e.g. [18, Corollary

II.4.7 and Proposition III.1.12]).
Besides, the same statements hold for the adjoint A∗ as well since it has

the same structure (recall (2.12)).
Let us now describe precisely the structure of the spectrum of A∗.

Definition 4.1. — For any λ ∈ R, we define

(4.1) ∆λ = ((1− d)λ + m11 −m22)2 + 4m21m12,

and
√

∆λ ∈ R+ ∪ iR+ will always denote the principal square root of this
number.

Note that

(4.2) d ̸= 1 =⇒ lim
λ→+∞

∆λ = +∞.

On the other hand, when d = 1, we see that ∆λ does not depend on λ,
and we simply denote this quantity by ∆. It is nothing but the discriminant
of the characteristic polynomial of M :

∆ = (Tr M)2 − 4 det M.
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We shall also introduce the set

Λ̂ = {λ ∈ R, s.t. ∆λ = 0},

that will play a particular role in the spectral analysis of our problem.

Remark 4.2. — We notice that, when d ̸= 1, the cardinal of Λ̂ is less or
equal than 2. However, for d = 1, we have either Λ̂ = ∅ or Λ̂ = R.

We can now introduce some sets that will be instrumental in our descrip-
tion of the spectrum of A∗.

Definition 4.3. —
(1) We introduce the set

Γ = {+,−} × Λ1 × Λ2,

and for any γ ∈ Γ, we denote its components by s(γ) ∈ {+,−},
λ1(γ) ∈ Λ1 and λ2(γ) ∈ Λ2. We will also use the notation λ(γ) =
λ1(γ) + λ2(γ).

(2) We shall use the following particular subsets of Γ

Γ̂ = {γ ∈ Γ, s.t. λ(γ) ∈ Λ̂},

Γ± = {±} × Λ1 × Λ2, and Γ̂± = Γ̂ ∩ Γ±.

(3) For any λ1 ∈ Λ1 and any λ2 ∈ Λ2, we introduce

Γ1,λ1 = {+,−} × {λ1} × Λ2, Γ2,λ2 = {+,−} × Λ1 × {λ2},

and, for i = 1, 2,

Γ±
i,λi

= Γi,λi
∩ Γ±, Γ̂i,λi

= Γi,λi
∩ Γ̂.

Definition 4.4. — We introduce σ : Γ→ C to be the function defined
by

(4.3) σ(γ) =
(1 + d)λ(γ)− Tr(M) + s(γ)

√
∆λ(γ)

2 , ∀γ ∈ Γ.

Associated to this function we introduce, for any λi ∈ Λi, i = 1, 2, the
subsets of C defined by

(4.4) Σi,λi
= σ(Γi,λi

), Σ±
i,λi

= σ(Γ±
i,λi

), Σ̂i,λi
= σ(Γ̂i,λi

).

In some computations, we shall need an alternative expression for the
function σ given in the following result.
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Proposition 4.5. — There exist σ+, σ− ∈ C and a function λ ∈ R 7→
ελ ∈ C that satisfy

(4.5) lim
λ→+∞

ελ = 0,

and such that

(4.6)
{

σ(γ) = max(d, 1)λ(γ) + σ+ + ελ(γ), if γ ∈ Γ+,

σ(γ) = min(d, 1)λ(γ) + σ− − ελ(γ), if γ ∈ Γ−.

Let us first give a straightforward corollary of this result.

Corollary 4.6. — There exist m, C > 0 such that, if one replaces M

by M −mId in the definition of the operator A, then we have

(4.7) Reσ(γ) ⩾ 1, ∀γ ∈ Γ,

and

(4.8) |Imσ(γ)| ⩽ C, ∀γ ∈ Γ.

In particular, we have

(4.9) |σ(γ)| ⩽
√

1 + C2
(
Reσ(γ)

)
, ∀γ ∈ Γ.

Since changing M into M − mId does not influence the controllability
properties of the system (indeed it amounts to consider the system satisfied
by the new unknown t 7→ e−mty(t)), we will always assume in the sequel
that (4.7) and (4.8) hold. Note that this manipulation does not change the
values of ∆λ.

Proof of Proposition 4.5.
• In the case d = 1, we recall that ∆λ = ∆ does not depend on λ,

and therefore we simply take ελ = 0 and σ± = ±
√

∆−Tr(M)
2 .

• If d > 1 we choose σ+ = −m11, σ− = −m22 and

ελ = (1− d)λ + m11 −m22 +
√

∆λ

2 ,

for which the required properties can be easily checked (recall (4.2)).
• For d < 1, we set σ+ = −m22 and σ− = −m11 and

ελ = (d− 1)λ−m11 + m22 +
√

∆λ

2 ,

and we conclude by a straightforward computation.
□

Remark 4.7. — Observe that:
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(i) If d ̸= 1, then (4.2) implies that σ(±, λ1, λ2) are real numbers for
λ1, λ2 large enough.

(ii) There exists C > 0 such that

(4.10) 1
C
|σ(γ)| ⩽ λ(γ) ⩽ C |σ(γ)| , ∀γ ∈ Γ.

Remark 4.8. — We will see in the next proposition that the spectrum of
A∗ is precisely the range σ(Γ). However, it is crucial to observe that σ is in
general not injective, so that an eigenvalue may simultaneously be equal to
σ(γ) and σ(γ̃) for two different γ ̸= γ̃. In fact, the situation is even more
complex than that. Since this will be the source of most technical problems
that we will encounter in what follows, let us detail what can happen for
instance for system (1.1)-(1.2) with X1 = X2 = π. For any i = 1, 2 and
λi ∈ Λi =

{
k2}

k⩾1, the following situations may occur:
(i) The map γ ∈ Γi,λi

7→ σ(γ) may not be injective, for infinitely
many values of λi. As an example, we consider for instance the case

d = 16/25 and M =
(

0 0
1 0

)
. For any p ∈ N∗ with p > 1, we set

λ1,p = (300(p2 − 1))2 ∈ Λ1,

λ2,p = (360p)2 ∈ Λ2,

λ̂2,p = (225(p2 + 1))2 ∈ Λ1.

Then, by a straightforward computation, one can check that

σ(+, λ1,p, λ2,p) = λ1,p + λ2,p = d(λ1,p + λ̂2,p) = σ(−, λ1,p, λ̂2,p).

(ii) Even in the case where the previous map is injective, it will certainly
happen some spectral condensation phenomenon, that is the fact
that σ(γ) and σ(γ̃) may be exponentially close for infinitely many
γ̃ ̸= γ. More precisely, we can show that there exist d > 0 and
infinitely many k ∈ N such that the inequality

0 <
∣∣σ(+, k2, ℓ2)− σ(−, k2, ℓ̃2)

∣∣ ⩽ e−k2|σ(+,k2,ℓ2)|,

holds for some ℓ, ℓ̃ ∈ N. This can be proved as follows. From [27,
Proposition 1], we know that, for every ε > 0, there exists d > 0
with

√
d ̸∈ Q such that the inequality∣∣∣q√d− p

∣∣∣ < e−q2+ε

,

holds for infinitely many q, p ∈ N∗. Assume for instance that d ⩽ 1
(the other case is similar). Then, taking k = pq, ℓ = p2 and ℓ̃ = q2,
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we have∣∣∣∣σ(+, k2, ℓ2)−σ(−, k2, ℓ̃2)
∣∣∣∣

⩽
∣∣k2 − dℓ̃2∣∣+

∣∣dk2 − ℓ2∣∣
=
∣∣∣q√d− p

∣∣∣ (q√d + p)(p2 + q2).

Using that p < (1 +
√

d)q for q large enough, we obtain the desired
estimate taking ε > 6. Finally, it is easy to see from the expressions
of k, ℓ, ℓ̃ that the condition σ(+, k2, ℓ2) ̸= σ(−, k2, ℓ̃2) is equivalent
to
√

d ̸∈ Q.

Let us now list all the properties of the operator A∗ that result from the
previous assumptions and that will be needed in this article. The proof is
postponed to Appendix A to ease the presentation.

Proposition 4.9. — Assume that the Kalman condition (2.18) is sat-
isfied. Then, the operator A∗ has the following properties:

(i) The spectrum of A∗ is given by

Σ = σ(Γ).

We recall that it is only made of eigenvalues.
(ii) For any eigenvalue σ̂ ∈ Σ, the eigenspace ker(σ̂−A∗) is spanned by

(4.11) Φ0
γ =

(
1
rγ

)
⊗ ϕ1,λ1(γ) ⊗ ϕ2,λ2(γ),

with
rγ = σ(γ)− d(λ1(γ) + λ2(γ)) + m11

−m21
,

for each γ ∈ Γ such that σ(γ) = σ̂ (we recall that ϕi,λi is defined
in Section 2.2.2). A basis of the eigenspace ker(σ̂ −A∗) is given by
considering only the eigenfunctions Φ0

γ for γ ∈ Γ \ Γ̂+ (such that
σ(γ) = σ̂).

(iii) If γ ̸∈ Γ̂, the Jordan chain associated with Φ0
γ is trivial, and we set

kγ = 0.
If γ ∈ Γ̂, the function

(4.12) Φ1
γ =

(
0
− 1

m21

)
⊗ ϕ1,λ1(γ) ⊗ ϕ2,λ2(γ),

is a generalized eigenfunction of A∗ satisfying

(A∗ − σ(γ))Φ1
γ = Φ0

γ .

In that case, we set kγ = 1.
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(iv) The counting function N associated with the eigenvalues of the
operator A∗ defined by

(4.13) N(r) = card
{

γ ∈ Γ \ Γ̂+, s.t. |σ(γ)| ⩽ r
}

, ∀r > 0,

satisfies the following asymptotics: there exists κ0 > 0 such that

(4.14) N(r) ⩽ κ0r, ∀r > 0.

(v) There exists C > 0 such that

(4.15)
∥∥Φk

γ

∥∥
D(A∗) ⩽ CeC|σ(γ)|νmax

, ∀γ ∈ Γ, ∀0 ⩽ k ⩽ kγ .

(vi) The normalized family
{

Φk
γ/
∥∥Φk

γ

∥∥
D(A∗)

}
γ∈Γ\Γ̂+

0⩽k⩽kγ

is a Riesz basis of

D(A∗) equipped with the graph norm.

Remark 4.10. — A few remarks are in order.
(1) Let γ = (s, λ1, λ2) be an element of Γ̂. Then γ̃ = (−s, λ1, λ2) also

belongs to Γ̂ and we have that

σ(γ) = σ(γ̃), Φ0
γ = Φ0

γ̃ , Φ1
γ = Φ1

γ̃ .

That is the reason why the Riesz basis introduced in point (vi) is
indexed on Γ \ Γ̂+; this prevents an element from appearing twice
in the family (same for the last line of the statement in point (ii)).
We could also have chosen to index on Γ \ Γ̂−.

(2) The counting function N in this theorem takes into account the
geometric multiplicities of the eigenvalues and in particular it is
not equal to the counting function Nσ(Γ) of the set σ(Γ) as defined
in (2.5).

(3) In fact, in most of this work, we only need that the family
{

Φk
γ

}
γ∈Γ

0⩽k⩽kγ

is complete in D(A∗). It is only for Theorems 2.8 and 3.4 that we
really need that this family forms a basis.

(4) There is of course no uniqueness of the generalized eigenfunction.
We have chosen here the ones that satisfy

(4.16) B∗Φ1
γ = 0, ∀γ ∈ Γ̂,

as it can be easily seen from (4.12) and (2.17).
(5) The eigenfunctions and generalized eigenfunctions of A can also be

computed in a similar way.
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4.2. Graph structures associated to the spectrum of A∗

Let us now define two kind of relationships between elements in Γ and
introduce an appropriate structure of graph (we recall the needed elemen-
tary graph theory notions in Appendix B). Such relations are motivated
by the particular structure (2.17) of our control operator B, this link will
be clearer during the proofs below. These relations depend on a small pa-
rameter ρ, the choice of which will be very important for our analysis.

Definition 4.11. — Let ρ ⩾ 0 be given.

• For γ, γ̃ ∈ Γ and i ∈ {1, 2}, we will write

γ
ρ←→
λi

γ̃ if and only if
{
|σ(γ)− σ(γ̃)| ⩽ ρ,

λi(γ) = λi(γ̃).

• For γ, γ̃ ∈ Γ, we will write

γ
ρ⇐⇒ γ̃ if and only if

(
γ

ρ←→
λ1

γ̃ or γ
ρ←→

λ2
γ̃

)
.

If γ
ρ⇐⇒ γ̃ and γ̃

ρ⇐⇒ ˜̃γ then we will write

γ
ρ⇐⇒ γ̃

ρ⇐⇒ ˜̃γ.

We say that two arrows ρ⇐⇒ are of different types if one is of type
ρ←→

λ1
and the other one is of type ρ←→

λ2
.

• To the set Γ \ Γ̂+, we associate a structure of graph whose edges
are defined by

Eρ =
{
{γ, γ̃} , s.t. γ, γ̃ ∈ Γ \ Γ̂+, γ ̸= γ̃, γ

ρ⇐⇒ γ̃
}

.

• A cycle of the graph (Γ\ Γ̂+, Eρ) will be called ρ-cycle to emphasize
the dependence on the parameter ρ.

By commodity, a sequence of edges ({γ0, γ1} , . . . , {γn−1, γn}) (whether
it is a path or a cycle) will be denoted by

γ0
ρ⇐⇒ γ1

ρ⇐⇒ · · · ρ⇐⇒ γn−1
ρ⇐⇒ γn.
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5. Approximate controllability

In this section we prove that our system (−A, B) is approximately con-
trollable in time T for any T > 0 (provided that the operators Li defining B

satisfy suitable properties). This is a weaker result than the null controlla-
bility but its proof motivates the introduction of graph theoretic arguments
in a simpler context than the one we will need for the null controllability
result in Section 6. We will prove the following:

Theorem 5.1. — Let A and B be the operators introduced in Definition
2.6 and Proposition 2.7, respectively. Assume the Kalman condition (2.18).
Assume that for i = 1, 2 the adjoint of the operator Li satisfies

(5.1) ker L∗
i ∩

⊕
λi∈Λi

ker(λi −Ai) = {0} .

Then, the system (−A, B) is approximately controllable in time T for every
T > 0.

Remark 5.2. — We wish to point out that this approximate controllabil-
ity result requires less assumptions than our null controllability result. To
be precise, the conditions (2.7), (2.8), (2.10) and (2.15) are not needed for
the proof of Theorem 5.1 (despite being very important in the proof of our
main result).

The proof of Theorem 5.1 relies on the so-called Fattorini-Hautus test
which allows, under some reasonable assumptions, to completely charac-
terize the approximate controllability of systems with analytic semigroup
in terms of the spectral elements of the adjoint operator:

Theorem 5.3 (Fattorini-Hautus test). — Assume that:
(i) Each point of the spectrum σ(A) is isolated and is a pole of finite

order of the resolvent of A.
(ii) The subspace of generalized eigenvectors of A is dense in H.
(iii) −A generates an analytic C0-semigroup.
Then, (−A,B) is approximately controllable in time T for every T > 0,

if and only if the Fattorini-Hautus test holds, i.e.

ker(σ −A∗) ∩ kerB∗ = {0} , ∀σ ∈ C.

This powerful result was established in [19, Corollary 3.3] (see also [7,
30]).

The operator A under study in this paper, introduced in Definition 2.6,
satisfies the assumptions (i), (ii) and (iii) of Theorem 5.3. It remains to
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prove the Fattorini-Hautus test associated with the control operator B

introduced in Section 2.2.2.

Proposition 5.4. — If we assume the Kalman condition (2.18) and
the unique continuation property (5.1), then the pair (−A, B) satisfies the
Fattorini-Hautus test:

ker(σ −A∗) ∩ ker B∗ = {0} , ∀σ ∈ C.

The proof of this proposition relies on the following crucial properties.

Lemma 5.5. — (1) For every γ0, γ1 ∈ Γ \ Γ̂+, γ0 ̸= γ1, we cannot
have

γ0
0←→

λ1
γ1

0←→
λ2

γ0.

(2) There is no 0-cycle γ0
0⇐⇒ γ1

0⇐⇒ · · · 0⇐⇒ γn−1
0⇐⇒ γ0 made of

elements in Γ \ Γ̂+.

Let us first show how this implies the proposition above.
Proof of Proposition 5.4. — Let σ̂ ∈ σ(Γ) be fixed. Let Φ ∈ ker(σ̂ −

A∗) ∩ ker B∗ and let us show that necessarily Φ = 0. Since in particular
Φ ∈ ker(σ̂ −A∗), we can use the description of the eigenfunctions given in
Proposition 4.9 (see also 1 of Remark 4.10) to write

Φ =
∑

γ∈Γ\Γ̂+

σ(γ)=σ̂

aγΦ0
γ ,

for some scalars aγ ∈ C. We introduce the support of Φ defined by

Supp Φ =
{

γ ∈ Γ \ Γ̂+, s.t. σ(γ) = σ̂, aγ ̸= 0
}

.

Our goal is to prove that Supp Φ = ∅. Assume, by contradiction, that
Supp Φ ̸= ∅. We compute (recall the normalization (2.13))

B∗Φ =


L∗

1

 ∑
γ∈Supp Φ

aγϕ1,λ1(γ)


L∗

2

 ∑
γ∈Supp Φ

aγϕ2,λ2(γ)



 .

Therefore, the equation B∗Φ = 0 and the assumption (5.1) yield

(5.2)
∑

γ∈Supp Φ
aγϕ1,λ1(γ) = 0,
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and ∑
γ∈Supp Φ

aγϕ2,λ2(γ) = 0.

Let us now show that this implies the following property, for i = 1, 2,

(5.3) ∀γ ∈ Supp Φ, ∃γ̃ ∈ Supp Φ, γ̃ ̸= γ, γ
0←→

λi

γ̃.

Consider for instance i = 1. Assume that (5.3) does not hold for some
γ ∈ Supp Φ. This means that the eigenfunction ϕ1,λ1(γ) only appears once
in the sum (5.2). Since the family (ϕ1,λ1)λ1∈Λ1 is linearly independent, this
means that the corresponding coefficient aγ is equal to 0, which is not
possible by definition of the support of Φ. Thus, we have (5.3).

Since Supp Φ ̸= ∅ by assumption, there exists an element γ0 ∈ Supp Φ,
then we apply (5.3) with i = 1 to find γ1 ∈ Supp Φ with γ1 ̸= γ0 such that

γ0
0←→

λ1
γ1.

Then, we apply (5.3) with i = 2 to find a γ2 ∈ Supp Φ with γ2 ̸= γ1 such
that

γ1
0←→

λ2
γ2.

By the first point of Lemma 5.5, we know that γ2 ̸= γ0. We can apply again
(5.3) with i = 1 and so on. Since Supp Φ is a finite set, we can repeat the
process until we select en element that was already selected in the process.
Therefore we end up with the following situation

γ0
0⇐⇒ γ1

0⇐⇒ · · · 0⇐⇒ γi−2
0⇐⇒ γi−1

0⇐⇒ γi,

where γi ∈ {γ0, . . . , γi−1}. By construction we have γi−1 ̸= γi, and more-
over, since the kind of the arrows alternate in our construction, we also
know that γi−2 ̸= γi thanks to the first point of Lemma 5.5. We have
finally found a 0-cycle

γk
0⇐⇒ . . .

0⇐⇒ γi−2
0⇐⇒ γi−1

0⇐⇒ γi, with γk = γi and 0 ⩽ k < i− 2,

made of elements in Supp Φ ⊂ Γ \ Γ̂+. This is a contradiction with the
second point of Lemma 5.5. □

Let us now turn out to the proof of this crucial lemma.
Proof of Lemma 5.5. —
(1) It follows from the assumption that

λ1(γ0) = λ1(γ1), and λ2(γ0) = λ2(γ1).
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Since γ0 ̸= γ1, we necessarily have s(γ0) = −s(γ1). Moreover, we
also have σ(γ0) = σ(γ1), which implies by using (4.3), that neces-
sarily

∆λ(γ0) = ∆λ(γ1) = 0.

This proves that one of the two elements γ0 or γ1 belongs to Γ̂+

which is excluded.
(2) Assume that such a 0-cycle exists

γ0
0⇐⇒ γ1

0⇐⇒ · · · 0⇐⇒ γn−1
0⇐⇒ γ0,

where, by definition, γi ̸= γj for i ̸= j. For convenience, we shall set
γn = γ0. We will denote by σ̂ the common value of all the σ(γi).
• Observe first that we have

(5.4) λ(γi) ̸= λ(γi+1), ∀i ∈ {0, . . . , n− 1} .

Indeed, if it were not the case, recalling that λ(γ) = λ1(γ) +
λ2(γ), we would have for some i ∈ {0, . . . , n− 1}

λ1(γi) = λ1(γi+1), λ2(γi) = λ2(γi+1),

that can be written

γi
0←→

λ1
γi+1

0←→
λ2

γi.

This is excluded by the first point of the lemma.
• By (4.3) and (4.1) we have, for any i ∈ {0, . . . , n− 1},

(2σ̂ − (1 + d)λ(γi) + Tr(M))2 = ∆λ(γi)

= ((1− d)λ(γi) + m11 −m22)2 + 4m21m12.

This is a second order polynomial equation for λ(γi) and there-
fore there exists at most two possible values for this quantity.
By (5.4), we deduce that n is necessarily even (we write n = 2ℓ

with ℓ ⩾ 1) and that there exist λ′ ̸= λ′′ such that

(5.5) λ(γ2j) = λ′, λ(γ2j+1) = λ′′, ∀j ∈ {0, . . . , ℓ− 1} .

• Let us prove now that two consecutive arrows in the cycle
cannot be of the same kind. Assume, by contradiction, that
we have

(5.6) γi
0←→

λj

γi+1
0←→

λj

γi+2,

TOME 1 (-1), FASCICULE 0



32 Franck BOYER & Guillaume OLIVE

for some i ∈ {0, . . . , n− 2} and some j ∈ {1, 2}. By (5.5) we
know that λ(γi) = λ(γi+2) and using (5.6) it follows that

λ1(γi) = λ1(γi+2), λ2(γi) = λ2(γi+2),

so that we can write

γi
0←→

λ1
γi+2

0←→
λ2

γi,

which is excluded by the first point of the lemma.
• We assume now that γ0

0←→
λ2

γ1, the other case being similar.
By the discussion above we know that

γ2j
0←→

λ2
γ2j+1

0←→
λ1

γ2j+2, ∀j ∈ {0, . . . , ℓ− 1} ,

that is to say

(5.7) λ2(γ2j) = λ2(γ2j+1), λ1(γ2j+1) = λ1(γ2j+2),
∀j ∈ {0, . . . , ℓ− 1} .

Using (5.5), we can now compute

ℓλ′ =
ℓ−1∑
j=0

λ(γ2j)

=
ℓ−1∑
j=0

λ1(γ2j) +
ℓ−1∑
j=0

λ2(γ2j)

=
ℓ−2∑
j=0

λ1(γ2j+2) + λ1(γ0) +
ℓ−1∑
j=0

λ2(γ2j)

=
ℓ−1∑
j=0

λ1(γ2j+1) +
ℓ−1∑
j=0

λ2(γ2j+1)

(since γ0 = γ2ℓ and using (5.7))

=
ℓ−1∑
j=0

λ(γ2j+1)

= ℓλ′′.

This is a contradiction with λ′ ̸= λ′′ and the proof is complete.
□
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6. Null controllability

The first five parts of this section are devoted to the proof of Theorem
2.8 in the case where the operators Li are simply

Li = Id, i = 1, 2.

The corresponding control operator B will be denoted by Bref . The operator
Bref will play the role of a reference operator and the hardest task of the
work is actually to establish controllability properties for our system with
this Bref .

More precisely, we will first establish the following result:

Theorem 6.1. — Let A be the operator introduced in Definition 2.6
and let Bref be the operator B introduced in Proposition 2.7 with Li = Id
for i = 1, 2. Assume the Kalman condition (2.18).

Let p0 = max {θ1, θ2, ν1, ν2}. Then, the system (−A, Bref) is null con-
trollable in time T for every T > 0, with control cost satisfying, for some
C > 0,

costT (−A, Bref) ⩽ C exp
(

C

T
p0

1−p0

)
, ∀T > 0.

We will then show in Section 6.5 how to deduce the extension Theorem
2.8 by using the so-called Lebeau-Robbiano method ([25, 29]).

Remark 6.2. — The same result remains true if we drop the assumption
(2.9) on the operators A1, A2 but in this case we have to consider p0 sat-
isfying p0 > max {θ1, θ2} and p0 ⩾ max {ν1, ν2}. This will be explained in
Remark 6.13 below.

All along this section we assume that we are under the assumptions of
Theorem 6.1.

6.1. A non standard moment problem

We start by reformulating the null controllability problem into a moment
problem. Let T > 0 be fixed.

1) From the very definition of the notion of solution (2.2), we see that
(−A, Bref) is null controllable in time T if, and only if, for every
y0 ∈ D(A∗)′, there exists u ∈ L2(0, T ; U) such that

(6.1) −
〈
y0, z(0)

〉
D(A∗)′,D(A∗) =

∫ T

0
⟨u(t), B∗

refz(t)⟩U dt, ∀zT ∈ D(A∗),
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with z solution to the adjoint problem (2.3) with τ = T .
Let y0 ∈ D(A∗)′ be fixed from now on. Since the conjugate linear

forms involved in the previous identity (i.e. (2.4)) are continuous
on D(A∗), it is sufficient to check this identity on a dense subset
of D(A∗). We know that span

{
Φk

γ

}
γ∈Γ

0⩽k⩽kγ

is dense in D(A∗) by

point (vi) of Proposition 4.9 (see also point (3) in Remark 4.10).
Therefore, by linearity, it is enough to test (6.1) with zT = Φ0

γ

for every γ ∈ Γ, and zT = Φ1
γ for every γ ∈ Γ̂.

2) For an eigenfunction zT = Φ0
γ , with γ ∈ Γ, the corresponding solu-

tion to the adjoint system (2.3) is given by

z(t) = e−(T −t)σ(γ)Φ0
γ ,

while for a generalized eigenfunction zT = Φ1
γ , with γ ∈ Γ̂, the

solution to the adjoint system is

z(t) = e−(T −t)σ(γ)Φ1
γ − (T − t)e−(T −t)σ(γ)Φ0

γ .

Using (4.16), it follows that the property (6.1) is equivalent to



−e−T σ(γ)〈y0, Φ0
γ

〉
D(A∗)′,D(A∗)

=
∫ T

0
e−(T −t)σ(γ)〈u(t), B∗

refΦ0
γ

〉
U

dt, ∀γ ∈ Γ,

−e−T σ(γ)〈y0, Φ1
γ − TΦ0

γ

〉
D(A∗)′,D(A∗)

=
∫ T

0
(T − t)e−(T −t)σ(γ)〈u(t), B∗

refΦ0
γ

〉
U

dt, ∀γ ∈ Γ̂.

Finding a function u such that the above system is satisfied for
every γ is a so-called “moment problem”. By assumption (2.16) on
the structure of the control space, we can write

u =
(

u1
u2

)
, ui ∈ L2(0, T ; Hi), i = 1, 2.

Using now the structure (2.17) of B∗
ref and the structure (4.11) of

the eigenfunctions of A∗ with (2.13), we see that (6.1) is equivalent
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to

−e−T σ(γ)〈y0, Φ0
γ

〉
D(A∗)′,D(A∗)

=
∫ T

0
e−(T −t)σ(γ)〈u1(t), ϕ1,λ1(γ)

〉
H1

dt

+
∫ T

0
e−(T −t)σ(γ)〈u2(t), ϕ2,λ2(γ)

〉
H2

dt, ∀γ ∈ Γ,

−e−T σ(γ)〈y0, Φ1
γ − TΦ0

γ

〉
D(A∗)′,D(A∗)

=
∫ T

0
(T − t)e−(T −t)σ(γ)〈u1(t), ϕ1,λ1(γ)

〉
H1

dt

+
∫ T

0
(T − t)e−(T −t)σ(γ)〈u2(t), ϕ2,λ2(γ)

〉
H2

dt, ∀γ ∈ Γ̂.

Since for i = 1, 2, {ϕi,λi
}λi∈Λi

is an orthogonal basis of Hi, it is
equivalent to look for ui in the form of the series

ui(t) =
∑

λi∈Λi

ũi,λi(T − t) ϕi,λi

∥ϕi,λi
∥2

Hi

,

with ũi,λi ∈ L2(0, T ) such that

(6.2)
∑

λi∈Λi

∥ũi,λi
∥2

L2(0,T )

∥ϕi,λi∥
2
Hi

< +∞, i = 1, 2.

Thus, the goal is to find {ũ1,λ1}λ1∈Λ1
⊂ L2(0, T ) and {ũ2,λ2}λ2∈Λ2

⊂
L2(0, T ) with (6.2) and such that

(6.3)



−e−T σ(γ)〈y0, Φ0
γ

〉
D(A∗)′,D(A∗)

=
∫ T

0
e−tσ(γ)ũ1,λ1(γ)(t) dt

+
∫ T

0
e−tσ(γ)ũ2,λ2(γ)(t) dt, ∀γ ∈ Γ,

−e−T σ(γ)〈y0, Φ1
γ − TΦ0

γ

〉
D(A∗)′,D(A∗)

=
∫ T

0
te−tσ(γ)ũ1,λ1(γ)(t) dt

+
∫ T

0
te−tσ(γ)ũ2,λ2(γ)(t) dt, ∀γ ∈ Γ̂.

In summary, we have shown the following:
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Proposition 6.3. — Let T > 0 and y0 ∈ D(A∗)′ be fixed. Then, the
following are equivalent:

(i) There exists u ∈ L2(0, T ; U) such that the corresponding solution
y to the system (−A, Bref) satisfies y(T ) = 0.

(ii) There exist {ũ1,λ1}λ1∈Λ1
⊂ L2(0, T ) and {ũ2,λ2}λ2∈Λ2

⊂ L2(0, T )
with (6.2) and satisfying (6.3).

Moreover, if (ii) holds, then u in (i) can be chosen so that

∥u∥2
L2(0,T ;U) =

∑
i∈{1,2}

∑
λi∈Λi

∥ũi,λi
∥2

L2(0,T )

∥ϕi,λi∥
2
Hi

.

The system of equations (6.3) looks like a family of coupled moment
problems. The main difficulty in solving this system comes from the fol-
lowing facts (below, i = 1, 2 and λi ∈ Λi are fixed):

• The unknown function ũi,λi appears in an infinite subset of those
equations, namely the ones corresponding to the parameters γ be-
longing to the set Γi,λi (defined in point (3) of Definition 4.3).

• The map γ ∈ Γi,λi
7→ σ(γ) may not be injective (see Remark 4.8), so

that the same integral term may appear in many of those equations.
• Even in the case where the previous map is injective, it will cer-

tainly happen some spectral condensation phenomenon (see again
Remark 4.8). In general, this condensation may be an obstacle to
the small time null controllability of the system as mentioned in
the introduction. The block moment method was precisely intro-
duced in [9] to carefully analyze this phenomenon in a quite general
setting.

In the sequel of the paper, we will show how to apply this block
moment approach in order to prove the small time null controlla-
bility of our system.

The strategy to solve (6.3) is to build separate sets of equations for the
families (ũ1,λ1)λ1∈Λ1 and (ũ2,λ2)λ2∈Λ2 . In that perspective, we will first
state the following key result that will induce the existence of a suitable
splitting of the source terms into two parts. The proof of this result is
postponed to Section 6.4 below.

Theorem 6.4. — There exists ρ̂ > 0 small enough and there exist two
families (Φk

γ,1) γ∈Γ
0⩽k⩽kγ

⊂ D(A∗), (Φk
γ,2) γ∈Γ

0⩽k⩽kγ

⊂ D(A∗), such that:

(i) We have

Φk
γ = Φk

γ,1 + Φk
γ,2, ∀γ ∈ Γ, ∀0 ⩽ k ⩽ kγ .
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(ii) For every γ, γ̃ ∈ Γ, we have

|σ(γ)− σ(γ̃)| ⩽ ρ̂

λ1(γ) = λ1(γ̃)

}
=⇒

{
Φ0

γ,1 = Φ0
γ̃,1,

Φ1
γ,1 = Φ1

γ̃,1, if γ, γ̃ ∈ Γ̂,

and

|σ(γ)− σ(γ̃)| ⩽ ρ̂

λ2(γ) = λ2(γ̃)

}
=⇒

{
Φ0

γ,2 = Φ0
γ̃,2,

Φ1
γ,2 = Φ1

γ̃,2, if γ, γ̃ ∈ Γ̂.

(iii) There exists C > 0 such that∥∥Φk
γ,1
∥∥

D(A∗) +
∥∥Φk

γ,2
∥∥

D(A∗) ⩽ C |σ(γ)| exp (C |σ(γ)|νmax) ,

∀γ ∈ Γ, ∀0 ⩽ k ⩽ kγ .

Let us explain how to use this result to solve the system (6.3). We intro-
duce the complex numbers

(6.4)

ωk
γ,1 = (−1)k+1e−T σ(γ)〈y0, Φk

γ,1
〉

D(A∗)′,D(A∗),

ωk
γ,2 = (−1)k+1e−T σ(γ)〈y0, Φk

γ,2
〉

D(A∗)′,D(A∗).

The idea is to split the problem into two independent sets of equations as
follows 

ω0
γ,1 =

∫ T

0
e−tσ(γ)ũ1,λ1(γ)(t) dt, ∀γ ∈ Γ,

ω1
γ,1 + Tω0

γ,1 =
∫ T

0
te−tσ(γ)ũ1,λ1(γ)(t) dt, ∀γ ∈ Γ̂,


ω0

γ,2 =
∫ T

0
e−tσ(γ)ũ2,λ2(γ)(t) dt, ∀γ ∈ Γ,

ω1
γ,2 + Tω0

γ,2 =
∫ T

0
te−tσ(γ)ũ2,λ2(γ)(t) dt, ∀γ ∈ Γ̂.

If we manage to solve those problems, by summing the equations and using
point (i) of Theorem 6.4 we immediately get that (6.3) is solved.

Solving those problems amounts to ask that, each function ũ1,λ1 , for
λ1 ∈ Λ1, satisfies

(6.5)


ω0

γ,1 =
∫ T

0
e−tσ(γ)ũ1,λ1(t) dt, ∀γ ∈ Γ1,λ1 ,

ω1
γ,1 + Tω0

γ,1 =
∫ T

0
te−tσ(γ)ũ1,λ1(t) dt, ∀γ ∈ Γ̂1,λ1 ,
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and each function ũ2,λ2 , for λ2 ∈ Λ2, satisfies

(6.6)


ω0

γ,2 =
∫ T

0
e−tσ(γ)ũ2,λ2(t) dt, ∀γ ∈ Γ2,λ2 ,

ω1
γ,2 + Tω0

γ,2 =
∫ T

0
te−tσ(γ)ũ2,λ2(t) dt, ∀γ ∈ Γ̂2,λ2 .

We have now to solve an infinite set of uncoupled moment problems (one
for each ũ1,λ1 and one for each ũ2,λ2), each of them being associated
with a different family of (generalized) exponential functions correspond-
ing to the eigenvalues in Σ1,λ1 and Σ2,λ2 , respectively. Of course, those
moment problems are in fact coupled through the construction of the fam-
ilies (Φk

γ,1) γ∈Γ
0⩽k⩽kγ

, (Φk
γ,2) γ∈Γ

0⩽k⩽kγ

, given by Theorem 6.4.

We are now led to prove that all those moment problems can be solved
with appropriate estimates on the solutions to ensure the convergence of
the series and thus the existence of the control for our initial problem.

Consequently, the proof of Theorem 6.1 will be complete if we manage
to prove the following result.

Proposition 6.5. — Let T > 0 and y0 ∈ D(A∗)′ be fixed and p0 ∈
(0, 1) be such that p0 > max {θ1, θ2, ν1, ν2}.

There exist {ũ1,λ1}λ1∈Λ1
⊂ L2(0, T ) and {ũ2,λ2}λ2∈Λ2

⊂ L2(0, T ) that
satisfy (6.5) and (6.6) respectively, and such that, for some C > 0 not
depending on T and y0,

(6.7)
∑

i∈{1,2}

∑
λi∈Λi

∥ũi,λi
∥2

L2(0,T )

∥ϕi,λi∥
2
Hi

⩽ C exp
(

C

T
p0

1−p0

)
∥y0∥2

D(A∗)′ .

The rest of the section is organized as follows. We first summarize in
Section 6.2 some useful definitions and results coming from the so-called
block moment method. Then we proceed in Section 6.3 to the proof of the
Proposition 6.5 and finally we conclude with the proof of the key Theorem
6.4, in Section 6.4.

6.2. Background on the block moment method

Let us introduce some elements taken from [12] that will be useful in our
analysis (see also [9, 10] where slightly different definitions were used).

Definition 6.6. — Let n ∈ N∗, ρ > 0, α > 0, θ ∈ (0, 1) and κ > 0 be
fixed. We denote by Lw(α, κ, θ, ρ, n) the class of subsets S ⊂ C+ satisfying
the following three conditions:
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• Sector condition:

|Im z| ⩽ (sinh α)(Re z), ∀z ∈ S.

• Counting function asymptotics:

(6.8) NS(r) ⩽ κrθ, ∀r > 0,

(6.9) |NS(r)−NS(s)| ⩽ κ
(
1 + |r − s|θ

)
, ∀r, s > 0.

• Weak gap condition:

(6.10) card (S ∩D(µ, ρ/2)) ⩽ n, ∀µ ∈ C,

where D(µ, ρ) is the open disk of center µ and radius ρ in the
complex plane.

We shall use the following results taken from [12, Propositions V.5.26
and A.5.32] (for the first one, see also a slightly different version in [9,
Proposition 7.1]).

Proposition 6.7. — Assume that S satisfies the weak gap condition
(6.10) for some α > 0, n ∈ N∗ and ρ > 0. Then, there exists a countable
family G made of non empty disjoint subsets of S satisfying the following
three properties:

(i) Covering:
S =

⋃
G∈G

G.

(ii) Uniform bound on the cardinality and the diameter

card G ⩽ n and diam G ⩽ ρ, ∀G ∈ G.

(iii) Gap condition:

dist (conv(G), S \G) ⩾ ρ

2.4n−1 , ∀G ∈ G,

where conv(G) is the convex hull of G.

Proposition 6.8. — Let S ⊂ C+ be a family satisfying the counting
function asymptotic (6.8). Then, there exist C > 0 depending only on θ,
such that ∑

z∈S

e−τ |z| ⩽ C
κ

τθ
e−τ inf|S|/2, ∀τ > 0.

We recall, also with adapted notation, the following result from [12, The-
orem V.4.25] (which is an improved version of [9, Theorem 2.5]), that we
specialized in the particular case where n = 2, which is sufficient in the
present work.
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Theorem 6.9. — Let S ∈ Lw(α, κ, θ, ρ, 2) and (G)G∈G be a grouping
as introduced in Proposition 6.7. There exists C > 0 depending only on
α, κ, θ, and ρ such that, for any T > 0 and G ∈ G, the following assertions
hold.

• If card G = 1, say G = {σG}, then for any ω0
G, ω1

G ∈ C, there exists
qG ∈ L2(0, T ;C) such that

(
ω0

G

ω1
G

)
=
∫ T

0

(
1
t

)
e−tσGqG(t) dt,(

0
0

)
=
∫ T

0

(
1
t

)
e−tσqG(t) dt, ∀σ ∈ S \G,

and

∥qG∥L2(0,T ) ⩽ C exp
(

(ReσG)T
2 + C|σG|θ + C

T
θ

1−θ

)(∣∣ω0
G

∣∣+
∣∣ω1

G

∣∣) .

• If card G = 2, say G = {σG, σ̂G}, with ReσG ⩽ Re σ̂G, then for any
ω0

G, ω̂0
G ∈ C, there exists qG ∈ L2(0, T ) such that

ω0
G =

∫ T

0
e−tσGqG(t) dt,

ω̂0
G =

∫ T

0
e−tσ̂GqG(t) dt,(

0
0

)
=
∫ T

0

(
1
t

)
e−tσqG(t) dt, ∀σ ∈ S \G,

and

∥qG∥L2(0,T ) ⩽ C exp
(

(ReσG)T
2 + C|σG|θ + C

T
θ

1−θ

)(∣∣ω0
G

∣∣+
∣∣∣∣ω0

G − ω̂0
G

σG − σ̂G

∣∣∣∣) .

Remark 6.10. — As shown in [12], the same result remains true if we
drop the assumption (6.9) on the family S but in this case θ in the previous
estimates has to be replaced by an arbitrary θ̃ ∈ (θ, 1).

6.3. Proof of Proposition 6.5

To begin with, we establish that the families of eigenvalues introduced
in (4.4) belong in a uniform way to suitable classes as defined in Definition
6.6. The precise statement is as follows.
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Proposition 6.11. — There exist α, ρ1, ρ2 > 0 and κ̃1, κ̃2 > 0 such
that, we have

Σ1,λ1 ∈ Lw(α, κ̃2, θ2, ρ2, 2), for any λ1 ∈ Λ1,

Σ2,λ2 ∈ Lw(α, κ̃1, θ1, ρ1, 2), for any λ2 ∈ Λ2.

We recall that θi ∈ (0, 1) is such that (2.8) and (2.9) hold.

Proof. — We focus on Σ1,λ1 , the other case being similar. To this end,
it is enough to show that there exist ρ2 > 0 and κ2 > 0 such that, for any
λ1 ∈ Λ1,

(6.11) Σ+
1,λ1

, Σ−
1,λ1
∈ Lw(α, κ2, θ2, ρ2, 1).

Indeed, from [12, Lemma V.4.20], we know that the union Σ1,λ1 = Σ+
1,λ1
∪

Σ−
1,λ1

of two families satisfying (6.11) belongs to the class Lw(α, κ̃2, θ2, ρ2, 2)
for some κ̃2 > 0.

Let us prove (6.11) for Σ+
1,λ1

, the other case being similar.
• The sector condition is clearly satisfied thanks to (4.7) and (4.8).
• By (2.7) and (4.5), we can find λ̂ > 0 large enough such that

(6.12) |ελ| ⩽
1
4 max(d, 1) Gap(Λ2), ∀λ > λ̂.

• Let λ1 ∈ Λ1 and λ2, λ̃2 ∈ Λ2 such that λ2 ̸= λ̃2, that satisfy

(6.13) λ1 + λ2 > λ̂, λ1 + λ̃2 > λ̂.

From (4.6), we have

σ(+, λ1, λ2)− σ(+, λ1, λ̃2) = max(d, 1)(λ2 − λ̃2) + ελ1+λ2 − ελ1+λ̃2
,

and therefore

|σ(+, λ1, λ2)− σ(+, λ1, λ̃2)|
⩾ max(d, 1) Gap(Λ2)− |ελ1+λ2 | − |ελ1+λ̃2

|

⩾
1
2 max(d, 1) Gap(Λ2),

by using (6.12).
• For any λ1 ∈ Λ1 such that λ1 > λ̂ the conditions (6.13) are auto-

matically satisfied since we have (2.6). Therefore, we have

Gap
(

Σ+
1,λ1

)
⩾

1
2 max(d, 1) Gap(Λ2), ∀λ1 ∈ Λ1, λ1 > λ̂.
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• For any λ1 ∈ Λ1 (in particular, such that λ1 ⩽ λ̂), the conditions
(6.13) are satisfied for λ2 and λ̃2 large enough, so that we have

Gap
(

Σ+
1,λ1

)
> 0.

Since Λ1∩(−∞, λ̂] is a finite set, we have finally proved the existence
of a ρ2 > 0 such that

Gap
(

Σ+
1,λ1

)
> ρ2, ∀λ1 ∈ Λ1.

• For any λ1 ∈ Λ1 and λ2 ∈ Λ2, we have (see (4.6))

λ2 ⩽ |max(d, 1)(λ1 + λ2)| = |σ(+, λ1, λ2)− σ+ − ελ1+λ2 |
⩽ |σ(+, λ1, λ2)|+ C,

with

C = |σ+|+ sup
λ∈[0,+∞[

|ελ|.

Therefore, for any r > 0 the condition |σ(+, λ1, λ2)| ⩽ r implies
that λ2 ⩽ r + C. It follows that the counting function associated
with Σ+

1,λ1
satisfies (recall (2.8))

NΣ+
1,λ1

(r) ⩽ NΛ2(r + C) ⩽ κ2(r + C)θ2 .

By (4.7), we know that NΣ+
1,λ1

(r) = 0 for r < 1, in such a way that
the estimate above leads to

NΣ+
1,λ1

(r) ⩽ κ2 (1 + C)θ2 rθ2 , ∀r > 0,

and the claim for Σ+
1,λ1

is proved.
• Let 0 < s < r. The same reasoning as before shows that if s <

|σ(+, λ1, λ2)| ⩽ r then we have

1
max(d, 1)(s− C) < λ1 + λ2 ⩽

1
max(d, 1)(r + C),

so that

1
max(d, 1)(s− C)− λ1 < λ2 ⩽

1
max(d, 1)(r + C)− λ1.
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Using (2.9), it follows that

|NΣ+
1,λ1

(r)−NΣ+
1,λ1

(s)| ⩽NΛ2

(
1

max(d, 1)(r + C)− λ1

)
−NΛ2

(
1

max(d, 1)(s− C)− λ1

)
⩽κ2

(
1 +

∣∣∣∣ 1
max(d, 1)(r − s + 2C)

∣∣∣∣θ2
)

⩽κ̂2
(
1 + |r − s|θ2

)
,

with κ̂2 = κ2

(
1 +

(
2C

max{d,1}

)θ2
)

. This leads to (6.11) for some
κ2 > 0.

□

We will also need the following estimates.

Proposition 6.12. — There exists C > 0 depending only on the op-
erator A and there exists C1 > 0 (resp. C2 > 0) depending only on κ1, θ1
(resp. κ2, θ2) such that, for any τ > 0, we have∑

z∈Σ1,λ1

e−τ |z| ⩽
C2

τθ2
e−Cτλ1 , ∀λ1 ∈ Λ1,

∑
z∈Σ2,λ2

e−τ |z| ⩽
C1

τθ1
e−Cτλ2 , ∀λ2 ∈ Λ2.

This result immediately follows from Proposition 6.8 and Remark 4.7
(which yields inf |Σi,λi

| ⩾ λi/C for some C > 0 not depending on λi).
We can now move to the proof of the desired proposition.
Proof of Proposition 6.5. — The main ingredients for the proof are The-

orem 6.9 and the estimates of Theorem 6.4. Without loss of generality, we
shall assume that

(6.14) T ⩽ 1.

• Once the values ωk
γ,1, ωk

γ,2 have been defined by (6.4) thanks to
Theorem 6.4, it is clear that it is enough to consider only one family
of problems, for instance (6.5), the other one being treated in a
similar way.

For each λ1 ∈ Λ1 fixed, (6.5) looks like a classical moment prob-
lem in L2(0, T ) associated with the family of functions{

t 7→ e−tσ, s.t. σ ∈ Σ1,λ1

}
∪
{

t 7→ te−tσ, s.t. σ ∈ Σ̂1,λ1

}
.
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However, there are two reasons why this is not really a standard
moment problem. The first one comes from the fact that Σ1,λ1 may
not satisfy a uniform gap property and may present some condensa-
tion phenomenon. The second one comes from the fact that the map
σ is not injective and therefore we need to ensure that if γ ̸= γ̃ sat-
isfy σ(γ) = σ(γ̃), then the left-hand side in the corresponding two
equations in (6.5) are exactly the same. We refer again to Remark
4.8 for concrete examples where these problems occur.

In order to solve those two issues simultaneously, we will use the
block moment approach, as described in Theorem 6.9.

• To this end, we first use Proposition 6.11, that shows that there
exist α, ρ2 > 0 and κ̃2 > 0 such that for every λ1 ∈ Λ1, we have

Σ1,λ1 ∈ Lw(α, κ̃2, θ2, ρ2, 2).

It is very important to notice that the parameters of this class do
not depend on λ1.

From the definition of the class Lw it is then clear that we also
have

Σ1,λ1 ∈ Lw(α, κ̃2, θ2, ρ̂2, 2), ρ̂2 = min(ρ2/2, ρ̂),

where ρ̂ is provided by Theorem 6.4.
• Let now Gλ1 be a grouping associated with the family Σ1,λ1 as given

by Proposition 6.7.
In particular, each G ∈ Gλ1 has at most two elements and its

diameter is at most ρ̂2. Consequently, we are in one of the following
two configurations:

– Case 1: card G = 1, say G = {σG}.
We observe that, if γ, γ̃ ∈ Γ1,λ1 satisfy σG = σ(γ) = σ(γ̃), then
by using item (ii) of Theorem 6.4 and (6.4), we have

ω0
γ̃,1 = ω0

γ,1,

since, by definition of Γ1,λ1 we have λ1(γ) = λ1(γ̃). Therefore,
we can simply define

ω0
G = ω0

γ,1,

for any γ ∈ Γ1,λ1 such that σ(γ) = σG, since this value does
not depend on the choice of γ.
Similarly, we can define

ω1
G =

{
ω1

γ,1 + Tω0
γ,1, if ∃γ ∈ Γ̂1,λ1 s.t. σ(γ) = σG,

0 otherwise.
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Applying now Theorem 6.9, we know that there exists a func-
tion qG ∈ L2(0, T ) such that, for every σ ∈ Σ1,λ1 we have
(

ω0
G

ω1
G

)
=
∫ T

0

(
1
t

)
e−tσGqG(t) dt,(

0
0

)
=
∫ T

0

(
1
t

)
e−tσqG(t) dt if σ ∈ Σ1,λ1\G,

as well as the estimate

∥qG∥L2(0,T ) ⩽ C exp
(

(ReσG)T
2 + C|σG|θ2 + C

T
θ2

1−θ2

)(
|ω0

G|+ |ω1
G|
)

.

By construction of the values of ω0
G and ω1

G above, this system
of equations implies that, for any γ ∈ Γ1,λ1 we have

ω0
γ,1 =

∫ T

0
e−tσ(γ)qG(t) dt if σ(γ) ∈ G,

ω1
γ,1 + Tω0

γ,1 =
∫ T

0
te−tσ(γ)qG(t) dt if σ(γ) ∈ G and γ ∈ Γ̂1,λ1 ,(

0
0

)
=
∫ T

0

(
1
t

)
e−tσ(γ)qG(t) dt if σ(γ) ̸∈ G.

– Case 2: card G = 2, say G = {σG, σ̂G} with ReσG ⩽ Re σ̂G.
By the same reasoning as in the previous case, we can define

ω0
G = ω0

γ,1,

where γ is any element in Γ1,λ1 , such that σ(γ) = σG, and

ω̂0
G = ω0

γ̃,1,

where γ̃ is any element in Γ1,λ1 such that σ(γ̃) = σ̂G. Those
values do not depend on the choices of γ and γ̃ respectively.
Observe now that such elements γ and γ̃ satisfy necessarily
s(γ) = −s(γ̃). Indeed, if for instance we have s(γ) = s(γ̃) = +
for a given choice of γ and γ̃, then we deduce that σG and σ̂G

both belong to the family Σ+
1,λ1

. Since σG ̸= σ̂G, we deduce by
(6.11), that |σG − σ̂G| ⩾ ρ2 which is a contradiction with the
fact that the diameter of G is less than or equal to ρ2/2 by
construction.
This remark implies that, for any choice of γ = (s, λ1, λ2)
satisfying σ(γ) = σG, we have γ ̸∈ Γ̂1,λ1 . Indeed, if it were
not the case, we know that γ̂ = (−s, λ1, λ2) would also satisfy
σ(γ̂) = σG but with s(γ̂) = s(γ̃), which is a contradiction.
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All in all, this means that the functions t 7→ te−σGt and t 7→
te−σ̂Gt will not appear in our moment problem.
Applying again Theorem 6.9 we obtain a function qG ∈ L2(0, T )
such that, for every σ ∈ Σ1,λ1 we have

ω0
G =

∫ T

0
e−tσGqG(t) dt,

ω̂0
G =

∫ T

0
e−tσ̂GqG(t) dt,(

0
0

)
=
∫ T

0

(
1
t

)
e−tσqG(t) dt if σ ∈ Σ1,λ1\G,

as well as the estimate

∥qG∥L2(0,T ) ⩽ C exp
(

(ReσG)T
2 + C|σG|θ2 + C

T
θ2

1−θ2

)

×
(
|ω0

G|+
∣∣∣∣ω0

G − ω̂0
G

σG − σ̂G

∣∣∣∣) .

By definition of ω0
G and ω̂0

G, we see that this system of equations
implies that, for any γ ∈ Γ1,λ1 we have

ω0
γ,1 =

∫ T

0
e−tσ(γ)qG(t) dt if σ(γ) ∈ G,(

0
0

)
=
∫ T

0

(
1
t

)
e−tσ(γ)qG(t) dt if σ(γ) ̸∈ G.

• In the first case, from (6.4) and item (iii) of Theorem 6.4, we have
for k = 0, 1,∣∣ωk

G

∣∣ ⩽ C |σG| exp (−(ReσG)T + C |σG|νmax)
∥∥y0∥∥

D(A∗)′ .

In the second case, from (6.4), and using items (ii) and (iii) of
Theorem 6.4, which is allowed since we have

|σ(γ)− σ(γ̃)| = |σG − σ̂G| ⩽ ρ̂2 ⩽ ρ̂,

and λ1(γ) = λ1(γ̃) = λ1 by definition of Γ1,λ1 , we have∣∣∣∣ω0
G − ω̂0

G

σG − σ̂G

∣∣∣∣ =
∣∣∣∣e−T σG − e−T σ̂G

σG − σ̂G

∣∣∣∣ ∣∣∣〈y0, Φ0
γ,1
〉

D(A∗)′,D(A∗)

∣∣∣
⩽ CT |σG| exp (−(ReσG)T + C |σG|νmax)

∥∥y0∥∥
D(A∗)′ .
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With these estimates we see that, in any of the two cases above,
for p0 = max {θ2, νmax}, the following estimate holds

∥qG∥L2(0,T ) ⩽ C exp
(
− (ReσG)T

2 + C|σG|p0 + C

T
p0

1−p0

)
∥y0∥D(A∗)′ .

Note that we used (6.14) and (4.7).
By using (4.9) and Young’s inequality, we end up with

(6.15) ∥qG∥L2(0,T ) ⩽ C exp
(
− C̃T

2 |σG|+
C

T
p0

1−p0

)
∥y0∥D(A∗)′ .

• Let us now form the series

ũ1,λ1(t) =
∑

G∈Gλ1

qG(t).

Thanks to the estimate (6.15) and the estimate provided by Propo-
sition 6.12, this series converges normally in L2(0, T ) with

∥ũ1,λ1∥L2(0,T ) ⩽ C

 ∑
G∈Gλ1

exp
(
− C̃T

2 |σG|
) exp

(
C

T
p0

1−p0

)
∥y0∥D(A∗)′

⩽ C

 ∑
z∈Σ1,λ1

exp
(
− C̃T

2 |z|
) exp

(
C

T
p0

1−p0

)
∥y0∥D(A∗)′

⩽
C

T θ2
exp

(
−Ĉλ1T + C

T
p0

1−p0

)
∥y0∥D(A∗)′ ,

where C and Ĉ do not depend on λ1 and T . This inequality and
the lower bound (2.14) clearly lead to the claimed estimate (6.7).

Finally, ũ1,λ1 solves (6.5) for any λ1 ∈ Λ1 by construction.
A similar argument gives the existence of suitable functions ũ2,λ2 for any

λ2 ∈ Λ2, using this time the values of ωk
γ,2. The proof is complete.

□

Remark 6.13. — If we drop the assumption (2.9) on the operators A1, A2
then, thanks to Remark 6.10, we see that the same proof remains valid
but in this case we have to consider p0 satisfying p0 > max {θ1, θ2} and
p0 ⩾ νmax. This explains what was announced in Remark 6.2.

6.4. Proof of Theorem 6.4

We first observe that, by point (1) of Remark 4.10, it is enough to de-
termine Φ0

γ,1, Φ0
γ,2 for γ ∈ Γ \ Γ̂+ and Φ1

γ,1, Φ1
γ,2 for γ ∈ Γ̂−. Indeed, the
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missing values can simply be defined, for γ = (+, λ1, λ2) ∈ Γ̂+, by

Φ0
(+,λ1,λ2),1 = Φ0

(−,λ1,λ2),1, Φ0
(+,λ1,λ2),2 = Φ0

(−,λ1,λ2),2,

Φ1
(+,λ1,λ2),1 = Φ1

(−,λ1,λ2),1, Φ1
(+,λ1,λ2),2 = Φ1

(−,λ1,λ2),2.

It is straightforward to see that the required properties will be satisfied.
Since Γ̂− ⊂ Γ \ Γ̂+, we are led to study carefully the structure of Γ \ Γ̂+.

More precisely, the idea of the proof is to show that Γ \ Γ̂+ can be written
as a disjoint infinite union of finite subsets such that we can easily solve
by induction, in each of those sets, the required equations of point (i) of
Theorem 6.4 with the desired conditions given in point (ii). Moreover, we
need to ensure that elements belonging to two different such subsets are
never concerned by the condition. This analysis will make use of elementary
graph theory notions. We recall that we have associated to our set Γ \ Γ̂+

a structure of graph in Definition 4.11.
The goal of this section is to establish the following result.

Theorem 6.14. — There exists ρ̂ > 0 small enough such that the graph
(Γ \ Γ̂+, Eρ̂) is a forest and such that, for any path γ0

ρ̂⇐⇒ γ1
ρ̂⇐⇒ · · · ρ̂⇐⇒

γn−1
ρ̂⇐⇒ γn, we have

(6.16) n ⩽ 2κ0 min
0⩽i⩽n

|σ(γi)|,

(κ0 > 0 is introduced in (4.14)) and

(6.17) max
0⩽i⩽n

|σ(γi)| ⩽ 2 min
0⩽i⩽n

|σ(γi)|.

Theorem 6.4 will then be a consequence of this result.
Proof of Theorem 6.4. — We construct Φ0

γ,1 and Φ0
γ,2 in each tree as

follows.
• Pick any node γ of a tree to serve as a root (represented in gray

in Figure 6.1) and define arbitrarily the corresponding values, for
instance as follows

Φ0
γ,1 = 0, Φ0

γ,2 = Φ0
γ .

• If the tree is reduced to one node, we are done. Otherwise, con-
sider any node γ̃ ̸= γ such that γ̃

ρ̂⇐⇒ γ and solve accordingly the
corresponding equations:

Φ0
γ̃,1 = Φ0

γ,1, Φ0
γ̃,2 = Φ0

γ̃ − Φ0
γ̃,1, if γ

ρ̂←→
λ1

γ̃,

Φ0
γ̃,2 = Φ0

γ,2, Φ0
γ̃,1 = Φ0

γ̃ − Φ0
γ̃,2, if γ

ρ̂←→
λ2

γ̃.
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level 0

level 1

level 2

level 3

level 4

ρ̂
⇐⇒ρ̂⇐⇒ ρ̂ ⇐⇒

ρ̂ ⇐⇒ρ̂⇐⇒

ρ̂ ⇐⇒
ρ̂ ⇐⇒

ρ̂ ⇐⇒

ρ̂⇐⇒ ρ̂
⇐⇒

ρ̂
⇐⇒

ρ̂
⇐⇒

ρ̂⇐⇒

ρ̂ ⇐⇒
ρ̂ ⇐⇒

ρ̂⇐⇒

ρ̂
⇐⇒

ρ̂
⇐⇒

ρ̂
⇐⇒

ρ̂ ⇐⇒

ρ̂⇐⇒

ρ̂ ⇐⇒
ρ̂ ⇐⇒

· · · · · ·

Figure 6.1. The forest structure of (Γ \ Γ̂+, Eρ̂). In each tree, a root
node is fixed, and the other nodes are organised by levels corresponding
to their distance to the root. One of the trees is emphasized, as well
as the chosen root.

This way, we can determine all the values associated to the nodes
at distance 1 of the root (first level of nodes in Figure 6.1).

Repeating this process for each level, we construct Φ0
γ,1 and Φ0

γ,2
in such a way that the properties (i) and (ii) of Theorem 6.4 are
satisfied. Note that this construction is not ambiguous precisely
because of the fact that our graph is a forest, so that there is a
unique path in the graph that connects any two nodes.

Besides, if all the trees are either single nodes or reduced to a
path of length one with an arrow of the same type ρ̂←→

λ1
(resp. ρ̂←→

λ2
),

then we can take Φ0
γ,1 = 0 (resp. Φ0

γ,2 = 0) for every γ.
• It remains to check the corresponding estimate stated in (iii). Below,

we denote by C a positive number that may change from line to line
but that does not depend on γ, γ̃. First of all, for the first picked
node γ we have the common estimate (recall (4.9))

max
{∥∥Φ0

γ,1
∥∥

D(A∗) ,
∥∥Φ0

γ,2
∥∥

D(A∗)

}
⩽
∥∥Φ0

γ

∥∥
D(A∗) .
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Then, for any node γ̃ ̸= γ such that γ̃
ρ̂⇐⇒ γ , we have

max
{∥∥Φ0

γ̃,1
∥∥

D(A∗),
∥∥Φ0

γ̃,2
∥∥

D(A∗)

}
⩽
∥∥Φ0

γ̃

∥∥
D(A∗) + max

{∥∥Φ0
γ,1
∥∥

D(A∗) ,
∥∥Φ0

γ,2
∥∥

D(A∗)

}
⩽
∥∥Φ0

γ̃

∥∥
D(A∗) +

∥∥Φ0
γ

∥∥
D(A∗) .

Repeating this process, we see that, for any node γ̃ in the same tree
as γ, we have (recall the estimate (4.15))

max
{∥∥Φ0

γ̃,1
∥∥

D(A∗) ,
∥∥Φ0

γ̃,2
∥∥

D(A∗)

}
⩽

n∑
i=0

∥∥Φ0
γi

∥∥
D(A∗)

⩽ C

n∑
i=0

eC|σ(γi)|ν
max ,

where
γ0

ρ̂⇐⇒ γ1
ρ̂⇐⇒ · · · ρ̂⇐⇒ γn−1

ρ̂⇐⇒ γn,

is the unique path from γ0 = γ to γn = γ̃. In particular, by using
(6.17) and (6.16), we deduce

max
{∥∥Φ0

γ̃,1
∥∥

D(A∗) ,
∥∥Φ0

γ̃,2
∥∥

D(A∗)

}
⩽ C |σ(γ̃)| eC|σ(γ̃)|ν

max .

The proof is similar for Φ1
γ,1 and Φ1

γ,2 for γ ∈ Γ̂.
□

To prove Theorem 6.14, we need the following basic lemma concerning
the edges of our graph.

Lemma 6.15. — There exist ρ∗ > 0 small enough and σ∗ ⩾ 0 large
enough such that, for any γ, γ̃ ∈ Γ \ Γ̂+ with γ

ρ∗

⇐=⇒ γ̃, we have:

(i) if |σ(γ)| ⩾ σ∗ and |σ(γ̃)| ⩾ σ∗, then

s(γ) = s(γ̃) =⇒ γ = γ̃.

(ii) if s(γ) = + and s(γ̃) = −, then{
λ1(γ) = λ1(γ̃) =⇒ λ2(γ) < λ2(γ̃),
λ2(γ) = λ2(γ̃) =⇒ λ1(γ) < λ1(γ̃).

Proof of Lemma 6.15. —
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(i) We consider the case γ = (+, λ1, λ2) and γ̃ = (+, λ1, λ̃2), since the
other cases are similar. From (4.6), we have

σ(γ)− σ(γ̃) = max(d, 1)(λ2 − λ̃2) + ελ1+λ2 − ελ1+λ̃2
,

and since by assumption we have |σ(γ) − σ(γ̃)| ⩽ ρ∗, we end up
with

max(d, 1)|λ2 − λ̃2| ⩽ ρ∗ + |ελ1+λ2 |+
∣∣ελ1+λ̃2

∣∣ .
Using (4.10) and (4.5), we see that we can choose σ∗ large enough,
depending on ρ∗, to ensure that

|ελ1+λ2 |+
∣∣ελ1+λ̃2

∣∣ ⩽ ρ∗.

Choosing first 2ρ∗ < max(d, 1) Gap(Λ2) and then σ∗ as above, we
obtain

|λ2 − λ̃2| < Gap(Λ2),
which, by definition of Gap(Λ2), implies that λ2 = λ̃2.

(ii) We consider the case γ = (+, λ1, λ2) and γ̃ = (−, λ1, λ̃2), since the
other case is similar.

We write
√

∆λ = aλ + ibλ with aλ, bλ ⩾ 0. From the expression
(4.3), we see that the condition |σ(γ)− σ(γ̃)| ⩽ ρ∗ implies that

(6.18)
∣∣(1 + d)(λ2 − λ̃2) + aλ1+λ2 + aλ1+λ̃2

∣∣ ⩽ 2ρ∗,

and

(6.19)
∣∣bλ1+λ2 + bλ1+λ̃2

∣∣ ⩽ 2ρ∗.

First of all, observe that bλ does not depend on λ for λ large
enough (recall (4.2)). Taking then ρ∗ > 0 small enough, we see
that the condition (6.19) implies that bλ1+λ2 = bλ1+λ̃2

= 0. Since
s(γ) = + and since no node in the graph belongs to Γ̂+, we have
γ ̸∈ Γ̂ and thus ∆λ1+λ2 ̸= 0. As bλ1+λ2 = 0 this means that we
necessarily have

aλ1+λ2 ̸= 0.

Introducing
δ = inf

λ∈Λ1+Λ2
aλ ̸=0

aλ,

we have δ > 0 (recall (4.2)), and the condition (6.18) yields

λ2 − λ̃2 ⩽
1

1 + d
(2ρ∗ − δ) .

It follows that we can find a positive ρ∗ < δ/2 to obtain the claimed
inequality λ2 < λ̃2.
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□

Let us now finally prove the desired result.
Proof of Theorem 6.14. —

1) Let us first prove that the graph is a forest. By definition, we have
to show that it has no ρ̂-cycle. Assume by contradiction that there
exists a ρ̂-cycle:

γ0
ρ̂⇐⇒ γ1

ρ̂⇐⇒ · · · ρ̂⇐⇒ γn−1
ρ̂⇐⇒ γ0,

where, by definition, n ⩾ 3 and γi ̸= γj for i ̸= j. Let γmin ∈
{γ0, . . . , γn−1} be such that

|σ(γmin)| = min
i∈{0,...,n−1}

|σ(γi)|.

We distinguish two cases.
• Case 1 : |σ(γmin)| < σ∗.

We claim that in this case, for ρ̂ well chosen, we have a 0-cycle,
that is

(6.20) σ(γi) = σ(γmin), ∀i ∈ {0, . . . , n− 1} .

This will establish a contradiction with point 2 of Lemma
5.5. If (6.20) is not true, we can take the smallest index i0 ∈
{0, . . . , n− 2} such that{

σ(γi0) = σ(γmin),
σ(γi0+1) ̸= σ(γmin).

In particular we have

|σ(γi0)| < σ∗.

Moreover, by definition of ρ̂⇐⇒, we have

(6.21) |σ(γi0+1)− σ(γi0)| ⩽ ρ̂,

and, taking ρ̂ ⩽ σ∗, we deduce that

|σ(γi0+1)| < 2σ∗.

Therefore, |σ(γi0)− σ(γi0+1)| ⩾ δ∗, where

δ∗ = inf
{
|σ(γ)− σ(γ̃)| , s.t. γ, γ̃ ∈ Γ \ Γ̂+,

|σ(γ)| < σ∗, |σ(γ̃)| < 2σ∗, σ(γ) ̸= σ(γ̃)
}

.
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Since this quantity is the minimum of a finite number of pos-
itive values, it satisfies δ∗ > 0. Therefore we can impose on
the parameter ρ̂ the additional condition ρ̂ < δ∗ to obtain a
contradiction with (6.21). This establishes (6.20).

• Case 2 : |σ(γmin)| ⩾ σ∗.
By item (i) of Lemma 6.15, we have

(6.22) s(γi+1) = −s(γi), ∀i ∈ {0, . . . , n− 1},

where we introduced γn = γ0 for convenience. Note in partic-
ular that n is even.

– Let us now show that the kinds of the arrows in the
ρ̂-cycle necessarily alternate, that is

(6.23)


γi

ρ̂←→
λ2

γi+1 =⇒ γi+1
ρ̂←→

λ1
γi+2,

γi
ρ̂←→

λ1
γi+1 =⇒ γi+1

ρ̂←→
λ2

γi+2.

We will show the first of these properties, the proof of
the other being similar.
Assume, by contradiction, that we have

γi
ρ̂←→

λ2
γi+1

ρ̂←→
λ2

γi+2.

Since γi ̸= γi+2, we deduce that γi
2ρ̂←−→
λ2

γi+2 and, choos-
ing 2ρ̂ ⩽ ρ∗, we can use again item (i) of Lemma 6.15
to deduce that s(γi) ̸= s(γi+2), which is a contradiction
with (6.22).

– Let us assume for instance that s(γ0) = + and γ0
ρ̂←→

λ2
γ1,

the other cases being similar. Recalling (6.22), and since
ρ̂ ⩽ ρ∗, by item (ii) of Lemma 6.15, we thus have

λ1(γ0) < λ1(γ1).

By using (6.23) we see that the second arrow in the cycle
is γ1

ρ̂←→
λ1

γ2, which gives λ1(γ1) = λ1(γ2). By induction,
we eventually obtain

λ1(γ0) < λ1(γ1) = λ1(γ2) < . . . < λ1(γn−1) = λ1(γn).

This is impossible since, by definition of the cycle we
have γn = γ0.
This shows that there is no ρ̂-cycle in the case |σ(γmin)| ⩾
σ∗ either.

TOME 1 (-1), FASCICULE 0



54 Franck BOYER & Guillaume OLIVE

2) Let us now prove the estimates (6.16) and (6.17). We consider a
path:

γ0
ρ̂⇐⇒ γ1

ρ̂⇐⇒ · · · ρ̂⇐⇒ γn,

where n ⩾ 1 and γi ̸= γj for i ̸= j and we define

m = min
0⩽i⩽n

|σ(γi)|.

Let i0 ∈ {0, . . . , n} such that |σ(i0)| = m. By definition of ρ̂⇐⇒ we
see that, for any i ∈ {0, . . . , n}, we have

|σ(γi)− σ(γi0)| ⩽ ρ̂|i− i0| ⩽ ρ̂n,

and therefore

(6.24) |σ(γi)| ⩽ m + ρ̂n.

Since by definition all the elements in the path are distinct, we have

N(m + ρ̂n) ⩾ n + 1,

where N is the counting function defined in (4.13). Using (4.14),
we get

n ⩽ κ0(m + ρ̂n),
and, choosing ρ̂ ⩽ 1/(2κ0), we obtain the first estimate (6.16):

n ⩽ 2κ0m.

Plugging this inequality into (6.24), we obtain the second estimate
(6.17).

□

6.5. Proof of the main result

In this section, we prove our main result (Theorem 2.8), which is an ex-
tension of Theorem 6.1 to more general control operators B ∈ L(U, D(A∗)′)
whose adjoint is of the following form on C2 ⊗D(A1)⊗D(A2):

B∗ =
((

1 0
)
⊗ L∗

1 ⊗B∗
2(

1 0
)
⊗B∗

1 ⊗ L∗
2

)
,

for some operators L∗
i ∈ L(Hi) (i = 1, 2) subject to the Lebeau-Robbiano

type estimates (2.19).
This case is much harder to handle than the previous case of control

operator Bref (corresponding to L1 = L2 = Id) because we lose some
important orthogonal properties. For this operator B, the proof given in

ANNALES DE L’INSTITUT FOURIER



BOUNDARY NULL-CONTROLLABILITY OF MULTI-D PARABOLIC SYSTEMS 55

Section 6.1 cannot be simply adapted because the expansions of the controls
ui into Fourier series no longer seem usable.

However, thanks to the estimate of the control cost previously obtained
for the system (−A, Bref), we can use the so-called Lebeau-Robbiano method
to deal with this more general case.

We recall that the purpose of the Lebeau-Robbiano method is precisely
to allow the change of the control operator for null controllable systems
under some conditions. More precisely,

Theorem 6.16 (Lebeau-Robbiano method). — Let Bref ∈ L(U, D(A∗)′)
and assume that the system (−A,Bref) is null controllable at any time
T > 0, with control cost satisfying, for some p0 ∈ (0, 1) and C1 > 0,

costT (−A,Bref) ⩽ C1 exp
(

C1

T
p0

1−p0

)
, ∀T > 0.

Assume in addition that there exists a family of operators {Pµ}µ>0 ⊂
L(D(A∗)) such that

(6.25)

e−tA∗
(Ran Pµ) ⊂ Ran Pµ, ∀t ⩾ 0,∀µ > 0,

sup
µ>0
∥Pµ∥L(D(A∗)) < +∞,

and that satisfies the following two key properties for some C2, C3 > 0:
(i) A relative observability property (of the operator B∗ with re-

spect to the reference operator B∗
ref): there exists η ∈ [0, 1) such

that

(6.26) ∥B∗
refz∥U ⩽ C2eC2µη

∥B∗z∥U , ∀µ > 0, ∀z ∈ Ran Pµ,

(ii) A dissipation property:

(6.27)
∥∥∥e−tA∗

z
∥∥∥

D(A∗)
⩽ C2e−C3µt ∥z∥D(A∗) ,

∀t ⩾ 0, ∀µ > 0, ∀z ∈ Ran (Id− Pµ).

Then, the system (−A,B) is null controllable in time T for every T > 0,
with control cost satisfying, for some C > 0,

costT (−A,B) ⩽ C exp
(

C

T
p

1−p

)
, ∀T > 0,

with p = max(p0, η).

Theorem 6.16 is a simple adaptation of the abstract Lebeau-Robbiano
method established in [29, Theorem 2.2] (see pp. 1469-1470). The main
difference is that we consider here operators Pµ which are not necessarily
orthogonal projections, which is an important feature when considering
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systems of PDEs since they are not self-adjoint in general. However, the
last property in (6.25) is enough to make the same proof work. For this
reason, we omit the details.

Let us now turn to the proof of the desired result:

Proof of Theorem 2.8. — We simply show that we are in the configura-
tion of Theorem 6.16 with A = A, Bref = Bref , B = B and

Pµz =
∑

γ∈Γ\Γ̂+

|σ(γ)|⩽µ
0⩽k⩽kµ

〈
z, Φk,∗

γ

〉
D(A∗)Φ̃

k
γ ,

where
{

Φk,∗
γ

}
γ∈Γ\Γ̂+

0⩽k⩽kγ

is the biorthogonal family, in D(A∗), of the Riesz basis{
Φ̃k

γ

}
γ∈Γ\Γ̂+

0⩽k⩽kγ

, where Φ̃k
γ = Φk

γ/
∥∥Φk

γ

∥∥
D(A∗) (see Proposition 4.9).

• The controllability of the reference system was established in The-
orem 6.1 with p0 = max {θ1, θ2, ν1, ν2} (and any p0 satisfying p0 >

max {θ1, θ2} and p0 ⩾ max {ν1, ν2} if we drop the assumption (2.9)
on the operators A1, A2, see Remark 6.2).

• Note that Pµ is not an orthogonal projection since we only have
a Riesz basis and not necessarily a Hilbert basis (P ∗

µ ̸= Pµ, unless
M∗ = M). However, this family of projections clearly satisfies the
conditions in (6.25).

• The relative observability property (6.26) holds with η = max {η1, η2}
thanks to our assumption (2.19) on the operators Li. Note that this
has to be checked only on linear combinations of eigenfunctions of
A∗ since the observation operators B∗ and B∗

ref do not see the gen-
eralized eigenfunctions: B∗Φ1

γ = B∗
refΦ1

γ = 0 for γ ∈ Γ̂+ (see (4.12)).
• Finally, the dissipation property (6.27) is easy to check because,

from the Riesz basis property, the semigroup of −A∗ is explicitely
given for every t ⩾ 0 and z ∈ Ran (Id− Pµ) by

e−tA∗
z =

∑
γ∈Γ\Γ̂+

|σ(γ)|>µ

e−σ(γ)t
〈
z, Φ0,∗

γ

〉
D(A∗)Φ̃

0
γ

+
∑

γ∈Γ̂+

|σ(γ)|>µ

e−σ(γ)t
〈
z, Φ1,∗

γ

〉
D(A∗)

(
Φ̃1

γ − t(A∗ − σ(γ))Φ̃1
γ

)
.

□
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Appendix A. Properties of A and B

A.1. Tensor products

Let us briefly recall some basic facts about tensor products. We adopt
the abstract point of view given for instance in [33, Chapters II.4 and
VIII.10] and [32, Chapter XIII.9]. Concrete examples of interest are recalled
in Remark A.1.

For φ1 ∈ H1 and φ2 ∈ H2, we denote by φ1 ⊗ φ2 : H1 ×H2 −→ C the
pure tensor product of φ1 with φ2, that is the continuous bilinear form
defined, for every (h1, h2) ∈ H1 ×H2, by

(φ1 ⊗ φ2)(h1, h2) = ⟨φ1, h1⟩H1
⟨φ2, h2⟩H2

.

Then, the so-called algebraic tensor space is

H1 ⊗H2 = span {φ1 ⊗ φ2, s.t. φ1 ∈ H1, φ2 ∈ H2} .

We will denote by E1 ⊗ E2 = span {φ1 ⊗ φ2, φ1 ∈ E1, φ2 ∈ E2} for
any subspaces E1 ⊂ H1 and E2 ⊂ H2. On the vector space H1 ⊗ H2 we
introduce the following inner product, first defined on pure tensor products
by

⟨φ1 ⊗ φ2, φ̃1 ⊗ φ̃2⟩H1⊗H2
= ⟨φ1, φ̃1⟩H1

⟨φ2, φ̃2⟩H2
,

and then extended by linearity to all of H1⊗H2. It can be checked that this
inner product is well defined (i.e. that two different writing of an element
in H1⊗H2 yields the same value in the computation of the inner product).
This makes H1 ⊗ H2 a pre-Hilbert space but this space is in general not
complete (because H1 and H2 are infinite dimensional). This motivates the
introduction of its completion with respect to this inner product, which
will be denoted by

H1 ⊗̂H2.

Remark A.1. — In the main applications we have in mind (see the in-
troduction or Section 3) we will mainly use two kinds of tensor products
that can be easily explicited (up to an isomorphism). Details are given in
[33, Theorem II.10].

• The first one concerns separation of variables in a cartesian product
domain Ω = Ω1 ×Ω2. Considering H1 = L2(Ω1) and H2 = L2(Ω2),
we can simply identify the pure tensor product φ1⊗φ2 in H1⊗H2
with the function in L2(Ω) defined by

(x1, x2) ∈ Ω1 × Ω2 7→ φ1(x1)φ2(x2).
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It is easily seen that this map can be extended by bilinearity to a
bijective isometry that maps L2(Ω1) ⊗̂ L2(Ω2) onto L2(Ω).

• The second example concerns the separation of components in a
vector-valued function. In that case we set H1 = Cn and H2 =
L2(Ω,C) for a given integer n ⩾ 1 and for any v ∈ Cn and φ ∈
L2(Ω,C), we identify the pure tensor product v⊗φ with the function
in L2(Ω,Cn) defined by

x ∈ Ω 7→ φ(x)v ∈ Cn.

Here also this construction leads to a natural bijective isometry that
maps Cn ⊗̂ L2(Ω) with L2(Ω,Cn).

Let now H̃1, H̃2 be two complex Hilbert spaces and A1 : H1 → H̃1,
A2 : H2 → H̃2 be two bounded linear operators. There exists a unique
bounded linear operator from H1 ⊗̂H2 into H̃1 ⊗̂ H̃2, denoted by A1⊗A2,
that satisfies

(A1 ⊗A2)(ϕ1 ⊗ ϕ2) = (A1ϕ1)⊗ (A2ϕ2), ∀ϕ1 ∈ H1, ϕ2 ∈ H2.

Moreover, we have

∥A1 ⊗A2∥L(H1⊗̂H2,H̃1⊗̂H̃2) = ∥A1∥L(H1,H̃1) ∥A2∥L(H2,H̃2) .

We refer for instance to [33, Proposition VIII.10, p.299].

A.2. Proofs of the properties of A

Let us start by showing that our operator A is a bounded perturbation
of a self-adjoint operator with compact resolvent.

Proof of Proposition 2.5. — Let us denote by A00 the operator (2.11).
First, it is clear that D(A00) is dense in H and that the operator A00 is
symmetric. In particular, it is closable. Moreover, its closure is self-adjoint
if, and only if, both Ran (A00 + i) and Ran (A00 − i) are dense in H (see
e.g. [33, Corollary VIII.2, p.257]). This clearly holds here since, in fact, any
f ∈ H can be written as

f =
∑

λ1∈Λ1
λ2∈Λ2

(
A00 ± i

d(λ1 + λ2)± i

(
(P 1

λ1,λ2
f)⊗ ϕ1,λ1 ⊗ ϕ2,λ2

)

+ A00 ± i

λ1 + λ2 ± i

(
(P 2

λ1,λ2
f)⊗ ϕ1,λ1 ⊗ ϕ2,λ2

))
,
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for some finite dimensional operators P 1
λ1,λ2

, P 2
λ1,λ2

∈ L(H,C2) (recall that
Λ1, Λ2 ⊂ R). This also shows that the closure of A00 ± i, and thus A0, has
a compact resolvent. □

Let us now prove the claimed spectral properties of A. We recall that a
family in a Hilbert space is a Riesz basis if it is the image of an orthonormal
basis through an invertible bounded linear operator. We refer for instance
to [37, Section 1.8] for material on Riesz basis.

Proof of Proposition 4.9. —
1) Let σ̂ ∈ C be fixed and let Φ ∈ D(A∗). Writing

(A.1) Φ =
∑

λ1∈Λ1

∑
λ2∈Λ2

vλ1,λ2 ⊗ ϕ1,λ1 ⊗ ϕ2,λ2 ,

for some vectors vλ1,λ2 ∈ C2, a computation shows that Φ ∈ ker(σ̂−
A∗) if, and only if,

vλ1,λ2 ∈ ker Gλ, Gλ =
(

dλ−m11 − σ̂ −m21

−m12 λ−m22 − σ̂

)
,

for every λ1 ∈ Λ1 and λ2 ∈ Λ2, where we use our standard notation
λ = λ1 + λ2. Therefore, σ̂ is an eigenvalue of A∗ if, and only if,
ker Gλ ̸= {0} for some λ1 ∈ Λ1 and λ2 ∈ Λ2. Since m21 ̸= 0 by
assumption, this is equivalent to

(A.2) σ̂ = dλ−m11 −m21r,

where r is a root of

m21r2 + ((1− d)λ + m11 −m22) r −m12 = 0.

In addition, the discriminant of this equation is exactly ∆λ defined
in (4.1) and its two complex roots are

(A.3)
{
−((1− d)λ + m11 −m22)−

√
∆λ

2m21
,

−((1− d)λ + m11 −m22) +
√

∆λ

2m21

}
.

It is then clear that, given an eigenvalue σ̂, there is only a finite
number of λ1 ∈ Λ1 and λ2 ∈ Λ2 that satisfy (A.2), so that the series
in (A.1) is in fact over a finite set. Moreover, the first component
of each vλ1,λ2 ∈ ker Gλ \ {0} is necessarily nonzero since m21 ̸= 0.
This shows that Φ can be written as a linear combination of the Φ0

γ

defined in (4.11) (a simple computation shows that the expression
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of the eigenvalues coincides with the one in (4.3), depending on the
sign s(γ)).

The proof of the statement concerning the generalized eigenspaces
simply relies on computations and will be omitted.

2) The proof of the estimates in (v) is a straightforward computation∥∥Φ0
γ

∥∥
D(A∗) = (1 + |σ(γ)|)

∥∥Φ0
γ

∥∥
H

(since Φ0
γ is an eigenfunction)

= (1 + |σ(γ)|)
√

1 + |rγ |2
∥∥ϕ1,λ1(γ)

∥∥
H1

∥∥ϕ2,λ2(γ)
∥∥

H2

(recall (4.11))

⩽ C1(1 + |σ(γ)|)
√

1 + |rγ |2e2C1λ(γ)νmax

(by (2.15))

⩽ C2 |σ(γ)|2 eC2|σ(γ)|νmax

(by (4.7) and (4.10)),

where C1, C2 > 0 do not depend on γ. The reasoning is similar for
the estimate of the norm of Φ1

γ .
3) Let us now show that the family

{
Φk

γ

}
γ∈Γ

0⩽k⩽kγ

is complete in H. Let

then z ∈ H be such that

(A.4)
〈
z, Φk

γ

〉
H

= 0, ∀γ ∈ Γ, ∀0 ⩽ k ⩽ kγ ,

and let us show that necessarily z = 0. Since H is by definition the
completion of C2 ⊗ H1 ⊗ H2, it is equivalent to prove that (A.4)
implies that

⟨z, h⟩H = 0, ∀h ∈ C2 ⊗H1 ⊗H2,

and since {ϕi,λi}λi∈Λi
is complete in Hi (i = 1, 2), this is equivalent

by linearity to

(A.5)
〈

z,

(
α

β

)
⊗ ϕ1,λ1 ⊗ ϕ2,λ2

〉
H

= 0,

∀
(

α

β

)
∈ C2, ∀λ1 ∈ Λ1, ∀λ2 ∈ Λ2.

Let λ1 ∈ Λ1 and λ2 ∈ Λ2 be given. We define γ+ = (+, λ1, λ2) and
γ− = (−, λ1, λ2).
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• If γ+ ̸∈ Γ̂ (we automatically have γ− ̸∈ Γ̂), then the two vectors
of C2 (

1
rγ+

)
,

(
1

rγ−

)
,

are linearly independent. Therefore the conditions
〈

z, Φ0
γ+

〉
H

=〈
z, Φ0

γ−

〉
H

= 0 from (A.4) imply (A.5).

• If γ+ ∈ Γ̂, then the two vectors of C2(
1

rγ+

)
,

(
0
− 1

m21

)
,

are linearly independent. Therefore the conditions
〈

z, Φ0
γ+

〉
H

=〈
z, Φ1

γ+

〉
H

= 0 from (A.4) imply (A.5).
4) Let Φ̃k

γ = Φk
γ/
∥∥Φk

γ

∥∥
H

. Proving that the family F is a Riesz basis of
H is equivalent to show that (see e.g. [37, Theorem 1.9]) there exist
m, M > 0 such that, for every scalars (αk

γ)
γ∈Γ\Γ̂+

0⩽k⩽kγ

⊂ C, cofinitely

many of them being equal to 0, we have

(A.6) m
∑

γ∈Γ\Γ̂+

0⩽k⩽kγ

∣∣αk
γ

∣∣2 ⩽

∥∥∥∥ ∑
γ∈Γ\Γ̂+

0⩽k⩽kγ

αk
γΦ̃k

γ

∥∥∥∥2

H

⩽ M
∑

γ∈Γ\Γ̂+

0⩽k⩽kγ

∣∣αk
γ

∣∣2 .

For every λ1 ∈ Λ1 and λ2 ∈ Λ2 we set γ+ = (+, λ1, λ2) and γ− =
(−, λ1, λ2), and

Tλ1,λ2 =
{

α0
γ−Φ̃0

γ− + α0
γ+Φ̃0

γ+ , if γ+ ̸∈ Γ̂+,

α0
γ−Φ̃0

γ− + α1
γ−Φ̃1

γ− , if γ+ ∈ Γ̂+.

The sum we have to estimate simply reads
∑

λ1∈Λ1

∑
λ2∈Λ2

Tλ1,λ2 . Since

it is easily seen from the definitions of the (generalized) eigenfunc-
tions that all those terms are pairwise orthogonal, we are finally led
to find two numbers m, M > 0, independent of λ1, λ2 and of the
coefficients α•

• such that (A.6) hold for each term Tλ1,λ2 .
Let us consider such a pair (λ1, λ2) ∈ Λ1 × Λ2.
• Case 1 : λ ∈ Λ̂.

We have Tλ1,λ2 = α0
γ−Φ̃0

γ− + α1
γ−Φ̃1

γ− . The normalization con-
dition immediately gives

∥Tλ1,λ2∥
2
H ⩽ 2(|α0

γ− |2 + |α1
γ− |2).
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For the lower bound, we use the estimate (proved at the end
of this section)

(A.7)

∣∣∣∣∣α 1√
1 + |a|2

(
1
a

)
+ β

(
0
1

)∣∣∣∣∣
2

⩾
1√
2

(|α|2 + |β|2) 1
1 + |a|2 , ∀a, α, β ∈ C,

to deduce

∥Tλ1,λ2∥
2
H ⩾

1√
2

(|α0
γ− |2 + |α1

γ− |2) 1
1 + |rγ+ |2

.

If Λ̂ is finite, we immediately deduce a lower bound for the
terms of this kind. Otherwise, by Remark 4.2, we necessarily
are in the case d = 1, ∆ = 0, in which case it is easily seen
from (A.3) that

rγ+ = m22 −m11

2m21
,

which is obviously a bounded quantity. The claim is proved.
• Case 2 : λ ̸∈ Λ̂.

We know that γ+ = (+, λ1, λ2) ̸∈ Γ̂+ and therefore we have
Tλ1,λ2 = α0

γ−Φ̃0
γ− + α0

γ+Φ̃0
γ+ .

Here also the normalization condition gives the upper bound

∥Tλ1,λ2∥
2
H ⩽ 2(|α0

γ− |2 + |α0
γ+ |2).

For the lower bound, we use the estimate (proved at the end
of this section)

(A.8)

∣∣∣∣∣α 1√
1 + |a|2

(
1
a

)
+ β

1√
1 + |b|2

(
1
b

)∣∣∣∣∣
2

⩾
1√
2

(|α|2 + |β|2) |a− b|2

(1 + |a|2)(1 + |b|2) , ∀a, b, α, β ∈ C,

to get

∥Tλ1,λ2∥
2
H ⩾

1√
2

(|α0
γ− |2 + |α0

γ+ |2)
|rγ+ − rγ− |2

(1 + |rγ+ |2)(1 + |rγ− |2) .

By the definition of rγ in (4.11), and the expressions (4.3),
(4.6), we have

|rγ+ − rγ− |2 = |∆λ|
|m21|2

̸= 0.
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– If d = 1, then ∆λ = ∆ and we obtain from (A.3) that

rγ = 2s(γ)
√

∆ + m11 −m22

−2m21
, ∀γ ∈ Γ,

and in particular the values of rγ+ and rγ− only depend
on M , which proves the claim.

– In the case d ̸= 1, we write

|rγ+rγ− | = |(max(d, 1)− 1)λ + σ+ + m11 + ελ|
|m21|

× |(min(d, 1)− 1)λ + σ− + m11 − ελ|
|m21|

.

It follows from (4.1) that

|rγ+ − rγ− |2 ∼
λ→+∞

C1(d− 1)2λ2,

|rγ+rγ− |2 ∼
λ→+∞

C2(d− 1)2λ2,

for some C1, C2 > 0 that do not depend on γ+, γ−, and
thus

|rγ+ |2 + |rγ− |2 ∼
λ→+∞

C1(d− 1)2λ2.

Therefore, the quantity

|rγ+ − rγ− |2

(1 + |rγ+ |2)(1 + |rγ− |2) ,

has a positive limit when λ→ +∞, which concludes the
proof.

5) Since A∗Φ0
γ = σ(γ)Φ0

γ and A∗Φ1
γ = σ(γ)Φ1

γ + Φ0
γ if γ ∈ Γ̂, it is

not difficult to deduce from what precedes that the same family
normalized in D(A∗) is also a Riesz basis of D(A∗).

6) We have seen in step 1) that σ(Γ) ⊂ σ(A∗). Let us now prove the
reverse inclusion.

Let then µ ∈ C\σ(Γ) and f ∈ H. Let
{

Φk,∗
γ

}
γ∈Γ\Γ̂+

0⩽k⩽kγ

be the

biorthogonal family in H to the Riesz basis
{

Φ̃k
γ

}
γ∈Γ\Γ̂+

0⩽k⩽kγ

(see e.g.

[37, Theorem 1.9] for its existence). We set

(A.9) z =
∑

γ∈Γ\Γ̂+

〈
f, Φ0,∗

γ

〉
H

µ− σ(γ) Φ̃0
γ +

∑
γ∈Γ̂−

〈
f, Φ1,∗

γ

〉
H

µ− σ(γ)

(
Φ̃1

γ −
∥∥Φ0

γ

∥∥
H∥∥Φ1

γ

∥∥
H

Φ̃0
γ

)
.
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Note that, dist (µ, σ(Γ)) > 0 as σ(Γ) is obviously closed and µ ̸∈
σ(Γ), and additionally for any γ ∈ Γ̂−, we have∥∥Φ0

γ

∥∥
H∥∥Φ1

γ

∥∥
H

= |m21|
√

1 + |rγ |2 ⩽ C(1 + |σ(γ)|).

Therefore, both sums in (A.9) are absolutely convergent in H, and
using the closedness of A∗, we can check that z ∈ D(A∗) with
(µ−A∗)z = f , which proves the claim.

7) It remains to prove the asymptotic property (4.14) of the counting
function N . Note that it is enough to consider r ⩾ 1 since N(r) = 0
otherwise, still thanks to (4.7). First of all, we obviously have

N(r) ⩽ N+(r) + N−(r),

where

N±(r) = card
{

γ ∈ Γ±, s.t. |σ(γ)| ⩽ r
}

.

Let us for instance estimate N+. Let γ ∈ Γ+. From the formula
(4.6), we get

|λ(γ)| ⩽ 1
max(d, 1)

(
|σ(γ)|+

∣∣σ+∣∣+
∣∣ελ(γ)

∣∣)
⩽
|σ(γ)|

max(d, 1)
(
1 +

∣∣σ+∣∣+
∣∣ελ(γ)

∣∣) ,

by using (4.7). It follows that the condition |σ(γ)| ⩽ r implies

|λ(γ)| ⩽ Cr, C = 1
max(d, 1)

(
1 +

∣∣σ+∣∣+ sup
λ⩾0
|ελ|
)

.

It follows that

N+(r) ⩽ card {(λ1, λ2) ∈ Λ1 × Λ2, s.t. |λ1 + λ2| ⩽ Cr} ,

and since λ1, λ2 ⩾ 0 this gives

N+(r) ⩽ NΛ1(Cr)NΛ2(Cr),

with the same estimate for N−. It then follows from the asymptotics
(2.8) of NΛ1 and NΛ2 that

N(r) ⩽ κ0rθ, ∀r ⩾ 1,

where
κ0 = 2κ1κ2Cθ, θ = θ1 + θ2.

Since θ ⩽ 1 by assumption (2.10) and r ⩾ 1, this yields the desired
asymptotic (4.14).

□
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It remains to prove the technical estimate we used during the proof.
Proof of the estimates (A.7) and (A.8). — The inequality (A.7) imme-

diately follows from (A.8) by taking the limit b → +∞. Hence, we focus
now on the proof of (A.8).

Let

x = 1√
1 + |a|2

(
1
a

)
, y = 1√

1 + |b|2

(
1
b

)
.

We have

|αx + βy|2 =
〈

G

(
α

β

)
,

(
α

β

)〉
,

where G is the Gram matrix of x and y

G =

 1 1+ab√
1+|a|2

√
1+|b|2

1+ab√
1+|a|2

√
1+|b|2

1

 .

Since all the entries in G have a modulus less than 1, we have〈
G

(
α

β

)
,

(
α

β

)〉
⩾
|det(G)|√

2

∥∥∥∥(α

β

)∥∥∥∥2

C2

.

A straightforward computation shows that

det(G) = |a− b|2

(1 + |a|2)(1 + |b|2) ,

which concludes the proof. □

A.3. Construction of B

We conclude this appendix with the proof of the proposition defining our
control operator B.

Proof of Proposition 2.7. — We will denote by B′ the operator in the
right-hand side of (2.17) with domain

D0 = C2 ⊗D(A1)⊗D(A2).

Note that D0 is dense in D(A0) by the very definition of the domain of
the closure (recall that A0 is the closure of (2.11)) and D(A∗) = D(A) =
D(A0), therefore D0 is dense in D(A∗).

Consequently, the claim is equivalent to show that there exists C > 0
such that

∥B′z∥U ⩽ C (∥A∗z∥H + ∥z∥H) , ∀z ∈ D0.
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Below, we denote by C a positive number that may change from line to line
but that does not depend on z. Still by a density argument, it is equivalent
to prove such an estimate for any z ∈ D0 of the form

z =
∑

λ1∈Λ1

∑
λ2∈Λ2

(
αλ1,λ2

βλ1,λ2

)
⊗ ϕ1,λ1 ⊗ ϕ2,λ2 ,

with (αλ1,λ2)λ1∈Λ1
λ2∈Λ2

, (βλ1,λ2)λ1∈Λ1
λ2∈Λ2

⊂ C, cofinitely many of them being equal

to 0. By definition of B′, we have

B′z =


L∗

1

 ∑
λ1∈Λ1

 ∑
λ2∈Λ2

αλ1,λ2B∗
2ϕ2,λ2

ϕ1,λ1


L∗

2

 ∑
λ2∈Λ2

 ∑
λ1∈Λ1

αλ1,λ2B∗
1ϕ1,λ1

ϕ2,λ2



 .

Since L∗
i ∈ L(Hi), we have

∥B′z∥2
U ⩽ C


∥∥∥∥∥∥
∑

λ1∈Λ1

 ∑
λ2∈Λ2

αλ1,λ2B∗
2ϕ2,λ2

ϕ1,λ1

∥∥∥∥∥∥
2

H1

+

∥∥∥∥∥∥
∑

λ2∈Λ2

 ∑
λ1∈Λ1

αλ1,λ2B∗
1ϕ1,λ1

ϕ2,λ2

∥∥∥∥∥∥
2

H2

 .

Since the family (ϕi,λi
)λi∈Λi

is orthogonal in Hi we have

∥B′z∥2
U =

∑
λ1∈Λ1

∣∣∣∣∣∣B∗
2
∑

λ2∈Λ2

αλ1,λ2ϕ2,λ2

∣∣∣∣∣∣
2

∥ϕ1,λ1∥
2
H1

+
∑

λ2∈Λ2

∣∣∣∣∣∣B∗
1
∑

λ1∈Λ1

αλ1,λ2ϕ1,λ1

∣∣∣∣∣∣
2

∥ϕ2,λ2∥
2
H2

.

Using that B∗
i ∈ L(D(Ai),C), we deduce that

∥B′z∥2
U ⩽ C

∑
λ1∈Λ1

∥∥∥∥∥∥A2
∑

λ2∈Λ2

αλ1,λ2ϕ2,λ2

∥∥∥∥∥∥
2

H2

∥ϕ1,λ1∥
2
H1

+ C
∑

λ2∈Λ2

∥∥∥∥∥∥A1
∑

λ1∈Λ1

αλ1,λ2ϕ1,λ1

∥∥∥∥∥∥
2

H1

∥ϕ2,λ2∥
2
H2

,
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and still by orthogonality of the family of eigenfunctions we get

∥B′z∥2
U ⩽ C

∑
λ1∈Λ1

∑
λ2∈Λ2

|αλ1,λ2 |
2 (λ2

1 + λ2
2) ∥ϕ1,λ1∥

2
H1
∥ϕ2,λ2∥

2
H2

⩽ C
∑

λ1∈Λ1

∑
λ2∈Λ2

|αλ1,λ2 |
2 (λ1 + λ2)2 ∥ϕ1,λ1∥

2
H1
∥ϕ2,λ2∥

2
H2

= C

∥∥∥∥(1 0
0 0

)
⊗ (A1 ⊗ Id + Id⊗A2)z

∥∥∥∥2

H

.

It follows that

∥B′z∥2
U ⩽ C

∥∥∥∥(d 0
0 1

)
⊗ (A1 ⊗ Id + Id⊗A2)z

∥∥∥∥2

H

= C ∥A∗z + (M∗ ⊗ Id⊗ Id)z∥2
H

⩽ C(∥A∗z∥H + ∥z∥H)2.

The proof is complete.
□

Appendix B. Basic elements from graph theory

We recall here some very basic definitions and one result coming from
graph theory. We refer for instance to [36] for the details.

Definition B.1. —
• A (simple, undirected) graph is a pair of two sets (N , E) with

E ⊂ {{γ, γ̃} , s.t. γ, γ̃ ∈ N , γ ̸= γ̃} .

The elements of N are called the nodes and the elements of E are
called the egdes.

• Let γ, γ̃ ∈ N . A path from γ to γ̃ is a finite sequence of distinct
edges of the form

({γ0, γ1} , . . . , {γn−1, γn}) ,

where

n ⩾ 1,

{γi, γi+1} ∈ E , ∀i ∈ {0, . . . , n− 1} ,

γ0 = γ, γn = γ̃,

γi ̸= γj , ∀i, j ∈ {0, . . . , n} , i ̸= j.

The integer n is called the length of the path.
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A graph (N , E) is connected if for every γ, γ̃ ∈ N there exists a
path from γ to γ̃.

• A cycle is a finite sequence of edges of the form

({γ0, γ1} , {γ1, γ2} , . . . , {γn−2, γn−1} , {γn−1, γ0}) ,

where

n ⩾ 3,

{γi, γi+1} ∈ E , ∀i ∈ {0, . . . , n− 2} ,

γi ̸= γj , ∀i, j ∈ {0, . . . , n− 1} , i ̸= j.

A graph with no cycles is called a forest. A connected graph with
no cycles is called a tree.

The only result that we need is the following classical and simple one
(see e.g. [36, Remark 1.2.7]):

Proposition B.2. — The relation “γ = γ̃ or there exists a path from
γ to γ̃” is an equivalence relation over N ×N .

It follows that any graph can be partitioned into connected subgraphs.
Indeed, for γ ∈ N , let us denote by Nγ its equivalence class. Thus, we have
the natural partition of N :

N =
⋃

γ∈N
Nγ ,

and each subgraph (Nγ , Eγ) is connected, where

Eγ =
{{

γ̃, ˜̃γ
}
∈ E , s.t. γ̃, ˜̃γ ∈ Nγ

}
.

In particular, a forest is partitioned into trees (the union of two graphs
(N1, E1) and (N2, E2) is by definition the graph (N1 ∪ N2, E2 ∪ E2); the
intersection of graphs is defined similarly).
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