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BOUNDARY NULL CONTROLLABILITY OF SOME MULTI-DIMENSIONAL
LINEAR PARABOLIC SYSTEMS BY THE MOMENT METHOD

FRANCK BOYER! AND GUILLAUME OLIVE?

Abstract. In this article we study the null controllability of some abstract linear parabolic systems
in tensor product spaces. This special structure allows us to reduce our controllability problem to a
particular set of equations that looks like a moment problem, but that does not fall into the previous
existing results of the literature. We transform this non standard moment problem into an infinite
family of more usual moment problems, yet coupled one from each other. This reformulation is done
with enough care to ensure that the resulting set of equations can be solved, with suitable estimates, by
using the recent “block moment method”. This is based on a careful analysis of the spectral structure
of the underlying operator.

We notably apply our abstract result to show how strong the influence of geometry can be: we
provide an example of boundary controlled parabolic system on a rectangle domain which is null
controllable in arbitrary small time if two perpendicular faces of the boundary are controlled, whereas
it is never null controllable if the control acts on only one face.

2010 Mathematics Subject Classification. 93B05, 93C20, 93C25, 30E05, 35K90, 47A80.

March 20, 2021.

1. INTRODUCTION

This article is devoted to the study of the controllability properties of some abstract linear systems of parabolic
type. The main difficulty when dealing with the controllability of systems, as opposed to equations, is to try
to control a system with less controls than equations. It is sometimes called “indirect controllability”. In the
last ten years, drastically different controllability behaviors from what happens for a single heat equation have
been highlighted: non equivalence between distributed and boundary controllability, non equivalence between
null and approximate controllability, existence of a nonzero minimal control time, etc. In the present article the
emphasis will be especially laid on the role played by the geometry of the control zone. At the abstract level
this will be encoded by a tensor product structure of the state space and of the associated evolution and control
operators. Before detailing more precisely the current literature on this subject, we think it is appropriate to
discuss a simple prototype of parabolic systems that possesses the aforementioned structure and to which our
main result applies.
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ucts.

I Institut de Mathématiques de Toulouse & Institut Universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS
IMT, F-31062 Toulouse Cedex 9, France (e-mail: franck.boyer@math.univ-toulouse.fr)

2 Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348 Krakéw, Poland (e-mail:
math.golive@gmail.com or e-mail: guillaume.olive@uj.edu.pl)



1.1. Motivating example

A typical example that will be detailed below is provided by the following misleadingly simple-looking 2 x 2
System:

M gay, =0, in (0,T) x Q,

ot

0y, .

ot - Ayz =Y, m (OaT) X Q? (11)
vy =Llu,  y. =0, on (0,T) x 09,

y:(0) =9, 5.(0)=y), inQ,

where d > 0 is a diffusion coefficient, Q C R? is a rectangle and v C 92 (see Figure :
Q= (0,X;) x (0, X5), for some X, Xo > 0. (1.2)

The main feature of this system, that makes the problem intricate, is that the control u only acts on the first
component of the system and is localized on a subpart v of the boundary.
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FIGURE 1. Domain 2 and control region v = (wy x {0}) U ({0} x w2)

We will establish in particular that such a system is null controllable in any arbitrary small time if the control
region <y intersects non trivially two perpendicular faces of the boundary. This is radically different from the
one-dimensional situation, i.e. when € is an interval, in which case it is known since [6] that the minimal null
control time, that is denoted by Ty(d), can be any element in [0, +0o0], depending on the value of d > 0. We
also want to mention that this phenomenon also appears in the two dimension case if the control domain = is
contained in one single face of the boundary of Q (in this case it is easily seen that the minimal null control
time of the 2D problem is at least equal to the one of the corresponding 1D problem).

One of the main achievements of the present paper is thus to show that the particular geometry of the control
domain as in Figure [1| prevents us from the appearance of a nonzero minimal null control time.

In fact, we will provide our results in a quite abstract form that possibly encompasses many other similar
systems. As an example, we will illustrate our analysis on more general parabolic systems than , in
particular concerning the structure of the coupling zero-order terms, for which even in the case d = 1 our results
are new.



1.2. Influence of the geometry and the moment method in the literature

The influence of the geometry on the boundary controllability properties of parabolic systems already in-
directly appeared at a weaker level of strength in the seminal work [23]. It is shown in that article that the
controllability of a one-dimensional parabolic system (yet slightly different from ) is especially depending
on the non resonance of the eigenvalues of the associated operator, a condition that involves in particular the
eigenvalues of the Laplacian, therefore subject to the length of the interval 2, and thus to its geometry. A more
striking influence of the geometry was then illustrated in [31], which is in part the motivation of the present
work. Therein, the author investigated the boundary (approximate) controllability properties of the parabolic
system studied in 23] in higher dimension in the particular geometry of a rectangle. It is notably shown there
that the controllability properties of such a system strongly depend on the geometry of the control zone 7 (and
not only on the geometry of the domain  as in the aforementioned paper). Let us also add that the influence
of the geometry of the control zone is not only restricted to boundary control problems. It was for instance
shown in [13] that similar phenomena may occur also in distributed control problems.

The work [23] has then attracted again the attention of numerous researchers on the possible use of the so-
called moment method to deal with controllability problems for parabolic systems (see e.g. [5H7}10}14417132/35]),
a technique initially used in [22] for the boundary null controllability of a one-dimensional heat equation (see also
the earlier works [18)/24]). By pursuing the development of this method in view of the controllability of parabolic
systems, it was notably shown in [6] that a nonzero minimal time of control may occur, as we have already
mentioned before (see also the earlier result [28], with a different approach). Whereas this fact was well-known
in the case of the one-dimensional heat equation after the pioneering work [16] on pointwise controllability, the
papers [6,/28] showed that a similar complex situation occurs for coupled parabolic systems as well (even for a
bounded control operator). The moment method is still developed today since in many situations it seems to
be the only robust technique available to tackle controllability issues (in those cases where the other approaches
like Carleman estimates or fictitious control, to name a few, fail). The usual range of application of the moment
method needs that the spectrum of the underlying operator satisfies a spectral gap estimate (this means that
two distinct eigenvalues cannot be arbitrarily close one from each other). In the references [6,[28] the analysis
was extended to the case where spectral condensation occurs, which was the reason for the appearance of a
minimal null control time. In the even more recent work [10], it was shown that it can be necessary not only
to look at the condensation of the eigenvalues but also to the associated eigenfunctions to obtain an accurate
description of the controllability properties of such systems: this gave birth to the so-called “block moment
method” thanks to which a general formula for the minimal null control time was obtained for a very large class
of scalar control problems. The present work crucially relies on this block moment method.

Concerning the study of the controllability of (systems of) equations of parabolic type in particular geometric
situation such as rectangular domains, let us mention the pioneering work [21] on the boundary null controlla-
bility of the multi-dimensional heat equation in parallelepipedons or cylinders, the work [31], where the above
geometric situation described for the system has been first considered, and [2] for the introduction of the
formalism of tensor product spaces in the controllability of parabolic systems (see also [9,/29]).

Finally, despite not applicable to our geometric situation let us also mention the work [1], where the first multi-
dimensional result for the boundary controllability of parabolic systems was derived from the corresponding
result on hyperbolic systems by the so-called transmutation method.

1.3. Tensor product formalism

In order to ease the understanding of the problem as well as the associated computations, we will express our
evolution operator by making use of a tensor product formulation. We refer to Appendix for a summary of
the main definitions and properties we will need on tensor products of Hilbert spaces and operators.



Let us introduce this on the example (1.1 in the geometry given by (|1.2)). First of all, we will see the Laplace

operator as follows
0? 0?
—AX | —— Id +1d -
( 3%)@ * ®< 3552)’

where we have made the identification
L*(Q) = L*(0, X;) ® L*(0, X3).

This let us separate nicely what happens in each of the two space variables of the problem.
In order to take into account the fact that we are dealing with vector-valued unknowns we will proceed to
another level of identification by writing

(8 2= () meme ()

where the state space is now
(L2(Q))? = C*® L*(0, X1) ® L*(0, Xa).

It has to be noted that the pure tensor products in such a space are obtained as a product of a function of z1,
times a function of x5, times a vector in C2.
More details of the general framework we consider are given in

1.4. Outline of the paper

The rest of the paper is organized as follows. In Section [2] we recall some basic facts on abstract control
systems (Section and we describe precisely the functional setting in which our work takes place (Section
. We state our main results in this quite general abstract framework in Section

Our proofs being based on moment method, it is necessary to accurately describe the spectrum of the operator
under study, this is the main purpose of Section [4] in which we particularily highlight a graph structure on this
spectrum which will be central in our analysis. With this spectral description at hand we manage to prove the
approximate controllability of our system in Section [5| and its null controllability at any time horizon in Section
[l Finally, in Section[7}, we come back to the actual coupled parabolic systems that motivated this work, in the
spirit of the example presented above.

We gather the proofs of few technical results as well as reminders on basic graph theory in appendix.

2. FRAMEWORK

In this section, we will introduce the standing assumptions on the type of abstract control systems that we
consider in this paper. First of all, let us recall some basic general facts about such systems.

2.1. Background on abstract control systems

All along this section, —A : D(A) € H — H is the generator of a Cp-semigroup (e *4);>o on H and
B € L(U D(A*)), where H,U are two complex Hilbert spaces. Here and in what follows, E’ denotes the
(anti-)dual of the complex space E, that is the complex (Banach) space of all continuous conjugate linear forms
(see e.g. [26] Section 1.2.2]). We will use the convention that an inner product of a complex Hilbert space is
conjugate linear in its second argument.



Let us consider the evolution problem associated with the pair (—A, B), i.e.

d
D(e) + Aylt) = Bu(t), 1€ (0.7),
y(0) =",
where T > 0, y(t) is the state at time ¢, y° is the initial data and u(t) is the so-called control at time ¢.
Since B* € L(D(A*),U) we can define a notion of solution in the space D(A*)’ for the system (2.1)).

Definition 2.1 (Solution in D(A*)"). Let T > 0, y° € D(A*)" and u € L*(0,T;U). We say that a function
y:[0,T] — D(A*) is a solution to if y € C°([0,T); D(A*)") and
<y(7—)a ZT>D(A*)',D(_A*) - <y07 Z(O)>D(.A*)’,D(_A*) = /0 <u(t)76*z(t)>U dta (22)

for every 7 € (0,7] and 27 € D(A*), where z € C°([0, 7]; D(A*)) is the solution to the so-called adjoint system:

_ )+ ) =0, te(0,r),

at (2.3)
2(1) =2,
fe. z(t) = e (T7DA T,
Observe that the maps
T (PO pay oy T [ 0B ) (2.4

are continuous conjugate linear forms on D(A*). Thus, we have a natural definition for the map 7 € [0,T] —
y(1) € D(A*)’ through the formula (2:2)). It can be proved that this map is also continuous and that it depends
continuously on y° and u on compact time intervals (see e.g. [15, Theorem 2.37]). This establishes the so-called
well-posedness of the abstract control system (—.A4, B).

Now that we have a notion of continuous solution for the system in the space D(A*)’, we can speak of
its controllability properties in D(A*)".

Definition 2.2 (Controllability). We say that the system ([2.1)) is:

e null controllable in time 7T if, for every y € D(A*)’, there exists u € L?(0,T;U) such that the corre-
sponding solution y € C°([0,T]; D(A*)") to system (2.1)) satisfies

y(T) = 0.

e approximately controllable in time 7T if, for every ¢ > 0 and y°,y? € D(A*)’, there exists u € L?(0,T;U)
such that the corresponding solution y € C°([0,T]; D(A*)’) to system (2.1)) satisfies

[y(T) = yTHD(A*)’ Se

We recall that null controllability implies approximate controllability for analytic semigroups.
When a system is controllable, it is also of interest to measure how much it costs to control it:



Definition 2.3 (Control cost). Assume that (—.A4, B) is null controllable in time 7' for some 7' > 0. We call
control cost the quantity costr(—.A4, B) > 0 defined by

costr(—A,B) = sup < min u||L2(0,T;U)>7

HyOHD(A*)/:l u€ET (y°)

where E7(y°) is the non empty closed convex subset made of the associated null controls, defined by E7(y°) =
{ue L*0,T;U), st. y(T)=0}.

Let us conclude this section with a final remark. As we have seen, since B* € L(D(A*),U), we can always
define a notion of solution in the space D(A*)" for the system . However, in practice it often appears
that there is a “better” space V'’ where this system can be considered (see for instance Section [7] below). This
motivates the introduction of the following concept.

Definition 2.4 (Admissible subspace). For a Banach space V' (equipped with its own norm ||-||,) such that
D(A")CV CH,

with dense and continuous embeddings, we say that V' is an admissible subspace for the system (—.A4, B) if we
have the following two additional properties:

(i) V is invariant through the adjoint semigroup:
eV v, vt>o.

(ii) The following regularity property holds:
3r >0,3C >0, / |B*2(t)||7, dt < C 27|35, V2" € D(AY),
0

where z € C9([0, 7]; D(A*)) is the solution to adjoint system (2.3)).

The point of view adapted in this definition puts the emphasis on the subspace V' and not on the control
operator B, contrary to what is done in the current literature. Basic examples of admissible subspaces are
D(A*) since B* € L(D(A*),U) and H if B € L(U, H). The previous notions of solution, controllability etc.
can then be extended by simply replacing D(A*) by V. It is clear that null controllability in the space D(A*)
implies null controllability in the space V', whereas approximate controllability in the spaces D(A*) and V'
are equivalent for analytic semigroups.

2.2. Standing assumptions on the systems considered in this paper

Let us now describe the kind of abstract control problems that we will deal with in this paper. Of course,
this framework will include the motivating example (1.1)) given in the introduction as well as its generalisation
described in Section [

Here and in what follows, card E denotes the cardinal of a set E. For any subset S C C we define the
associated counting function

No(r) = card {A€ S, st. [A<r}, ¥r>0, (2.5)

as well as the associated gap
Gap(S) = inf |A— pl.
ap(5) = inf [A—u|
A



‘We will also use the notation
Ci={z€C, st. Rez>0}.

2.2.1. The operator A

Let Hy, H> be two complex Hilbert spaces.
e For i = 1,2, let A; : D(A;) C H; — H; be an unbounded linear operator satisfying the following
properties:
(i) A; is a self-adjoint positive operator with compact resolvent. We denote its spectrum by A; and
we observe that we have
A CRY. (2.6)
We assume that each eigenvalue is (geometrically) simple.
(ii) A, satisfies the following gap condition:

Gap(A;) > 0. (2.7)
(iii) A; satisfies the following asymptotic behavior: there exist 6; € (0,1) and k; > 0 such that

Ny, (r) < ke, Vr > 0. (2.8)

i

e We will in addition always assume that 6§ = 6, + 65 satisfies
0 <1. (2.9)

Note that this assumption connects both operators, contrary to the previous ones that only concerned
the operators A; and A, separately.
e Following the ideas briefly discussed in Section [T:3] we finally introduce the state space we will work
with all along this work
H=C>® H, ® H,,
where ® stands for the tensor product whose main properties are recalled in Appendix
We can now introduce an operator from which the generator of our control system will be built on. For any
d > 0, we consider the unbounded operator

(g (1)> ® (A ®1d+1d® Ap),  with domain C* ® D(A;) ® D(Ay). (2.10)

The definition of the tensor product of linear operators is also recalled in Appendix This operator has
the following important properties:

Proposition 2.5. The operator (2.10) is closable and its closure, denoted by Ay, is a self-adjoint operator with
compact resolvent.

The proof of these properties is given in Appendix Concerning material on closable operators we refer
for instance to [26] Sections III.5.3 and IIL.5.5].

The generator of the control system that will be considered in this work is now a bounded perturbation of
Ag defined as follows.

Definition 2.6. Let d > 0 and M € R?*2. The operator A : D(A) C H — H is defined by

A=Ay—M®Id®Id, D(A)=D(A).



Equivalently,

d 0

A = closure of (0 1

> ® (A4 ®Id+1d® Ay) — M @ 1d ® 1d.
Obviously, D(A) = D(Ap) is dense in H, and a computation shows that the adjoint A* is simply given by
A"=Ag—-M"®Id®1d, D(A*)= D(A). (2.11)

2.2.2. The control operators B and Byt
Let us now introduce the class of control operators that will be considered in this paper.

e Fori=1,2 let B; € L(C, D(4;)") be two scalar control operators. We assume that the pair (—A4;, B;)
satisfies the so-called Fattorini-Hautus test, namely

ker(\; — A7) Nker B = {0}, VA €A, (2.12)

and, from now on, we save the notation ¢; », to denote the eigenfunction of A; associated with the
(simple) eigenvalue A; € A; which is normalized such that

B¢\, = 1. (2.13)
This choice of normalization (that has no influence on the results) is maybe not the most conventional

one but it simplifies numerous computations below. Since B is continuous from D(A4;) into C, we
deduce the lower bound

||¢i,>\i D(A; 1
= Ao Y\ € A (2.14)

VI+X T By oV + A

We then assume that their norm has the following upper bound: there exist v; € [0,1) and C > 0
such that

||¢i,>\7:

dix, 17, < CeONL VA € A, (2.15)

We will frequently use the notation

v =max {vy, 2} .

e Next, we consider a particular structure of system associated with these scalar operators. Our control
space will simply be

U = H, x H,. (2.16)

The non scalar control operator B : U — D(A*)’" that we will finally consider is formally given by

Blus, us) = (é) ® (Lyu1) ® by + (é) ® by @ (Lyus),

where L1, Ly are two bounded operators in Hy and Ha, respectively and by € D(A})',ba € D(A3) are such that
b; = B;1. Observe that this operator only acts on the first component of the system.
Its precise definition is given by the following result.



Proposition 2.7. For every Ly € L(Hy) and Ly € L(Hs), there exists a unique bounded linear operator
B € L(U,D(A*)") such that, on C?> ® D(A;) ® D(As), we have

- <(1 0)® Li® B;)

_ 2.17
(1 0)®Bf®L; (2.17)

We denote by Byer the operator obtained when L; =1d fori=1,2.

The proof is postponed to Appendix to ease the presentation.
The operator B¢ will play the role of a reference operator and the hardest task of the work will be to
establish controllability properties for our system with this Biet.

2.3. The Kalman condition

With the operators defined above, any solution y to (2.1 can be written

v =) @+ (7)o,

where y, and y, satisfy, at least at a formal level,

0y,
ot
Y-
ot

+d(A; @Id+1d @ Ag)yy = My, ¥y + Moy, + (Liur) @ ba + by @ (Laus)

+ (Al RId+1d® AQ)yz = Mo Y1 + Ma2Ys,

We immediately see that a necessary controllability condition for the system is the Kalman condition
my, # 0. (2.18)

Indeed, if m,, = 0, then we observe that y, satisfies the equation

Y.
ot

+ (Al RIA+Id® A2)y2 = M22Y>,

that does not depend on the control nor on the first component of the system. In particular any trajectory
reaching zero at some time T satisfies y,(t) = 0 for any ¢, and therefore y,(0) = 0. This proves that not all
initial data can be driven to 0.

From now on, we shall always assume this condition (2.18)).

3. STATEMENTS OF THE MAIN RESULTS

Our first result concerns the approximate controllability, for which we point out that the conditions ,
25, ©9), @) and (ZI5) are not needed.

Theorem 3.1. Let A and B be the operators introduced in Definition [2.6] and Proposition [2.7, respectively.
Assume the Kalman condition (2.18]). Assume that for i = 1,2 the adjoint of the operator L; satisfies

ker L7 N @D ker(\; — A;) = {0} (3.1)
Ai€EA;
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Then, the system (—A, B) is approzimately controllable in time T for every T > 0.

The other results of the present paper are concerned with the null controllability. The second main result is
the following.

Theorem 3.2. Let A and Byes be the operators introduced in Definition [2.6 and Proposition [2.7, respectively.
Assume the Kalman condition (2.18)). Let pg € (0,1) be such that py > max {601,602, v}.

Then, the system (—A, Byet) is null controllable in time T for every T > 0, with control cost satisfying, for
some C' > 0,

costr(—A, Brer) < Cexp < €0 ) , VT >0. (3.2)
T1-»0

A combination of this result and the so-called Lebeau-Robbiano method will give the following important
consequence:

Theorem 3.3. Let A and B be the operators introduced in Definition and Proposition respectively.
Assume that for i = 1,2 the adjoint of the operator L; satisfies the following Lebeau-Robbiano type inequality:
there exists ; € [0,1) and C > 0 such that, for every p > 0 we have

HZHHi < OeC,um'

Lizly,, Vze @ ker(hi — A)). (3.3)

Then, the system (—A, B) is null controllable in time T for every T > 0, with control cost satisfying, for
some C' > 0,

costp(—A, B) < Cexp < C;) , VT >0,

1—p
with p = max {po,m,n2} € (0,1).

Finally, some “higher dimensional” results can also be obtained similarly after using a Fourier decomposition
in the direction of the added dimension (for this reason, its proof will be omitted):

Theorem 3.4. Let A be the operator introduced in Definition . Assume the Kalman condition (2.18)). Let
As be a self-adjoint operator with compact resolvent on a complex Hilbert space Hs. Set

H=H®H;, U=Ux Hs.

Let

A = closure of A®Id+ ((1) (1)> RId®Id® As.

Let B € L(U, D(A*)") be the unique bounded linear operator such that, on C?> @ D(A;) ® D(Ay) ® D(As), we
have
s (L 0)®Li@B;® L
(1 0)®@Bf®@L;®Ls)’
where L3, I~/§ € L(H3) satisfy the Lebeau-Robbiano type inequality (3.3) (with i = 3) for some n3,73 € [0, 1).

Then, the system (—A,E) is null controllable in time T for every T > 0, with control cost satisfying, for
some C' > 0,

_b_

T1-5

costr(—A, B) < Cexp < ) , VT >0,
with p = max {p,n3, M3} € (0,1).

The existence of B can be established in the same way as the existence of B (Proposition .
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4. SPECTRAL ANALYSIS

4.1. Description of the spectrum of A*

First of all let us mention that, by classical perturbation arguments, it is expected that A has a good spectral
theory. For instance, it inherits from A the following properties:

e A has a compact resolvent (see e.g. |19, Proposition II1.1.12]).
e —A generates an analytic semigroup on H (see e.g. [19, Corollary I11.4.7 and Proposition II1.1.12]).

Besides, the same statements hold for the adjoint A* as well since it has the same structure (recall (2.11])).
Let us now describe precisely the structure of the spectrum of A*.

Definition 4.1. For any A € R, we define
Ax=(1—=d)A+my, _m22)2 + 4mymy,, (4.1)

and VA, € Ry UiR, will always denote the principal square root of this number.
Note that

d#1 = lim Ay = +o0. (4.2)
A— 400
On the other hand, when d = 1, we see that Ay does not depend on A, and we simply denote this quantity
by A. It is nothing but the discriminant of the characteristic polynomial of M:
A = (Tr M)?* — 4det M. (4.3)
We shall also introduce the set
A={ eR, st. A,=0}, (4.4)

that will play a particular role in the spectral analysis of our problem.

Remarﬁ 4.2. VVeAnotice that, when d # 1, the cardinal of A is less or equal than 2. However, for d = 1, we have
either A =0 or A =R.

We can now introduce some sets that will be instrumental in our description of the spectrum of A*.
Definition 4.3.
(1) We introduce the set
I'= {+,—} X Al X Ag,

and for any v € T, we denote its components by s(v) € {+, =}, A1(7) € A1 and Aa(y) € Ay. We will
also use the notation A(y) = A\ (y) + A2(7).
(2) We shall use the following particular subsets of T’

It = {4} x Ay x Ay, T={yel, st Any)eA}, T[*F=Tnr*
(3) For any A; € Ay and any Ay € Ag, we introduce
I‘l17>\1 = {+7 7} X {)‘1} X A23 F2,>\2 = {+7 7} X Al X {)‘2}7

and, for i = 1,2,
If,, =Dia, NTE, Tiy =T, N

7’7
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Definition 4.4. We introduce o : I' — C to be the function defined by

(1+d)A(y) = Te(M) 4 5(7) /B
2 )

o) = vy eTl. (4.5)

Associated to this function we introduce, for any A; € A;, i = 1,2, the subsets of C defined by
Sin =0(Tin),  Sh =0lE ), S =oin). (4.6)

In some computations, we shall need an alternative expression for the function o given in the following result.

Proposition 4.5. There exist c7,0~ € C and a function A € R — e\ € C that satisfy

lim e, =0, (4.7)

A— 400

and such that

O—(’V) = max(d, 1)>‘(’V) + ot + EX(v)> if’}/ € F+7 (4 8)
o(y) = min(d, )A(y) + 0~ — ex(y)s ifyel™. '
Let us first give a straightforward corollary of this result.

Corollary 4.6. There exist m,C > 0 such that, if one replaces M by M —mld in the definition of the operator
A, then we have
Reo(y) > 1, VyeT, (4.9)
and
|[Jmo(y) < C, Vyel. (4.10)
In particular, we have

lo(v)| £ V1+C? (Reo(y)), Vyel. (4.11)

Since changing M into M — mld does not influence the controllability properties of the system (indeed it
amounts to consider the system satisfied by the new unknown ¢ — e~™!y(¢)), we will always assume in the
sequel that (4.9) and (4.10) hold. Note that this manipulation does not change the values of Aj.

Proof of Proposition[{.5
e In the case d = 1, we recall that Ay = A does not depend on A, and therefore we simply take €y = 0
and of = EVA-Tr(M)
5 .

e If d > 1 we choose 07 = —m,,, 0~ = —m,, and

(1= d)A+myy — may + VAX

EN = 9

for which the required properties can be easily checked (recall (4.2))).
e Ford <1, weset 0t = —m,, and 0~ = —m,, and

(d—l)/\—m11+m22+m

EN = 9

and we conclude by a straightforward computation.
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Remark 4.7. Observe that:

(i) If d # 1, then (4.2)) implies that o (%, A1, A2) are real numbers for Ay, Ay large enough.
(ii) There exists C' > 0 such that

1

gl <A < CleM)l, ¥yeT. (4.12)
Remark 4.8. We will in the next proposition see that the spectrum of A* is precisely the range o(I'). However,
it is crucial to observe that o is in general not injective, so that an eigenvalue may simultaneously be equal to
o(v) and (%) for two different v # 4. This is the source of most technical problems that we will encounter in
what follows.

Let us now list all the properties of the operator A* that result from the previous assumptions and that will
be needed in this article. The proof is postponed to Appendix [A] to ease the presentation.

Proposition 4.9. Assume that the Kalman condition 1s satisfied. Then, the operator A* has the following
properties:
(i) The spectrum of A* is given by
¥ =0().
We recall that it is only made of eigenvalues.
(i) For any eigenvalue & € 3, the eigenspace ker(é — A*) is spanned by

1 o(vy) —d(A + A + my,
o] = (r ) ® DLy ® P2 0a(y)s Ty = () = dni) + dal) ; (4.13)
’Y

—My

for each v € T such that o(y) = 6 (we recall that ¢; x, is defined in Section . A basis of the
eigenspace ker(6 — A*) is given by considering only the eigenfunctions <I>9y for vy € T\ T (such that

o(1) = 5).
(iii) If v ¢ T, the Jordan chain associated with <I>9Y is trivial, and we set k, = 0.

Ifv € f, the function

ma1

0
P = (_ 1 > ® P11 (v) @ P2, 05(7) (4.14)

is a generalized eigenfunction of A* satisfying
(A" = o(7)) 0] = 0.

In that case, we set ky = 1.
(iv) The counting function N associated with the eigenvalues of the operator A* defined by

N(r) = card {7 eT\TH, st |o(y)] < r}, Vr > 0, (4.15)
satisfies the following asymptotics: there exists kg > 0 such that
N(r) < kor, Vr>0. (4.16)
(v) There exists C > 0 such that
<CeClrI yy e, YO<k <k, (4.17)

1231 -y
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(vi) The normalized family {@]f// H<I>§HD(A*)}7€F\1:+ is a Riesz basis of D(A*) equipped with the graph norm.
0<k<k.,
Remark 4.10. A few remarks are in order.

(1) Let v = (s, A1, A2) be an element of T. Then = (—s, A1, A2) also belongs to T and we have that
— (x 0 _ 40 1 _ &1
0(7) - U(’Y)a ‘b’y - (I)ﬁ,, ‘I)’Y = (I),?.

That is the reason why the Riesz basis introduced in point is indexed on T'\ f+; this prevents an
element from appearing twice in the family (same for the last line of the statement in point . We
could also have chosen to index on '\ T'~.
(2) The counting function N in this theorem takes into account the geometric multiplicities of the eigenvalues
and in particular it is not equal to the counting function N,y of the set o(I") as defined in .
(3) In fact, in most of this work, we only need that the family {@,’j} ver is complete in D(A*). It is only
0<k<k

SRS Ry

for Theorems and that we really need that this family forms a basis.
(4) There is of course no uniqueness of the generalized eigenfunction. We have chosen here the ones that
satisfy
*F7l =
B*®., =0, VyeTl, (4.18)

as it can be easily seen from (4.14)) and (2.17]).

(5) The eigenfunctions and generalized eigenfunctions of A can also be computed in a similar way.

4.2. Graph structures associated to the spectrum of A*

Let us now define two kind of relationships between elements in I" and introduce an appropriate structure
of graph (we recall the needed elementary graph theory notions in Appendix . Such relations are motivated
by the particular structure (2.17)) of our control operator B, this link will be clearer during the proofs below.
These relations depend on a small parameter p the choice of which will be very important for our analysis.

Definition 4.11. Let p > 0 be given.
e For 7,5 € T and i € {1,2}, we will write

lo(v) =) < p,
P~ . .
v +— 7 if and only if -

A Ai(7) = Xi(9)-

e For v,7 € T', we will write
v <& 5 if and only if (’y(%’y or ’y(ﬁ’y).
If v <& 4 and 7 <& 5 then we will write
¥ £ ~ L 5.
We say that two arrows <& are of different types if one is of type </\—pl> and the other one is of type </\—p2>.

e To the set T'\ f*, we associate a structure of graph whose edges are defined by

&={{ni}, st nFeT\TT, 1#4, 1L 3},
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e By commodity, a sequence of edges ({70,71},.--s{V¥n-1,7n}) (Whether it is a path or a cycle) will be
denoted by
p p p p
Yo <= V1 = T = Vn—1 <= Vn-
e A cycle of the graph (T'\ I+, &,) will be called p-cycle to emphasize the dependence on the parameter
p.

5. APPROXIMATE CONTROLLABILITY

In this section we prove that our system (—A, B) is approximately controllable in time T for any T > 0
(Theorem , provided that the adjoint of the operator L; satisfies . This is a weaker result than the
null controllability (because the semigroup generated by A is analytic). However, their proofs rely on different
general methods, namely the Fattorini-Hautus test for the approximate controllability and the moment method
for the null controllability, and thus both deserve to be presented. Note as well that the condition is
weaker than . Last but not least, the following proof also motivates the introduction of graph theoretic
arguments in a simpler context than the one we will need in Section [0}

We emphasize again that, all along this section, the conditions , , , and are not
needed.

The Fattorini-Hautus test allows, under some reasonable assumptions, to completely characterize the ap-
proximate controllability of systems with analytic semigroup in terms of the spectral elements of the adjoint
operator:

Theorem 5.1 (Fattorini-Hautus test). Assume that:

(i) Each point of the spectrum o(A) is isolated and is a pole of finite order of the resolvent of A.
(ii) The subspace of generalized eigenvectors of A is dense in H.
(iii) —A generates an analytic Cy-semigroup.
Then, (—A, B) is approzimately controllable in time T for every T > 0, if and only if the Fattorini-Hautus
test holds, i.e.
ker(oc — A*) Nker B* = {0}, Vo eC.

This powerful result was established in |20}, Corollary 3.3] (see also [831]).

The operator A under study in this paper, introduced in Definition satisfies the assumptions
and of Theorem It remains to prove the Fattorini-Hautus test associated with the control operator B
introduced in Section 2.2.21

Proposition 5.2. If we assume the Kalman condition (2.18|) and the unique continuation property (3.1), then
the pair (—A, B) satisfies the Fattorini-Hautus test:

ker(c — A*)Nker B* = {0}, VoeC.

The proof of this proposition relies on the following crucial properties.

Lemma 5.3. (1) For every vo,71 € T'\ f"’, Yo # Y1, we cannot have
&y 2
70 /\1 M AQ 70-

(2) There is no 0-cycle g LN " PLRPLN Vn—1 LN Yo made of elements in T\ r.

Let us first show how this implies the proposition above.
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Proof of Proposition[5.4 Let 6 € o(T) be fixed. Let ® € ker(6 — A*) Nker B* and let us show that necessarily
® = 0. Since in particular ® € ker(6 — A*), we can use the description of the eigenfunctions given in Proposition

4.9| (see also [1) of Remark [4.10) to write
=), a0,

ye\I't
o(y)=¢6
for some scalars a, € C. We introduce the support of ® defined by

Supp@z{’yef\f+, st. o(y) =4, aV#O}.

Our goal is to prove that Supp® = (). Assume, by contradiction, that Supp ® # (. We compute (recall the

normalization (2.13]))
Ly Z Ay P10 (7)

B*® — v€ESupp @
L; Z Ay B2 7, ()
yESupp P
Therefore, the equation B*® = 0 and the assumption (3.1)) yield
Y e =0, (5.1)
yESupp ¢

and

Z Ay 2 25(y) = 0.

yESupp ¢
Let us now show that this implies the following property, for i = 1, 2,

Vy € Supp®, Iy e€Supp®, 7 #7y, v % 7. (5.2)

Consider for instance ¢ = 1. Assume that (5.2) does not hold for some v € Supp ®. This means that the
eigenfunction ¢y ,(,) only appears once in the sum (5.1]). Since the family (¢1,x,)x,ea, is linearly independent,
this means that the corresponding coefficient a- is equal to 0, which is not possible by definition of the support

of ®. Thus, we have (5.2).
Since Supp ® # ) by assumption, there exists an element vy € Supp ®, then we apply (5.2 with ¢ = 1 to find
1 € Supp ® with 1 # 7o such that

0
Yo < M1-
A1
Then, we apply (5.2]) with i = 2 to find a o € Supp ® with 75 # 71 such that
0
Y1 S V2.
A2
By the first point of Lemma we know that v # v9. We can apply again (5.2)) with ¢ = 1 and so on. Since
Supp @ is a finite set, we can repeat the process until we select en element that was already selected in the

process. Therefore we end up with the following situation

0 0 0 0 0
Yo = V1 = = Yi—2 <~ Yi—1 <~ Vi,
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where v; € {7Y0,...,%i—1}. By construction we have v;_1 # 7;, and moreover, since the kind of the arrows
alternate in our construction, we also know that +;_o # ~; thanks to the first point of Lemma We have
finally found a O-cycle

Vké...é%,gé%,lé%, with 7, =v; and 0 < k < i — 2,

made of elements in Supp® C T'\ ['*. This is a contradiction with the second point of Lemma O
Let us now turn out to the proof of this crucial lemma.

Proof of Lemma[5.3, (1) Tt follows from the assumption that

A1(70) = A1(71), and A2(v0) = A2(71)-

Since 79 # 1, we necessarily have s(y9) = —s(y1). Moreover, we also have o(y9) = o(71), which implies

by using (4.5)), that necessarily
Ax(r0) = Baen) =0

This proves that one of the two elements vy or ; belongs to ['* which is excluded.
(2) Assume that such a 0-cycle exists

0 0 0 0
Y =7 = = Tn—1 < 0,

where, by definition, 7; # 7; for ¢ # j. For convenience, we shall set 7, = 9. We will denote by ¢ the
common value of all the o(v;).
e Observe first that we have

Avi) # A(vig1), YVie{0,...,n—1}. (5.3)
Indeed, if it were not the case, recalling that A(y) = Ai(y) + A2(y), we would have for some
i€{0,...,n—1}
M) = A (yis1)s A2(vi) = A2(yit1)s
that can be written
Yi % Yi+1 % Vi

This is excluded by the first point of the lemma.

e By (4.5) and (4.1) we have, for any i € {0,...,n — 1},
(26 = (1+ d)A(w) + Te(M))* = Axgyy = (1= DA() + 100 — mao)® + dmgymys.

This is a second order polynomial equation for A(7;) and therefore there exists at most two possible
values for this quantity. By (5.3), we deduce that n is necessarily even (we write n = 2¢ with £ > 1)
and that there exist A’ £ \” such that

Av2i) =Xy Aygg1) =", Vie{0,...,0—1}. (5.4)

e Let us prove now that two consecutive arrows in the cycle cannot be of the same kind. Assume,
by contradiction, that we have

0 0
Yi </\—> Yit1 </\—> Yit-25 (5.5)

J J
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for some ¢ € {0,...,n — 2} and some j € {1,2}. By (5.4) we know that A(v;) = A(yi+2) and using
(5.5)) it follows that

A(i) = M(viv2),  A2(v) = Xa(vira),

so that we can write
0 0
Yi S Yit+2 S Vi
A1 Ao

which is excluded by the first point of the lemma.
e We assume now that vy <)\i> v1, the other case being similar. By the discussion above we know
2

that
Y25 % Y2j+1 <>\—0>'Y?j+27 vje{0,....,£—1},
2 1
that is to say
A2(725) = A2(r2i41)s  A(r2ie1) = M(yei42), Vi €{0,...,£—1}. (5.6)

Using (5.4), we can now compute
-1
X' = Z A(725)
§=0
-1 -1
= Z A1(725) + Z)\2(’Y2j)
§=0 §=0

-2 -1
= Z A1(y2542) + A1(0) + Z)Q('YQJ')

=0 j=0

-1 -1
= Z A1(v2541) + Z X2(72j41) (since 4o = y2¢ and using (5.6]))
j=0 =0

-1

= Ar2i41)
=0

=)\

This is a contradiction with A # A" and the proof is complete.

6. NULL CONTROLLABILITY

The first five parts of this section are devoted to the proof of Theorem We will then show in Section
how to deduce the extension Theorem [3.31
All along this section we assume that we are under the assumptions of Theorem
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6.1. A non standard moment problem
We start by reformulating the null controllability problem into a moment problem. Let T' > 0 be fixed.

1) From the very definition of the notion of solution (2.2)), we see that (—A, Bye) is null controllable in
time T if, and only if, for every y° € D(A*)’, there exists u € L?(0,T;U) such that

(0 O parypary = [ (WO Bty dt, VT € DA), (6.1)

with z solution to the adjoint problem with 7 =T.

Let y° € D(A*) be fixed from now on. Since the conjugate linear forms involved in the previous
identity (i.e. (2.4))) are continuous on D(A*), it is sufficient to check this identity on a dense subset of
D(A*). We know that span {@5} ~er is dense in D(A*) by point |(vi)| of Proposition (see also

0<k<k.,
point in Remark (4.10)).

Therefore, by linearity, it is enough to test (6.1]) with 27 = @2 for every v € T, and 27 = <I>}Y for

every v € L.
2) For an eigenfunction 27 = <I>9y, with v € T', the corresponding solution to the adjoint system (2.3)) is
given by

2(t) = ef(Tft)cr(v)q,g,

while for a generalized eigenfunction 27 = @}/, with v € ﬁ the solution to the adjoint system is
2(t) = ef(Tft)a(v)q)}y —(T - t)ef(Tft)v(v)q)g_

Using (4.18)), it follows that the property (6.1]) is equivalent to

o T
—To 0 0 —(T—t)o * 0
—em oM (y ) pany pian :/O e”T=D700(u(t), By, @Y),, dt, Vy€eT,

. T
—To 0 &l 0 —(T—t)o x50 T
—e "7 (y0 B! ~T9%) 4oy piasy :/0 (T — t)e"=D70)(u(t), Bj®Y), dt, VyeT.

Finding a function u such that the above system is satisfied for every - is a so-called “moment problem”.
By assumption (2.16]) on the structure of the control space, we can write

u:(u1>7 u; € L*(0,T; Hy), i=1,2.
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Using now the structure (2.17) of B and the structure (4.13) of the eigenfunctions of A* with (2.13)),
we see that (6.1]) is equivalent to

—_ T PSR,
—To 0 0 —(T—t)o
—e (7)<y ,CI)W>D(A*)/,D(A*) :/0 e (7)<u1(t)’¢17>\1(7)>H1 dt
T _
+/ e_(T_t)U(’Y)<U2<t)a¢2,/\2(7)>H2 dt, Vyer,
0

I T -
—To 0 1 0 —(T—t)o
—€ (’Y)<y ,cb,y - Tq)’Y>D(A*)’,D(A*) :/0 (T - t)e ( 2 (’Y)<u1(t)7 ¢1,A1(7)>H1 dt

T - ~
+ / (T =)™ T=070) (us(t), o ag(y) ) g, dts Yy €T
0

Since for i = 1,2, {¢i,x;},,¢a, I8 an orthogonal basis of H; satisfying the lower bound (2.14), we can
look for u; in the form of the series

wit) = S (T~ t)L’\iz, (6.2)
N EA; ||¢i,>\i ||H1
with @; », € L?(0,T) such that
D+ i lliam < +o0, i=1,2. (6.3)

Ai€EA;

Thus, the goal is to find {u1,3, },, ¢y, € L*(0,T) and {da x, },,cp, € L*(0,T) with (6.3) and such that

_ T - T -
—e TG0 @0 b :/0 e 7Ny 5, () (1) df+/0 e Wiy 5, ) (1) dt, Wy €T,

T o T R
767T0(7)<y0,<1),1y7T<1)2>D(A*)/1D(A*) :/0 te "My 5, () () dt+/0 e "My 5,0, () dt, Yy eT.
(6.4)
In summary, we have shown the following:
Proposition 6.1. Let T > 0 and y° € D(A*)" be fized. The system (—A, Byet) starting from y° is null
controllable in time T if, and only if, there exist {l1,x,}y cp, C L*(0,T) and {t2,0, }y,en, C L2(0,T) with

(6.3) and satisfying (6.4]).

In that case, there is a null control u that satisfies, for some C > 0 not depending on T and y°, the estimate

[ullF20.0) < C Z Z (14 A7) [ x,

i€{1,2} Ni€A;

2
L2(0,T)

The system of equations ((6.4)) looks like a family of coupled moment problems. The main difficulty in solving
this system comes from the following facts:

e For any ¢ = 1,2 and any A\; € A;, the unknown function @; , appears in an infinite subset of those

equations, namely the ones corresponding to the parameters v belonging to the set I'; y,, as introduced

in point of Definition
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e The map v — o(vy) may not be injective, so that the same exponential function may appear in many
of those equations. Moreover, even in the case where this map is injective, it will certainly happen
some spectral condensation phenomenon, that is the fact that o(v) and o(%) may be exponentially close
for infinitely many 4 # . In general, this condensation may be an obstacle to the small time null
controllability of the system as mentioned in the introduction. The block moment method was precisely
introduced in |10] to carefully analyze this phenomenon in a quite general setting.

In the sequel of the paper, we will show how to apply this block moment approach in order to prove
the small time null controllability of our system.
The strategy to solve (6.4)) is to build separate sets of equations for the families (@ x, )x,ea, and (U2 x,)rse,-
In that perspective, we will first state the following key result that will induce the existence of a suitable splitting
of the source terms into two parts. The proof of this result is postponed to Section below.

Theorem 6.2. There exists p > 0 small enough and there exist two families (@f{’l) ~er C D(A"), (@,’372) ver C
0<k<

< 0<k<k
D(A*), such that: ’ ’
(i) We have

ok =@k + @k, Vyel, VO<k<k,.

(i) For every v,5 € T, we have
{‘1)3’1 = P50
(I)’];gl = (P’]%hlv Zf’%’? € F»

and 0 o

q)'y,Z = CI)«;,27

(I)'ly,Q = (I)}T/,Za Zf ’7,5/ € f
(iii) There exists C > 0 such that

125 10l p sy + 125 20l paey < Clolexp (Clo()I”), ¥y €T, YO<k <k,
Besides, if d =1 and if we have the following non resonance condition:

inf
Ai ,5\7’, en;
NiFEN;
0,0co(M*)

/\¢+07(5\i+é)’ > 0, (6.5)

for some i € {1,2}, then we can take @f“/’i =0 for everyy €T and k € {0,...,ky}.
Let us explain how to use this result to solve the system (6.4). We introduce the complex numbers

wk L= (_1)k+167TJ(7)<y0’ ¢§,1>D wk — (_1)k+167TJ(’Y)<y0’ (1)512>D

s (A*)",D(A*)’ v,2 (66)

(A*)",D(A*)’

The idea is to split the problem into two independent sets of equations as follows
T I
W0, = /O e iy 5,y (B)dt, Yy €T,

T _
w;l + ng,l = / teft”(”ﬂl)xl(v)(t) dt, Vv eT,
0
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T _
w3,2 = / e_t”m)ﬂz,xz(y)(t) dt, Vyer,
0

T _
w! o+ Tw), = /0 te "M iig x, () (t) dt, ¥y €T.
If we manage to solve those problems, by summing the equations and using point of Theorem we

immediately get that (6.4) is solved.
Solving those problems amounts to ask that, each function @, ,, for A; € A, satisfies

T -
w'())/,l = / e_tU(W)ﬂ’l,)q (t) dt7 V’Y S Fl,Ala
0

T R (6.7)
wfly,l + Tw'?l,l = / teita(’\/)ﬁl,kl (t) dta V’Y € ]-—‘1,)\1,
0
and each function s y,, for Ay € Ag, satisfies
T _
Wi = / e Wiy, (t)dt, Yy €T,
; (6.8)

T .
‘“‘J}w? + ng’z = / te_t”(“’)ﬁg,Az (t)dt, Yy eTlanx,.
0

We have now to solve an infinite set of uncoupled moment problems (one for each @; , and one for each s »,),
each of them being associated with a different family of (generalized) exponential functions corresponding to
the eigenvalues in ¥ 5, and X »,, respectively. Of course, those moment problems are in fact coupled through

the construction of the families (®% ;) er , (®%,) er , given by Theorem
T 0<k<k T 0<k<k,

SRRy SRS
We are now led to prove that all those moment problems can be solved with appropriate estimates on the
solutions to ensure the convergence of the series and thus the existence of the control for our initial problem.
Consequently, the proof of Theorem will be complete if we manage to prove the following result.

Proposition 6.3. Let py € (0,1) be such that pg > max {0y,0,v}. Let T >0 and y° € D(A*)’ be fived. There
exist {U1n }y, cp, C L?(0,T) and {a2,0, }y,en, C L2(0,T) that satisfy (6.7) and respectively, and such
that, for some C > 0 not depending on T and y°,

~ C
SYa+A) |‘Ui,)\i|‘i2(O,T) < Cexp <T1vo> 15° 1D ey

i€{1,2} MiEN; wro

The rest of the section is organized as follows. We first summarize in Section some useful definitions and
results coming from the so-called block moment method. Optimal estimates of the cost of the control being
only available in the case of real eigenvalues, we describe in Section [6.3| a process that will help us to deal with
the presence of some complex eigenvalues in our problem. Then we proceed in Section to the proof of the
Proposition and finally we conclude with the proof of the key Theorem in Section [6.5

6.2. Background on the block moment method

Let us introduce some elements taken from [10,12] that will be useful in our analysis.
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Definition 6.4. Let n € N*, p > 0, § € (0,1) and £ > 0 be fixed. We denote by L, (n,p,0, ) the class of
subsets S C C. satisfying the following two conditions:

(i) Counting function condition:
Ns(r) < wkrf, ¥r>o0.
(ii) Weak gap condition:
card (SN ([u, p+ p] +iR)) <n, Vu>O0.
We shall use the following result taken from |10, Proposition 7.1], yet with slightly different notation.

Proposition 6.5. Assume that S satisfies the weak gap condition of Definition for some n € N* and
p > 0. Then, there exists a grouping (Gp)r>1 C S associated with S satisfying the following five properties:

(i) Covering:

S=J G

k>1

(i) Uniform bound on the cardinality:
cardGg <n, Vk>1.

(#ii) Increasing order:
sup(Re Gy) < inf(Re Gr11), VEk > 1.
(iv) Gap condition:
dist (G, Grpr) > g, Vi > 1.

(v) Uniform bound on the diameter:
diam Gy < p, Vk>1.

We recall, also with adapted notation, the following result from [10, Theorem 2.5] and [12], that we specialized
in the particular case where n = 2, which is sufficient in the present work.

Theorem 6.6. Let S C [1,400) such that S € L£,(2,p,0,k) and (Gi)r>1 be a grouping as introduced in
Proposition[6.5. There exists C' > 0 such that, for any T > 0 and k > 1, the following assertions hold.

o If card Gy, = 1, say Gy, = {0k}, then for any wy € R, there exists qp € L*(0,T) such that
T
W = / €_Uktq;€(t) dt7
0
T
0= / e tqp(t)dt, Vo€ S\ Gy,
0

and

C
ol < Cex (Cofl1 + og) 4~ ) .
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o If card Gy, = 2, say G}, = {0k, G}, then for any wy,0r € R, there exists qi, € L*(0,T) such that

T
W = / €_Uthk;(t) dt,
0

T
@k:/ 67‘}’“t¢1k(zf)cizf7
0

T
:/ e qn(t)dt, Vo€ S\Gy,
0

and
Wy, — Wk

C
ol < Coxp (Cofr +ogon) + -~ ) (Jond +
1—6

) . (6.9)

To the best of our knowledge, Theorem [6.6]above is unfortunately only available for real families of eigenvalues
(a version with complex eigenvalues exists but without the sharp estimate with respect to the time 7" as given in
that we will need in the present work to obtain our more general result, namely Theorem [3.3]). However,
it appears that the operator A* under study in this paper only has a finite number of complex eigenvalues (at
least for d # 1). This was for instance mentioned in Remark

The following result will let us deal with this situation, while preserving the short time estimate we need.

Ok — Ok

6.3. Splitting between high and low frequencies

Proposition 6.7. Let S C Cy be a family of complex numbers such that S € L,(2,p,0,k), and Sy C S a finite
subset of S. Let (w))oes, (Wh)oes, two families of complex numbers, and T > 0 be fived. Assume that there
exists © € L*(0,T/2) such that
T/2
Wl = / e () dt, Vo € S\So.
0

Then, there exists v € L*(0,T) such that
T —
W :/ e u(t)dt, Vo €S,
0

T
wl z/ te "u(t)dt, Yo € Sy,
0

with, for some C > 0 not depending on T, © and (wQ)ses, (Wl)oes,,

C X
ol < Cexo (-5 ) <||v||Lz<o,T/2> + Y (el + |w;|)> .

B g€So

The proof relies on the following result:
Lemma 6.8. Let T > 0. Let S € L(2,p,0,k). Then, there exists a family (¢}) ves C L*(T/2,T) such that
i€{0,1}

T
/ ¢.(Mtle "t dt = 6; ;6,,, Yo,veS, Vi,je{0,1},
T/2
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(6;; denotes the Kronecker delta) and that satisfies, for some C > 0 not depending on T,

o)) L+9(5) :
)) 50, 5) YvesS, Vie{0,1},

i 1
||quL2(T/2,T) < Cexp (O <T189 +v

where §(v, S) = dist (v, S\ {v}).

As far as we know, the proof of this lemma is not available in the literature in this precise form. However,
we will not give the details since it can be obtained in a very similar way as in |25] (where a more general case
is considered, but only for § = 1/2), see also [|9]. Note that, if S C R, the result follows from the computations

in [4], [11].
Proof of Proposition[6.7 It is sufficient to take v = ¢ in (0,7/2) and then to build v on (7//2,T) such that

T
0= / e u(t)dt, Yo € S\So,
T/2

T
/ e "u(t)dt, Yo € So, (6.10)
T/2

0
Co

cl :/ te”"7u(t)dt, Vo € S,
T/2

where we set

T/2
ck =wl — / te 70 (t) dt.
0
To solve this new moment problem (§6.10)), we look for v(r/2,7y in the form of the following finite sum
v=> (I¢)+cla,), in(T/2,7),
veSy

where (¢%) ,es is given by Lemma Below, we denote by C a positive number that may change from line

i€{0,1}

to line but that does not depend on T, ¥ and (w%),es, (wl)ses,. Since S is finite, we have
1+6(v,9)
— 2 <C, Yves,
S5y

so that we get

Y (el +lepl) exp (CVF)

vESH

SCeXp( (i) S (121 + [ek)

T179 vESH

c i
< Oexp( ) (Ivllmm,m) + > (ol + wi)) :

veSy

~
R
~

vl z2(r /2,7y < Cexp ( 5

The proof is complete.
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6.4. Proof of Proposition [6.3

To begin with, we establish that the families of eigenvalues introduced in (4.6)) belong to suitable classes as
defined in Definition in a uniform way. The precise statement is as follows.

Proposition 6.9. There exist p1, p2 > 0 and k1, k2 > 0 such that, we have
Y1 € Luw(2,p2,02,F2),  for any A\ € Ay,

Yo, € Lw(2,p1,601,R1), for any Ay € As.
We recall that 8; € (0,1) is such that (2.8) holds.

Proof. We focus on ¥ ,, the other case being similar. To this end, we first show that there exist p2 > 0 and
Fo > 0 such that, for any Ay € Ay,

ST, € Lu(l,p2,02,72/2), 37, € Lu(1, p2,02,Fa/2).

Let us prove the claim for Ef A,» the other case being similar.

e By (2.7) and , we can find A > 0 large enough such that
1 o
lea] < 1 max(d, 1) Gap(Agz), YA > A (6.11)

e Let Ay € Ay and Ao, Xy € Ay such that \o #+ 5\2, that satisfy
MAA > A A+ A > A (6.12)
From , we have
o(+, M1, A2) — o (+, A1, A2) = max(d, 1)(Az — Xa) + €x, 42, — Exit+ig

and therefore

< 1
lo(+, A1, A2) = o (4, A1, A2)| > max(d, 1) Gap(Ag) — |ex, +x,] = ley, 45,1 = 3 max(d, 1) Gap(As),

by using (6.11).
e For any A\; € A; such that A\; > X the conditions (6.12)) are automatically satisfied since we have ([2.6])).
Therefore, we have

1 )
Gap (2;1) > S max(d, 1) Gap(Aa), VA1 € Ay, M > A

e For any A\; € A; (in particular, such that A; < 3\), the conditions ([6.12]) are satisfied for Ay and Ao large
enough, so that we have

Gap (Ef)q) > 0.

Since A1 N (—o0, ;\} is a finite set, we have finally proved the existence of a ps > 0 such that

Gap (zlfh) > pa, YA€ AL
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e For any \; € A; and Ay € Ay, we have (see (4.8))
Ay < [max(d, 1) (A1 + A2)| = |o(+, A1, A2) — 0 —ex,40,] < o (+, A1, X2)| + C,

with
C=lot[+ sup |-
AE[0,4o00]

Therefore, for any r > 0 the condition |o(+, A1, A2)| < r implies that Ao < r + C. It follows that the
counting function associated with Zf », satisfies (recall (2.8))

Ny+  (r) S Na,(r+C) < ko(r + C’)G"’.

1,2

By (4.9), we know that NEU (r) =0 for r < 1, in such a way that the estimate above leads to
1,21

Nyt (r) <ra(1+ )2t e >0,

1,31

and the claim for EfM is proved.
e Since X1 3, = EIFM UE;A1 we obtain that 3; ), satisfies the weak gap condition with n = 2 and p = p».
Moreover we have, for any r > 0,

N, o, (r) < NET’,AI(T) + N. - (r) < Fior?2,

for some Ko independent of r. O

We can know move to the proof of the proposition. To this end, we will discuss two cases:

d#1 or (d=1 and A>0), (C1)
and
d=1 and A<O, (C2)
where we recall that A is the discriminant of the characteristic polynomial of M (see (4.3)).
The reason for this separation is because in the case we have (see Remark and Remark

the number of complex eigenvalues is finite and A is finite. (6.13)
We start with the proof in the most intricate case, namely (C1). The case (C2|), which is somehow easier,
will be considered just after.
Proof of Proposition in the case (C1)). The main ingredients for the proof are Theorem and the estimates
of Theorem Without loss of generality, we shall assume that
T<1. (6.14)

(1) Once the values w” |, w¥ , have been defined by thanks to Theorem it is clear that it is enough
to consider only one family of problems, for instance (6.7]), the other one being treated in a similar way.
For each \; € A; fixed, is a classical moment problem in L?(0,T') associated with the family of

exponentials

{t e st o€ Eul} U {t —te 7t st o€ iml}-
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We would like to solve each of these independent problems. The main difficulty is that »; 5, may not
satisfy a uniform gap property and may present some condensation phenomenon. The other difficulty
comes from the fact that, for a finite number of values of A1, ¥ 5, may contain complex numbers (but
at most a finite number). We will first focus on the problem in L?(0,T/2) and restricted to the following
real exponentials

{t—e 7", st o€ 2]5)\1} ,
with
R
Zl,)\l = R ﬂ 217)\1.

We will also note I'f , = o~ '(Zf ).
In other words, for any A1 € Ay, we will first look for a function 44, € L?(0,7/2) such that

T/2
W, = /0 e My (t)dt, Vy eTE,,. (6.15)

This will be done by applying Theorem [6.6]
To this end, we first use Proposition that shows that there exist ps > 0 and K2 > 0 such that for
every A1 € A1, we have
St € Lu(2, 02,02, F2). (6.16)
It is very important to notice that the parameters of this class do not depend on A;.
From the definition of the class £, it is then clear that we also have

Eﬂf,kl € ‘cw(27 ﬁ27 927 ’%2)3

where po = min(ps, p), where p is provided by Theorem [6.2
Let now (G, x)k>1 be a grouping associated with the family Elf A, as given by Proposition
In particular, each G, i has at most two elements and its diameter is at most p. Consequently, we
are in one of the following two configurations:
(a) cardGy, r = 1, in which case it is of the form G, r = {o(y)} for some v € F]f{))\l. Note that it
may exist other elements 4 € 1"]5)\1 such that Gy, r = {o(%)}.
(b) card Gy, = 2, in which case it is necessarily of the form G, x = {o(7), (%)} for some v,7 € T'f
such that 0 < |o(y) — o(¥)| = diam G, 1 < p2.
Below, we denote by C, C' positive numbers that may change from line to line but that do not depend
on T, y° and \;. For any 6 € Gy, x, there exists at least one v € Flﬁ)\l such that 6 = o(y). We set
ws = w?hl. It is crucial to note that, if there exists another ¥ € 1"]5)\1 such that 6 = o(¥) then we
necessarily have w971 = w,%’l by item of Theorem so that ws is well defined.
Applying now Theorem we know that there exists a sequence {g, x},~,; C L?(0,7/2) such that,

for every v € I'f ,, we have

T/2
w07 = e Mgy w(t)dt  if o(y) € Gy r,
(6.17)

T/2
0 :/ e_t“("’)q)\hk(t) dt ifo(y) € Zﬂfﬂ\l\GM,k,
0

and with the following properties:
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a) If card Gy, , = 1, with Gy, = {o(7)} for some v € 'R, | then
1, 1, 1,2

C
|mwhmmm<0memea+bmmw+TQz>W%.
1—05

(b) If card Gy, x = 2, with G, = {o(7),0(¥)} for some 7,75 € FI%/\I then

C Wl 4 1
ax k < Cexp | Co(7)%2(1+logo + WO | | =2 7 .
” 1 ||L2(0,T/2) ( (’7) ( g (’Y)) Tlfzez ’ 7,1| 0(7) — 0(’)/)

(5) From (6.6)), (4.11)) and item of Theorem we have

[0, | < Clolexp (~CT o] + CloDI ) [[8°] pavy -

On the other hand, from 7 and using items and of Theorem which is allowed since we
have |o() —o(F)] < p2 < p and A1 () = A1 () = A1 by definition of I’y ,, we have (recall as well that
o(7) are positive real numbers in this part)

0 0
Wyl T W51

a(v) —o(¥)

e~To(v) _ g=Tao(3)
o(y) —a(¥)
< CTlo(y)|exp (Cla(y)]") HyOHD(A*)' :

’(y ’CI)(W),1>D(A*)’,D(A*)

With these estimates we see that, in any of the two cases above, for any py € (0,1) such that
po > max {v, 02}, the following estimate holds

~ C
||q)\17kHL2(())T/2) < Cexp <_CTU(7) + CU('V)pO + po> IIyOIID(A*)/,

1—po

where we used ((6.14) and (4.9).

By using Young’s inequality, we obtain

PQ
1—po

cT C 0
||q/\1,k||L2(o,T/2) < Cexp <—2U(7) + T) 19"l pasy -

Since o () belongs to the k-th group, using point of Proposition and (4.12)), we deduce that

o(7) > (k- 1)% + O\

The estimate above becomes

C\T poCT C
21 L > Hyo||D(A*)’~ (6-18)

4 Tl%o

HQ)q,kI”Lz(O’T/Q) S C’exp <—
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(6) Let us form the series
—+oo
() = 3 an, i 0)
k=1

Thanks to the estimate (6.18)), this series converges normally in L?(0,7T/2) with

X CMT C X
1l g2(0,72) < Cexp (‘ 2 +T> (Ze * 1>P20T/4> 15l pacy
k=1

By construction, we conclude that @y, solves (6.15) for any A\; € A;, with the estimate

||ﬁ1,,\1||L2(O,T/2) < Cexp <_ C);T " T?Opg) ||y0||D(A*)/. (6.19)
(7) For any Ay € A; we now have two situations:
o Casel: ¥y, =3F, and Sy, = 0.
We can define 17 5, € L?(0,T) as the extension by 0 of @iy », on (0,7). It is clear that this function
41,5, solves the original moment problem with the same estimate as in .
o Case 2: X1, # 215/\1 or il)\l # (. We introduce Sy = (Equ \E]}f)\l) U ilm and we remark
that this set is finite in the case we are considering here (see )
In that case, we apply Proposition [6.7] with S = ¥, », and Sy defined above to build from %; ), a
function @, € L?(0,T) that solve and with the estimate

. A cMT C
i s < 28 1)exp<— £ >||y°||D<A*y,

T 2 T 15%0

where we have used that py > 62 and .

The number f(A1) in this estimate now depends on A; but this Case 2 only happens for a finite

number of values of A1 (indeed, for A; large enough, we necessarily are in Case 1, see Remark.
All in all, we have solved for any A\; € A; with a uniform estimate

3 C CMT C
@17 2200,y < T €xXP ( — + ) I9°]I pasy -

2 Tlfi‘,’,o

This implies in particular the convergence of the series >\ 5 (1 + Ap)? ||ﬂ1,>\1||iz(0 ), With the
expected estimate.
A similar proof gives the existence of suitable functions g », for any A2 € Ag, using this time the
values of w'jg.
O

The proof of the remaining case is easier.

Proof of Proposition in the case (C2)). In that case we have v/A € iR and it follows that the non resonance
condition (6.5) is satisfied for ¢ = 1,2:

nr0— Gut 0 = - 3+ [VA]" 2 [Gapan) .
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Therefore, by Theorem we can for instance impose that @ﬁz = 0 for every 7, k, so that (see )

W | = (~1)FHeTT@ (0, q)k,1>D(A*)',D(A*)’ whio=0, Vyel,VO<k<k, (6.20)

We also could have imposed that @?{71 = 0 for every 7, k, so that

why =0, wky=(—1)Fle ToM (0 ok ) Vy €T, V0 < k < k,, (6.21)

D(A*)I7D(A*)7

The overall strategy developed in the proof of the previous case can then be used again, yet in a simple way
since we can check that all the eigenvalue families appearing in the moment problems (6.7)) and satisfy
usual gap conditions that read

1o Do, € Low(1,5,0,7), VAL € A, A € Ag.

Compare this with Proposition in the general case.

We can therefore avoid using the block moment approach and simply employ the standard argument using
estimates of biorthogonal families of complex exponentials as given in 23], [9] (yet slightly generalized in the
same way as we discussed in Section .

Moreover, we see that the condition (resp. (6.21)) leads to a control (us,us) satisfying u; = 0 (resp.
uz = 0). This concludes the proof in that case as well. g

6.5. Proof of Theorem [6.2]

We first observe that, by point of Remark it is enough to determine ®9 ;, ®J , for v € T'\ [ and

il @%72 for v € r-. Indeed, the missing values can simply be defined, for v = (4, A1, \2) € f*‘, by

7,1
0 _ 0 0 _ 0
Pt = P P2 = P )2

Pliniat = Pt Plaiiaz = a2
It is straightforward to see that the required properties will be satisfied.

Since [~ C T \ f*, we are led to study carefully the structure of T\ ['. More precisely, the idea of the proof
is to show that I'\ [+ can be written as a disjoint infinite union of finite subsets such that we can easily solve by
induction, in each of those sets, the required equations of point of Theorem with the desired conditions
given in point Moreover, we need to ensure that elements belonging to two different such subsets are never
concerned by the condition. This analysis will make use of elementary graph theory notions. We recall that we
have associated to our set I' \ [+ a structure of graph in Definition

The goal of this section is to establish the following result.

Theorem 6.10. There exists p > 0 small enough such that the graph (T"\ f*, &) is a forest and such that, for
any path o £ Y L L Yn—1 £ Yn, we have

< 3 . .
n < 2k onin lo ()], (6.22)

(ko > 0 is introduced in (4.16)) and

(ax |o(v)| <2 min |o(y)] (6.23)
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Besides, when d = 1 and the non resonance condition (6.5)) is satisfied for some i € {1,2}, then p can be
chosen in such a way that all the trees are either single nodes or reduced to a path of length one with an arrow

of type </\L>.
level 4
level 3

level 2

level 1

<
YV\[/‘

level 0

FIGURE 2. The forest structure of (I‘\f*, &s). In each tree, a root node is fixed, and the other
nodes are organised by levels corresponding to their distance to the root. One of the trees is
emphasized, as well as the chosen root.

Theorem [6.2] will then be a consequence of this result.

Proof of Theorem [6.4 We construct ®9 ; and @9 , in each tree as follows.

e Pick any node v of a tree to serve as a root (represented in gray in Figure|2)) and define arbitrarily the
corresponding values, for instance as follows
0 0 0
e, =0, @,,=2,.
e If the tree is reduced to one node, we are done. Otherwise, consider any node 4 # ~ such that 5 L vy
and solve accordingly the corresponding equations:

0, =a,, @%,=2% -

. P~
¥ v,1» ¥ 7,10 1f’y<7’77
1

), =09, @2, =0%-0%, ify <Ai> 7.
This way, we can determine all the values associated to the nodes at distance 1 of the root (first level
of nodes in Figure [2).

Repeating this process for each level, we construct @271 and <I>9y72 in such a way that the properties
and of Theorem are satisfied. Note that this construction is not ambiguous precisely because
of the fact that our graph is a forest, so that there is a unique path in the graph that connects any two
nodes.

Besides, if all the trees are either single nodes or reduced to a path of length one with an arrow of

the same type % (resp. <)\—'O2>), then we can take <I>g’1 =0 (resp. <I>g’2 = 0) for every 7.



33

e It remains to check the corresponding estimate stated in Below, we denote by C' a positive number
that may change from line to line but that does not depend on ~,4. First of all, for the first picked
node v we have the common estimate (recall (4.11))

max {2 [ <193 pasy -

lpiany 1992l s}

Then, for any node 5 # ~ such that 5 <2 ~ , we have

max { || @4

O e e [ O [

<1950 ey + 1250 peany

,1||D(A*)7

Ipa-

Repeating this process, we see that, for any node 4 in the same tree as 7, we have (recall the estimate
(4.17))

max {021 [ ey [ 02 all paey b < D019 ey < €30 S0,
1=0 1=0

where
N EnE By S,
is the unique path from -y = 7 to 7, = 4. In particular, by using (6.23)) and (6.22)), we deduce

1rnax{||‘1>9y ) ||<I>9Y } < Clo(7)]eClel”,

71HD(A* ,2||D(A*)

The proof is similar for ®1 ; and ®! , for v € T.

To prove Theorem [6.10, we need the following basic lemma concerning the edges of our graph.

Lemma 6.11. There exist p* > 0 small enough and o* > 0 large enough such that, for any v,5 € T'\ T with
v <= 5, we have:
(i) if lo()| = 0" and |o(3)| = o*, then

Besides, if d =1 we can take c* = 0.
(i) if s(v) =+ and s(3) = —, then

A(7) =) = M) <)
Besides, if d =1 and if the non resonance condition (6.5)) is satisfied for some i € {1,2}, then in fact
the situation As—_;(y) = As—;(§) never occurs.

Note already that the additional property mentioned in the statement of Theorem when d = 1 immedi-
ately follows from this lemma.
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Proof of Lemma [6.11] (i) We consider the case v = (+, A1, A2) and 7 = (+, A1, A2), since the other cases

(i)

are similar. From (4.8)), we have
o(y) = o() = max(d, 1)(A2 = A2) + Ex,400 — Ex, 44,
and since by assumption we have |o(y) — o(%)| < p*, we end up with
max(d, 1)|As — 5\2| <P len 10| ’e)\1+;\2‘ i
Using (4.12) and (4.7)), we see that we can choose o* large enough, depending on p*, to ensure that
|€)\1+>\2| + |€)\1+5\2| < P* (624)
Choosing first 2p* < max(d, 1) Gap(As2) and then o* as above, we obtain
A2 — Xa| < Gap(As),
which, by definition of Gap(Az), implies that Ay = Ag.
Additionally, when d = 1 we have €5, = 0 for any A\ by construction (see the proof of Proposition
. Thus, (6.24]) holds for any p* > 0 and we can simply take o* = 0.
We consider the case v = (+, A1, A2) and 4 = (—, A1, A2), since the other case is similar.

We write /A, = ay + iby with ay,by > 0. From the expression (4.5)), we see that the condition
lo(y) —a(7)| < p* implies that

‘(1 +d)(ha = Ao) + ar s +ay, 45| < 207 (6.25)

and
D420 + by, 15, < 207 (6.26)

First of all, observe that by does not depend on A for A large enough (recall ) Taking then
p* > 0 small enough, we see that the condition implies that by, +x, = b, .5, = 0. Since s(y) = +
and since no node in the graph belongs to f+, we have vy & T and thus Ax 4x, 7 0. As by, 4, = 0 this
means that we necessarily have

ax;+x; 7 0.
Introducing
6= inf ay,
AEA1+A2
ax#0

we have § > 0 (recall (£.2))), and the condition yields

~ 1
— < ——(2p" =9).
A2 )\2_1+d(f0 5)

It follows that we can find a positive p* < 6/2 to obtain the claimed inequality As < As.

In addition, if d = 1 and if the non resonance condition is satisfied for instance for ¢ = 2, then we
see that we can take p* > 0 small enough so that leads to an impossibility. This means that the
case that we considered, namely, v = (4, A1, A2) and ¥ = (—, Ay, 5\2), never occurs under this condition.

O
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Proof of Theorem [6.10 1) Let us first prove that the graph is a forest. By definition, we have to show

that it has no p-cycle. Assume by contradiction that there exists a p-cycle:
YoLEnL Ly Lo,
where, by definition, n > 3 and ; # 7, for i # j. Let Ymin € {70,--.,Vn—1} be such that

0 (Ymin )| = min o(vi)l.
7 Caia)] = _ min_ [7(3:)

We distinguish two cases.
o Case 1: |0(Ymin)| < 0*
We claim that in this case, for p well chosen, we have a 0-cycle, that is

o(v) = 0(Ymin), Vi€ {0,...,n—1}.

(6.27)

This will establish a contradiction with point [2| of Lemma If (6.27)) is not true, we can take

the smallest index i € {0,...,n — 2} such that

{0(%0) = 0(Ymin),

O—('Yio-i-l) 7é J(Vmin)'

In particular we have
|0 (7io)| < 0.

Moreover, by definition of é, we have
lo(Vig+1) = o (Yio)| < £,
and, taking p < o*, we deduce that
|0 (Vig+1)| < 207

Therefore, |0(vi,) — 0(Vig+1)| > 6%, where

o =inf{lo(1) ~o(F), st. RTET\TH, Jo()l <o’ lo@)| <2, o(3) £0(D)}.

(6.28)

(6.29)

(6.30)

(6.31)

Since this quantity is the minimum of a finite number of positive values, it satisfies 6* > 0. Therefore
we can impose on the parameter p the additional condition p < §* to obtain a contradiction with

(6.30). This establishes (6.27).
e Case 2 : |o(Vmin)| > o*
By item [(i)| of Lemma we have
s(Yi+1) = —s(vi), Vie{0,...,n—1},

where we introduced -y, = 7o for convenience. Note in particular that n is even.

(6.32)
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— Let us now show that the kinds of the arrows in the p-cycle necessarily alternate, that is

Vi — Yi+1 = Yi+1 0 Yi+2,
)\2 >\1
i ’ (6.33)
Yi S Yi+1 = Yi+1l s Yi+2-
)\1 >\2
We will show the first of these properties, the proof of the other being similar.
Assume, by contradiction, that we have

p p
Vi < YVi+1 S Vit2-
Ao Ao

. 25 . . .
Since 7; # “it2, we deduce that 7; <)\—p> ~i+2 and, choosing 25 < p*, we can use again item
2

of Lemma to deduce that s(7;) # s(7it+2), which is a contradiction with (6.32)).
— Let us assume for instance that s(vg) = + and g </\i> ~1, the other cases being similar.

Recalling (6.32), and since p < p*, by item of Lemma we thus have
A(v0) < A1(m).

By using (6.33)) we see that the second arrow in the cycle is v <)\—ﬁ> ~o, which gives A1(v1) =
1

A1(72). By induction, we eventually obtain

A(0) < A1) = A(92) <o < Ai(n-1) = A(Tn)-

This is impossible since, by definition of the cycle we have 7, = 7.
This shows that there is no p-cycle in the case |o(ymin)| > o* either.
2) Let us now prove the estimates (6.22)) and (6.23)). We consider a path:
W’oé% é"'é%,
where n > 1 and v; # ; for i # j and we define

m = min |o(y)].

Let ig € {0,...,n} such that |o(ig)| = m. By definition of <& we see that, for any i € {0,...,n}, we
have
|J(’yi) - 0'(’72‘0)| < ﬁ‘l - 7:0| < pn,
and therefore
lo(yi)| < m+ pn. (6.34)
Since by definition all the elements in the path are distinct, we have

N(m + pn) > n,
where N is the counting function defined in (4.15). Using (4.16)), we get

n < Ko(m + pn),
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and, choosing p < 1/(2kg), we obtain the first estimate (6.22)):
n < 2kgm.

Plugging this inequality into (6.34]), we obtain the second estimate (6.23)).

6.6. More general control operators

In this section we extend the result of Theorem to more general control operators thanks to the so-called
Lebeau-Robbiano method.

More precisely, we prove Theorem which is concerned with control operators B € L(U, D(A*)") whose
adjoint is of the following form on C? ® D(A;) ® D(As):

B ((1 0)®Li®B;
“\(1 0)eBreL;)’

for some operators L} € L(H;) (i = 1,2) subject to the Lebeau-Robbiano type estimates .

This case is much harder to handle than the previous case of control operator Byt (corresponding to L; =
Ly = Id) because we lose some important orthogonal properties. For this operator B, the proof given in Section
[6.1] cannot be simply adapted because the expansions of the controls u; into Fourier series no longer seem usable.

However, thanks to the estimate of the control cost previously obtained for the system (—A, Byef), we can
use the Lebeau-Robbiano method to deal with this more general case.

We recall that the purpose of the Lebeau-Robbiano method is precisely to allow the change of the control
operator for null controllable systems under some conditions. More precisely,

Theorem 6.12 (Lebeau-Robbiano method). Let Bt € L(U, D(A*)). Assume that there exists a family of
operators {P.} ., C L(D(A")) such that

e " (Ran P,) C Ran P,, Vt>0,Yu >0, sup ||Pu||£(D(A*)) < 400, (6.35)
u>0

and that satisfies the following three key properties for some Cy,Cy > 0:

(i) Controllability of the reference system: The system (—A, Byet) is null controllable at any time
T > 0, with control cost satisfying, for some po € (0,1),

C
costr(—A, Bret) < C1 exp (1710) , YT >0.

1—po

(ii) A relative observability property (of the operator B* with respect to the reference operator Bl ):
there exists n € [0,1) such that

Bie2|lyy < Cre " B2y, Vu >0, Vz€RanP,, (6.36)

ref

(iii) A dissipation property:

< Cre” M |z] paey, VE>0, Vu>0, VzeRan(ld-By). (6.37)

.
He tA*

‘D(A*)
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Then, the system (—A,B) is null controllable in time T for every T > 0, with control cost satisfying, for
some C' > 0,

1-p

costr(—A, B) < Cexp ( Cp> , VT >0,

with p = max(pg, n).

Theorem is a simple adaptation of the abstract Lebeau-Robbiano method established in |30, Theorem
2.2] (see pp. 1469-1470). The main difference is that we consider here operators P, which are not necessarily
orthogonal projections, which is an important feature when considering systems of PDEs since they are not
self-adjoint in general. However, the last property in is enough to make the same proof work.

Let us now turn to the proof of the desired result:

Proof of Theorem[3.3. We simply show that we are in the configuration of Theorem with A = A, By = Biet,
B =B and

P,z = Z <z,<I”fy’*>D(A*)(i>§,

ye\T't

[o(MI<p
0<k<k,

where {@5’*}7€F\f+ is the biorthogonal family, in D(A*), of the Riesz basis {(f,’j}ver\fﬂ
0<k<k, 0<k<k,

<I>f// H(I>§HD<A*> (see Proposition .

e Note that P, is not an orthogonal projection since we only have a Riesz basis and not necessarily a
Hilbert basis (P} # P,, unless M* = M). However, this family of projections clearly satisfies the
conditions in .

e The controllability of the reference system was established in Theorem for any py > max{6,0s,v}.

e The relative observability property holds with 7 = max(n;,7n2) thanks to our assumption
on the operators L;. Note that this has to be checked only on linear combinations of eigenfunctions of
A* since the observation operators B* and B¢ do not see the generalized eigenfunctions f,: B*®! =
B} ®! =0 for v € T+ (see (E.14)).

e Finally, the dissipation property is easy to check because, from the Riesz basis property, the
semigroup of —A* is explicitely given for every ¢t > 0 and z € Ran (Id — P,) by

where <I>,’j =

oA, Z e—a('y)t<27¢)9{,*>D(A*)(i)g n Z e—o(v)t<z7¢}y,*>D(A*) ((i)}y A — 0(7))&)#> .

y€EM\IF yelt
lo() > [o(V)|>p

7. APPLICATION TO THE BOUNDARY NULL CONTROLLABILITY OF COUPLED LINEAR
PARABOLIC SYSTEMS ON CARTESIAN GEOMETRIES

As mentioned in the introduction, our main motivation for the abstract results proved in this paper is their
application to actual multi-dimensional boundary null controllability issues for coupled parabolic systems. A
typical such system to which our general analysis applies is the following 2D two-component system controlled
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from the boundary by only one control:

0

8yt1 —d div (K(z)Vy,) = muy, +my,  in (0,7) x Q,

0 . .

8?/; — div (K (2)Vyo) = Mot + Magy,  in (0,T) x Q, (7.1)
v = Lyu, Y. =0 on (07T) x 09,

i(0) = 0, 1:(0) =gy in &,

where the domain  C R? is the rectangle defined in (1.2 (see Figure [1)) and the diffusion tensor has the

following form
k(=) 0
K(l’) == ( 0 ICQ(.’EQ)) 9

with k, € W1*(0, X;), inf(o x,) k; > 0 and d > 0 is a parameter accounting for the ratio of diffusion between
the two components in the system.

The first equation is controlled from the boundary on a non empty relative open subset v of 92. On the
other hand, the second equation has no control, but it is coupled to the first equation via a constant internal
coupling term, so that it is indirectly controlled, as soon as m,, # 0.

We recall that the case d = 1 and K (x) = Id was studied in the literature:

e The approximate controllability of the system was studied in [31] when the underlying operator
is the Laplacian.

Notably, it was established in |31, Theorem 2.15] that this system is approximately controllable in
time T for every T > 0 if the Kalman condition m,, # 0 holds and if « satisfies the geometric condition
, which was introduced in this very paper.

On the other hand, when «y intersects only one face of the boundary 952, say for instance v = wy x {0},
then it was shown in |31, Theorem 2.14] that the approximate controllability of the system is equivalent
to the approximate controllability of the 1D reduced system

0 0? .

C,;ytl - 5xy21 = My1Y1 + MiaYz, 10 (0,T) X (OaXl)’

0 0? .

aytz - 8l‘y22 = Mo Y1 + Maoly, 1N (OaT) X (OaXl)’ (72)
Y = 1{O}UH Y =0, on (OaT) X {OaXl}a

v (0) =4, 42(0) = v, in (0, X1).

e This second result of [31] was then extended to the null controllability property in [9, Theorem 1.2].

e As already mentioned, the approximate and null controllability of the one-dimensional system were
studied in the seminal work [23]. More precisely, it was shown in [23| Theorem 1.1] (resp. |23, Theorem
5.2]) that this system is null (resp. approximately) controllable in time 7T if, and only if, the Kalman
condition m,, # 0 holds and we have the following “non resonance” condition:

2

(Ato=2+0 = r=Xando=4), VA,Xea<—§m2

) V0,0 € o(M™). (7.3)

Remark 7.1. In the case of the Laplace operator considered in that reference, the non resonance condition

(7.3) is in fact equivalent to our condition ([6.5]).
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Note that, if M has only one eigenvalue, then this condition (|7.3)) is automatically satisfied.
However, in the case where M has two distinct eigenvalues, the Kalman condition is not sufficient to
ensure null controllability and it is needed to assume that (7.3]) holds.

On the other hand, Theorem leads to the following new result.

Theorem 7.2. Assume that the Kalman condition m,, # 0 holds and that there exist two mon empty open
subsets wy C (0,X1) and wy C (0,X2), such that (see e.g. Figure|[d)

(wy % {0}) U ({0} x ws) C 7. (7.4)

Then, for any y° € H=1(2)? the system (7.1)) is null controllable in time T for every T > 0, with the estimate

C
llull 20,1y x00) < Cexp <T> I9° 1l -1 0)2-

To the best of our knowledge, Theorem [7.2]is the first and only result concerning the controllability properties
of the two-dimensional system ([7.1)) for any value of the ratio of diffusions d > 0.

Remark 7.3. Combined with the results of the literature recalled just before the statement of Theorem [7.2]
we see that this result shows a very strong influence of the geometry of the control domain: there are some
two-dimensional systems which are null controllable in arbitrary small time if two perpendicular faces of
the boundary are controlled, whereas they are not even approximately controllable if the control acts on only
one face. An explicit example of such systems is

o Ay, = in (0,7) x Q,
0 .
azf—AyQ:yl—&—f&yg in (0,7) x Q,

posed on the square domain © = (0, 7)2, for which we can check that the non resonance condition (7.3)) fails for
both i =1 and i = 2.

Proof of Theorem[7.4. This result will be a straightforward consequence of Theorem once we will have
checked that we are under the framework of Section We observe also that it is enough to consider the case

v = (w1 x {0}) U ({0} x wa). (7.5)

Indeed, the system (7.1) corresponds to the abstract control system (2.1) with the following functional
framework

e The state space is
H=1%9)?*=C*® L*0, X;) ® L*(0, X3).
e The operator A is the closure of the operator

(g (1)>®(A1®Id+1d®A2)—M®Id®Id7

with domain C? ® D(A;) ® D(As), where, for i = 1,2, A; is the one-dimensional and scalar positive
Dirichlet Laplacian on the space H; = L?(0, X;):

A= 81 (k:i(xi) 8*; : ) : (7.6)
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with domain D(A4;) = H?(0, X;) N Ha (0, X;).
e For v as in (7.5]), the control space can be taken as

U = L*(0,X1) x L*(0, X3),
where for each (u1,u2) € U a control u for (7.1)) is simply

ui(x,), ifz; €wy and z = (z4,0)
u(z) = S us(x,), if r, € wy and = (0, z,),

0, otherwise.

e For i = 1,2, we introduce B} € L(D(A4;),C) to be the one-dimensional scalar operator

. 0z
Biz = k()2 (0),

and L} € L(H;) is simply given by

Liz=1,,z.
Then, it is easily checked that the control operator B defined as in ([2.17) is such that, for any u € U
and any € D(A*), we have

Oz1 Oz
(Bu, 2) p(a=y p(ar) = /W1 ul(xl)kz(o)aix:($l,0) dzy — /wz U2($2)k1(0)87:1(07902)d9€2-

Let us now check the assumptions of Section [2.2

e We recall that A; is a positive self-adjoint operator with compact resolvent and that its spectrum satisfies
— the gap condition
Gap(Al) >0,

— the counting function estimate
3C; > 0, NAi (7‘) < CZ\/;, Vr > 0.

Those are very classical results; a self-contained proof is for instance given in [3| Section 2].
Note in particular that, since 6, = 62 = 1/2, the condition 6; + 0, <1 is fulfilled.
o It is clear that (—A,;, B;) satisfies the Fattorini-Hautus test and that the eigenfunction ¢; », of A;
associated with the eigenvalue A; € A; which is such that B} ¢; », = 1, that is such that

—k.(0)¢; »,(0) =1,
satisfies o
| pi.x:

L2(0,X,i) S \/)\— *
This is also given in [3| Theorem 1.1].
This estimate implies that the upper bound (2.15]) holds with

Vi:O.
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T3 Ty
&/»/ -

Xy

FIGURE 3. The geometry of the boundary control problem in 3D. The control domain is the
part of the boundary which is represented in gray.

e The property (3.3]) concerning the operators L; holds with

1
==

2
This is nothing but the one-dimensional Lebeau-Robbiano spectral inequality [27, Theorem 3] (or
Turan’s inequality, see |36, Corollary 3.3]).
All the assumptions of Section [2.2] are fulfilled, so that Theorem [3.3]can be applied and shows that the system
(7.1) is null controllable in time T for every T > 0.
The result is first obtained in the space D(A*)" = (H?(Q)? N Hg(2)?)". In addition, note that

V/ — H71(9)2

is an admissible subspace for our system (7.1]) (see Definition [2.4). This is a direct consequence of the following
well-known elliptic regularity estimate satisfied by the solution z to the corresponding adjoint system (2.3 in
any time 7" > 0: there exists C' > 0 such that

A

0z 2

7(75’ U)

T
2
o ] dodt < C/o [2(t, )2 ()2 dt

C
T
<C [ 1A=t e

<C HZTH;(%(Q)Z vl e H2(Q)2 N HL(Q)2,

where 0/0n denotes the normal derivative.
O

By similar considerations, Theorem [3.4| proves the null controllability at any time T of the system ([7.1]) posed
on a 3D parallelepiped, with a diffusion tensor of the form

ki (z,) 0 0
K(.’L’) = 0 k2($2) 0 )
0 0 ks(xs)

and with a boundary control supported on two non parallel faces as shown for instance in Figure
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APPENDIX A. PROPERTIES OF A AND B

A.1. Tensor products

Let us briefly recall some basic facts about tensor products. More material can be found for instance
in (34, Chapters I1.4 and VIII.10] and (33, Chapter XIII.9].

For ¢1 € Hy and @9 € Hsy, we denote by 1 ® g : Hy X Hy — C the pure tensor product of ¢ with ¢a,
that is the continuous bilinear form defined, for every (hy, ha) € Hy x Ha, by

(1 @ @2)(h1, ha) = (o1, h1) g, (P2, ho) g, -

Then, the so-called algebraic tensor space is
Hy ® Hy =span {1 @ o2, s.t. @1 € H, @2 € Ha}.

We will denote by E; ® F2 =span {¢1 ® w2, @1 € F1, @2 € Es} for any subspaces Fy C Hy and Ey C Ha.
On the vector space H; ® Hs we introduce the following inner product, first defined on pure tensor products by

(p1 @ 2,01 @ P2) , orr, = (P1:P1) pr, (P2, P2) gy, (A1)

and then extended by linearity to all of Hy ® Hs. It can be checked that this inner product is well defined
(i.e. that two different writing of an element in Hy ® Ho yields the same value in the computation of the inner
product). This makes H; ® Hy a pre-Hilbert space but this space is in general not complete (because H; and Hy
are infinite dimensional). This motivates the introduction of its completion with respect to this inner product,
which will be denoted by

H, ® H,.

Let now f[l, ﬂg be two complex Hilbert spaces and Ay : H; — ﬁl, Ay i Hy — ﬁg be two bounded linear
operators. There exists a unique bounded linear operator from H; @ H, into H, & flg, denoted by A; ® As,
that satisfies

(A1 ® A2)(91 ® ¢2) = (A1) ® (A2¢2), Vo1 € Hi, ¢ € Hy.
Moreover, we have
1Ar @ Asll 2,8 m, e i) = 1ALl ooy ) 12l 2o, 11, -
We refer for instance to [34, Proposition VIII.10, p.299].

A.2. Proofs of the properties of A

Let us start by showing that our operator A is a bounded perturbation of a self-adjoint operator with compact
resolvent.

Proof of Proposition[2.5 Let us denote by Ag the operator (2.10)). First, it is clear that D(Ag) is dense in
H and that the operator Agg is symmetric. In particular, it is closable. Moreover, its closure is self-adjoint if,
and only if, both Ran (Agg + ) and Ran (Agp — @) are dense in H (see e.g. |34, Corollary VIIL.2, p.257]). This
clearly holds here since, in fact, any f € H can be written as

AOOii 1 Agoﬂ:i 2
=Y (AR (P A=Y ((p
f R <d()\1 w) L ((Pa, 5, /) ® 1.0, @ dan,) + FV ((PF, 0, 0) @ d12, @ 20,) |
1 1
A2€A2

for some finite dimensional operators Py, ,, P, \, € L(H,C?) (recall that Ay, Ay C R). This also shows that
the closure of Agg % 7, and thus Ag, has a compact resolvent. O
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Let us now prove the claimed spectral properties of A. We recall that a family in a Hilbert space is a Riesz
basis if it is the image of an orthonormal basis through an invertible bounded linear operator. We refer for
instance to [38, Section 1.8] for material on Riesz basis.

Proof of Proposition[{.9 1) Let 6 € C be fixed and let ® € D(A*). Writing

=" > rx @A, b2, (A.2)

A EAL A2€AS

for some vectors vy, », € C?, a computation shows that ® € ker(6 — A*) if, and only if,

—Mys A— Mgy — O

U, EkerGy, Gy = <d)\ R —m,, A> |

for every A\ € A; and Ay € Ay, where we use our standard notation A = Ay + Ay. Therefore, ¢ is
an eigenvalue of A* if, and only if, ker Gy # {0} for some \; € Ay and Ay € Ag. Since m, # 0 by
assumption, this is equivalent to

0 =d\—my, — Mo, (A.3)

where r is a root of
Moy + (1 = d)X + My — Myy) 7 — myy = 0.
In addition, the discriminant of this equation is exactly Ay defined in (4.1) and its two complex roots

are
_((1_d)>\+m11 _m22) _\/T)\ _((l_d)/\+m11 _mzz)“‘\/Ai)\
2me, ’ 2y, '
It is then clear that, given an eigenvalue &, there is only a finite number of A\; € A; and Ay € Ay that
satisfy 7 so that the series in is in fact over a finite set. Moreover, the first component of
each vy, A, € ker G \ {0} is necessarﬂy nonzero since my,, # 0. This shows that ® can be written as a
linear combination of the <I>O deﬁned in 3) (a simple computation shows that the expression of the
eigenvalues coincides with the one in dependlng on the sign s(7)).
The proof of the statement concerning the generalized eigenspaces simply relies on computations and
will be omitted.
2) The proof of the estimates in is a straightforward computation

(A4)

| @9 HD(A* =1+ o)) |29 HH (since @Y is an eigenfunction)

(I+lo()Dy1+ |T"/ |61, Al(v)HHl b2, >\2(7)||H2 (recall ({.13))

<O+ |a<v)|>\/ L+ [r, 220207 (by @15))
< Colo(y)P 7 (by (@) and [@EID)),

where C7,C5 > 0 do not depend on 7. The reasoning is similar for the estimate of the norm of (I%.

3) Let us now show that the family {@5} ~er is complete in H. Let then z € H be such that
0<k<k-

2,®%) =0, Vyel, YO<k<k,. A5
Y/ H 0l
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and let us show that necessarily z = 0. Since H is by definition the completion of C? ® H; ® Ho, it is
equivalent to prove that (A.5) implies that

(z,h)y; =0, VheC’® H, ® Hy,

and since {¢; x;} a,en, is complete in H; (i = 1,2), this is equivalent by linearity to

<Za <g> ® (,251’)\1 ® ¢2,>\2> = 07 A <g) e ((:27 v>\1 S Al, VAQ c AZ- (A6)
H

Let A\ € A1 and A3 € A be given. We define v = (+, A1, A\2) and v~ = (—, A1, A2).
o If y© ¢ T (we automatically have v~ ¢ I'), then the two vectors of C?

1 1
Tyt )’ Ty
are linearly independent. Therefore the conditions <z, <I>3+>H = <z, @3, >H =0 from (A.5)) imply
E9).

e If v* €T, then the two vectors of C2

(1) (%)
) 1 )
T’Y+ T ma
are linearly independent. Therefore the conditions <z, ¢g+>H = <z, <I>£+>H =0 from (A.5) imply
).

Let éf/ = <I>f/ / thf/H - Proving that the family F'is a Riesz basis of H is equivalent to show that (see
e.g. [38, Theorem 1.9]) there exist m, M > 0 such that, for every scalars (O‘:)wer\ﬁ C C, cofinitely

0<k<k,
many of them being equal to 0, we have
2
k|2 k &k k|2
730 SN D SIPt | BESTED DRI (A7)
yeT\I't yer\I't H yeT\['t
0<k<k., 0<k<k., 0<k<k.,

For every A\; € A; and Ay € Ay we set v© = (+, A1, A2) and v~ = (—, A1, \2), and

T {ag ég, + a9/+<i>g+, if y© ¢ f"”,

At T g &0 1 Gl sp ot oD

a, P F+a, O, ifyT el
The sum we have to estimate simply reads Z Z T, x,. Since it is easily seen from the definitions

A1EAL A2€A2
of the (generalized) eigenfunctions that all those terms are pairwise orthogonal, we are finally led to
find two numbers m, M > 0, independent of Aj, A2 and of the coefficients ag such that (A.7]) hold for
each term T}, »,.
Let us consider such a pair (A1, A2) € Ay X As.
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e Case1: A€A. } 3
We have T}, x, = ag, @2, + a,ly, @}{,. The normalization condition immediately gives

2
1T el < 2(l05- 1% + lag- ).

For the lower bound, we use the estimate (proved at the end of this section)

2
1 1 0 2 1
e — + —(|a|” + , a,ba,peC, A8
ot () (0)] = e P s )
to deduce
1 1
T 2 a0 12 12 )
H )\1,)\2”[{— \/§(|a7 | +‘a'y ‘ )1_|_|7,’y+|2

If A is finite, we immediately deduce a lower bound for the terms of this kind. Otherwise, by
Remark we necessarily are in the case d = 1, A = 0, in which case it is easily seen from (A.4)

that

Moy — My,
r 22 TP

vt = )
2miy,

which is obviously a bounded quantity. The claim is proved.

e Case2: \ ¢ A.
We know that v+ = (+, A, A2) € I't and therefore we have T, x, = ag,fi)g, +al, <i)2+.
Here also the normalization condition gives the upper bound

2
1 Tx 2l < 210512 + [+ ).
For the lower bound, we use the estimate (proved at the end of this section)

la — b|?

(el + 1) Tyt + Py

a,b,a,p €C, (A.9)

verd ROl
—_ - —
1+ a2 \@ 1+ b2 \b f
to get

|1 — 7oy |?

T I PYA + ey 1)

By the definition of 7, in (4.13), and the expressions (4.5, (4.8), we have

2 1 0 |2 0 |2
||T/\1,>\2||H = ﬁ(|a7—| + |Ol,y+| >(

|A,]

|7t — Ty |> =

5 #0.

17221 |

— If d =1, then Ay = A and we obtain from (A.4]) that

28(’}/)\/Z + My — Moy

—2me,

, Vyerl,

Ty =

and in particular the values of r+ and 7,- only depend on M, which proves the claim.
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— In the case d # 1, we write

|(max(d,1) — )X+ o™ +my, +en| [(min(d,1) = DA+ 0~ +m,y, —ex

|m21|2

|Tv+r7* | =

It follows from (4.1]) that

2 242
rr =P Cald = 17N,

2 242
_ ~  Cy(d—1)*A
|T7+rv I Aot 2( ) s
for some C7,Cy > 0 that do not depend on y+,~v~, and thus

2 2 2412
P+l o~ Ci(d— 1A

Therefore, the quantity

‘7"74— — T,y— |2
L+ Irys P) A+ [ 2)

has a positive limit when A — +o0, which concludes the proof.
5) Since A*®) = o(7)®Y and A*®! = o(y)®! + @Y if v € T, it is not difficult to deduce from what precedes
that the same family normalized in D(A*) is also a Riesz basis of D(A*).
6) We have seen in step [1)| that o(T") C o(A*). Let us now prove the reverse inclusion.
Let then p € C\o(T') and f € H. Let {(I)’f/*},yer\ﬁ be the biorthogonal family in H to the Riesz
0<k<k.,
basis {(P’Y}'yGF\FJr (see e.g. |38, Theorem 1.9] for its existence). We set

0<k<k,

L

yeT\T+ T

Note that, dist (i, o(T")) > 0 as o(T") is obviously closed and u & o(T"), and additionally for any v € r-,
we have

O
195y T < 0t o)
H@P1 0
Therefore, both sums in are absolutely convergent in H, and using the closedness of A*, we can
check that z € D(A*) with (p — A*)z = f, which proves the claim.
7) It remains to prove the asymptotic property of the counting function N. Note that it is enough
to consider r > 1 since N(r) = 0 otherwise, still thanks to . Fist of all, we obviously have

N(r) < Ni(r) + N_(r),

where
Ni(r)= card {y €%, st |o(y)|<r}.
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Let us for instance estimate N,. Let v € I'". From the formula ([4.8)), we get

lo()]

max(d, 1) (L+ o™ |+ [eam)

A < (e + o[+ [eaen ) < )

1
max(d, 1)

by using (4.9). It follows that the condition |o(y)| < r implies

Al <Cr, C= 1+|a+|+sup|g|).
A>0

ot (
max(d, 1)
It follows that
Ni(r) < card {(A1,A2) € Ay x Ao, st |A1+ Ao < Cr},
and since A1, Ao > 0 this gives
Ni(r) < Np, (Cr)Np,(Cr),

with the same estimate for N_. It then follows from the asymptotics of Np, and Ny, that

N(r) < kor®, Vr>1, (A.11)

where
Ko = 2%1&209, 0= 91 + 92.
Since 6 < 1 by assumption (2.9) and r > 1, this yields the desired asymptotic (4.16)).

It remains to prove the technical lemma we used during the proof.

Proof of the estimate (A.9). Let

() ()

s = (6 (3. (5)),

where G is the Gram matrix of z and y

We have

1 __ l4ab
G ) VAl /TP
14a
VTHal? /IR !

Since all the entries in G have a modulus less than 1, we have

(e(5)-(5)) =% 5)

2
(C2.
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A straightforward computation shows that

ja —b|?

O = R o

which concludes the proof. O

A.3. Construction of B
We conclude this appendix with the proof of the proposition defining our control operator B.
Proof of Proposition[2.7] We will denote by B’ the operator in the right-hand side of with domain
Dy = C* ® D(A;) ® D(Ay).
Note that Dy is dense in D(Ap) by the very definition of the domain of the closure (recall that Ay is the closure

of (2.10)) and D(A*) = D(A) = D(Ay), therefore Dy is dense in D(A*).
Consequently, the claim is equivalent to show that there exists C' > 0 such that

IB'zly < C (A2l 4 +I2ll5), ¥z € Do.

Below, we denote by C' a positive number that may change from line to line but that does not depend on z.
Still by a density argument, it is equivalent to prove such an estimate for any z € Dy of the form

— (SO PIP
= 2% (G) et osan,

A1€EAL A2€A2

with (ax; x)aenss (Baas)aea, C C, cofinitely many of them being equal to 0. By definition of B’, we have
A2€A A2€EA2

Ly ( > ( > OKAI,,\ZBS%,AQ) ¢1,,\1>

By = AEAL \2€A>
L; ( Z ( Z Oé,\l,,\QBiksbl,h) ¢2,/\2>
A2€A2 \A1€EMA
Since L} € L(H;), we have
2 2
2
||B/ZHU <cC Z < Z 00\1,)\23;(1)27/\2) D1, + Z ( Z a)\ly/\zBT(i)L)u) P2,
A1EAT \A2€A2 H, A2€A2 \A1€EA; Ho
Since the family (¢; a,)a;ea; is orthogonal in H; we have
2 2
ron2 2 2
HB ZHU: Z B; Z @xy 2o D220 ||¢1-,>\1||H1+ Z Bik Z O A2 DL ||¢2~,>\2||H2'
A1€AL A2€A2 A2€A2 A1E€EA;
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Using that B} € L(D(4;),C), we deduce that

2 2

2
IB'll;; <€ )

A1EA

Ay E QX A P2, 00

A2€A2

Aq E Q2P

A1EA;

2
é2,32 12, »
H;

lrailz, +C Y

Ho A2€A2

and still by orthogonality of the family of eigenfunctions we get

2 2 2 2
1Bzl <C >0 Y Jannl O3 +23) 61y, 62,117,
A1EAL A2€A2

< c Z Z |Oé)\17)\2‘2 ()\1 + /\2)2 |‘¢1,)\1 ||§{1 |‘¢2,)\2H§{2
A1 EA A2EAS

2

=C

1
(0 8) ® (A @1d+1d @ As)z

H

It follows that

2
d
IB'z||}, < C H (0 ?) ® (A1 ®1d + 1d ® Ay)z

H
= C A%z + (M* @1d®1d)z||3;,
< O(1A 2] + Izl )*

The proof is complete.

APPENDIX B. BASIC ELEMENTS FROM GRAPH THEORY

We recall here some very basic definitions and one result coming from graph theory. We refer for instance
to [37] for the details.

Definition B.1.
e A (simple, undirected) graph is a pair of two sets (N, E) with

ECc{{v7}, st. v, 7eN, y#73}.

The elements of A/ are called the nodes and the elements of £ are called the egdes.
e Let 4,7 € N. A path from v to 7 is a finite sequence of distinct edges of the form

{vo,m}s-- - {m-1,1m}),

where

n>1,
{Vi,vit1} €€, Vie{0,...,n—1},
Yo=% =7
Yi # 75, Vi,j€{0,...,n}, i#j.



o1

The integer n is called the length of the path.
A graph (N, ) is connected if for every 7,5 € N there exists a path from v to 3.
e A cycle is a finite sequence of edges of the form

({’70771} ) {’71”}/2} PR {vn—QarYn—l} 5 {771—1770}) )
where

n >3,
{vi,vit1} €€, Vie{0,...,n—2},
Vi #7v5, Vi,5€{0,...,n—1}, i#].

A graph with no cycles is called a forest. A connected graph with no cycles is called a tree.

The only result that we need is the following classical and simple one (see e.g. [37, Remark 1.2.7]):

Proposition B.2. The relation “y = 7 or there exists a path from v to 7”7 is an equivalence relation over

N xN.

It follows that any graph can be partitioned into connected subgraphs. Indeed, for v € N, let us denote by
N, its equivalence class. Thus, we have the natural partition of N:

N=J N,
YEN

and each subgraph (N, &,) is connected, where &, = {{'Ny, 'Zy} €&, st. Ay¢€ N,y}. In particular, a forest is
partitioned into trees (the union of two graphs (N7, &;) and (N, &) is by definition the graph (A7 UN3, E2UEs);
the intersection of graphs is defined similarly).
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