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Orlicz norms and concentration inequalities

for β-heavy tailed random variables∗

Linda Chamakh† Emmanuel Gobet‡ Wenjun Liu §

March 20, 2021

Abstract

We establish a new concentration-of-measure inequality for the sum of independent random variables
with β-heavy tail. This includes exponential of Gaussian distributions (a.k.a. log-normal distributions),
or exponential of Weibull distributions, among others. These distributions have finite polynomial mo-
ments at any order but many not have finite α-exponential moments. We exhibit a new Orlicz norm
adapted to this setting of β-heavy tails, we prove a new Talagrand inequality for the sum and a new
maximal inequality. As consequence, a deviation probability of the sum from its mean is obtained.

Keywords: heavy tails; deviation inequality; Orlicz norm; Talagrand inequality; maximal inequality;
empirical process.
Mathematics Subject Classification (2020): 60E15, 60F10

1 Introduction

Concentration inequalities. Understanding how sample statistical fluctuations impact prediction er-
rors is crucial in learning algorithms. Typically, we are interested in bounding the probability that a sum
of random variables exceeds a certain threshold, essentially in quantifying the deviation of the sum from
its expectation. In other words, we aim at analyzing how fast the sum concentrates around its expecta-
tion. Take the notation [M ] for all integers from 1 to M included. For independent and centered random
variables (Ym)m∈[M ] taking value in a Banach space (B, ‖.‖B), the quantity of interest takes the form

P
(∥∥∥∑m∈[M ] Ym

∥∥∥
B
> ε
)
≤ f(ε,M) for the most explicit and tightest possible function f . The bounded,

sub-Gaussian or the sub-exponential random variables have been largely covered by the literature (for ex-
ample, via Bennett inequality and via Bernstein inequality - see [BLM13] for an extensive review of main
concentration inequalities techniques), as well as the case of alpha-exponential tails [CGS20] (random vari-

ables Y s.t. there exists α > 0, c > 0, such that E
[
exp

(
(
‖Y ‖B
c )α

)]
<∞). The fat-tailed case, for which the

moment generating function does not exist but some polynomial moments exist, can be tackled for exam-
ple via Burkholder or Fuk-Nagaev type of inequalities [Rio17, Mar17]. These inequalities are based on the
existence and on the bounding of polynomial moments of the random variables. In this chapter, we focus
on the heavy-tailed random variables case, in the limit case when no α-exponential moment is defined but
every polynomial moment exist.
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1. Introduction

Orlicz norm. Orlicz norm [KR61] provides a nice tool to study the statistical fluctuations of an estimator
for a given family of distributions. Consider an Orlicz function Ψ : R+ → R+, that is a continuous non-
decreasing function, vanishing in zero and with limx→+∞Ψ(x) = +∞, and define the Ψ-Orlicz norm of the
B-valued random variable Y by

‖Y ‖Ψ := inf

{
c > 0 : E

[
Ψ

(
‖Y ‖B
c

)]
≤ 1

}
. (1.1)

With the additional property that Ψ is convex, Orlicz functions are commonly referred to as ”Young func-
tions” (or ”N-functions” as in [KR61]). Van de Geer and Lederer [vdGL13] exhibit in their work a ”Bernstein-
Orlicz” norm (the ”(L)-Bernstein-Orlicz” norm) adapted to sub-Gaussian and sub-exponential tails and pro-
vide deviation inequalities for suprema of functions of random variables. The (L)-Bernstein-Orlicz norm is
the ΨL-Orlicz norm with

ΨL(z) = exp

[√
1 + 2Lz − 1

L

]2

− 1.

We see that ‖Y ‖ΨL < ∞ implies the existence of exponential moment. One of their main results [vdGL13,
Theorem 8] is a uniform concentration result. As shown in Wellner [Wel17], it is possible to generalize these
results to any Orlicz function Ψ(x) = eh(x) − 1 with h convex. It requires again the existence of exponential
moment which is not our purpose. We would like to go beyond and do not assume any α-exponential moment.
As a new Orlicz function able to handle heavy-tail situations, we will consider:

ΨHT
β (x) := exp((ln (x+ 1))β)− 1, x ≥ 0, (1.2)

for a parameter β > 1. We say that Y is β-heavy tailed if there exists a c > 0 s.t.

E
[
ΨHT
β

(
‖Y ‖B
c

)]
<∞.

Typically, we aim at encompassing situations like Y = exp(|G|
2
β ) where G is a Gaussian random variable;

the case β = 2 corresponds to log-normal tails. See Section 2.2 for various examples.
Observe that when (1.1) is finite with Ψ = ΨHT

β , Y has finite polynomial moment of order p for any p > 0,
but may not have α-exponential moments. Besides, our β-heavy tailed setting is closely related to long-tail
modelling1, which is used for instance in queuing applications [Asm03, Chapter 10].

Deviation inequalities for sum of processess via Talagrand and Markov inequalities. What we
call Talagrand inequality is an inequality of type:∥∥∥∥∥∥

∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

≤ CΨ


∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
Ψ

 . (1.3)

Talagrand [Tal89, Theorem 3] showed that this inequality is satisfied with Ψα(x) := ex
α − 1.

For the sake of presentation, let us consider i.i.d. (Ym)m∈[M ]. The first term is then
∥∥∥∑m∈[M ] Ym

∥∥∥
L1(B)

≤

O(
√
M) by Bukholder inequality when B ⊆ R or the more general inequality of [Pis16, Proposition 4.35]

when B is a Hilbert space or a Banach space of type 2.
When the maximal inequality is satisfied, that is under the form of [vdVW96, Lemma 2.2.2.], the second
term is bounded by ∥∥∥∥ max

m∈[M ]
‖Ym‖B

∥∥∥∥
Ψ

≤ KΨΨ−1 (M) max
m∈[M ]

‖Ym‖Ψ .

1typically S(x) := P
(
‖Y ‖B > x

)
= exp(−(ln(1 + x))β) for which limx→+∞ S(x+ t)/S(x) = 1 for any t > 0.
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2. Motivating examples and main results

Hence, for any ε > 0, denoting X := 1
M

∥∥∥∑m∈[M ] Ym

∥∥∥
B

, thanks to the Markov inequality, the Talagrand

inequality and the two previous norm controls, we get

P (X ≥ ε) ≤
Sect. 2.1−(iii)

2

1 + Ψ (ε/‖X‖Ψ)
= 2

1 + Ψ

 εM∥∥∥∑m∈[M ] Ym

∥∥∥
Ψ

−1

≤ 2

(
1 + Ψ

(
εM

C ′Ψ(Ψ−1(M) +
√
M)

))−1

.

(1.4)

In particular, for Ψ = Ψα, the above inequality simplifies to:

P (X ≥ ε) ≤ 2 exp
(
−C ′α

(
ε
√
M
)α)

.

By leveraging union bound techniques and Hoffman-Jorgensen inequality, we can extend this inequality to
suprema of function as done in [CGS20], in the spirit of [Ada08]. In any case, a key element to derive these
concentration inequalities is the Talagrand inequality (1.3).

Our contribution. The purpose of this work is to establish the Talagrand inequality for Ψ = ΨHT
β , to tackle

β-heavy tailed random variables as a difference with previous contributions available in the literature. Note
that this particular Orlicz function (1.2) is not at all part of the general result established by Talagrand [Tal89,
Proposition 12], which states that the inequality (1.3) holds for Orlicz function of the form Ψ(x) := exζ(x)

with ζ non-decreasing for x large enough and satisfying lim supu→+∞
ζ(eu)
ζ(u) < +∞; indeed, in our setting,

one easily checks that ζ(x) = x−1 ln(ΨHT
β (x)) = x−1(ln(exp((ln(x+ 1))β)− 1)) is decreasing for x large.

Outline. In the first Section, we recall the motivating example and the adapted Orlicz function for which
our main result is stated. In Section 3, the proof of the main result is given. The proof is based on a key
inequality and on the application of subsidiary results from [Tal89].

2 Motivating examples and main results

2.1 Orlicz norm properties

Although ‖.‖Ψ defined in (1.1) may not satisfy in general the triangle inequality, we keep calling it Orlicz
norm for the sake of simplicity. For a given Banach space (B, ‖.‖B) over the field R, we denote LΨ(B) :=
{Y : Ω→ B s.t. ‖Y ‖Ψ < +∞} the set of B-valued random variables with finite Ψ-Orlicz norm. For self-
containedness we summarize a few well-known properties of the ‖·‖Ψ norm, for a given Orlicz function Ψ,
which hold independently of the convexity of Ψ (unless explicitly required). See [KR61], or more recently
[CGS20, Section 4].

(i) Normalization: If Y ∈ LΨ(B) then E
[
Ψ
(
‖Y ‖B
‖Y ‖Ψ

)]
≤ 1.

(ii) Homogeneity: If Y ∈ LΨ(B) and c ∈ R then cY ∈ LΨ(B) and ‖cY ‖Ψ = |c| ‖Y ‖Ψ.

(iii) Deviation inequality: If Y ∈ LΨ(B) then P (‖Y ‖B ≥ c) ≤
2

Ψ(c/‖Y ‖Ψ)+1 for any c ≥ 0.

(iv) If Ψ is convex, ‖.‖Ψ satisfies to the triangle inequality.

2.2 Motivating examples of heavy-tailed distributions and adapted Orlicz norm

Log-normal distribution. Let Y be a scalar random variable with log-normal distribution, i.e.

ln(Y )
d
= N

(
µ, σ2

)
,
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2.3 ΨHT
β -Orlicz norm: properties and inequalities

with σ > 0. The distribution of Y admits the density

fY (y;µ, σ) :=
1

σ
√

2πy
e−

(ln y−µ)2

2σ2 1y>0.

We now investigate what kind of Orlicz function Ψ can be used to have ‖Y ‖Ψ <∞. In particular, we search
for Ψ(x) = exp (ξ(x))−1 such that ξ is non-decreasing, ξ(0) = 0 and limx→+∞ ξ(x) = +∞ in order to ensure
that Ψ(0) = 0 and limx→+∞Ψ(x) = +∞. Let c > 0, observe that

E
[
exp

(∣∣∣∣ξ( |Y |c
)∣∣∣∣)] <∞ =⇒ lim inf

x→∞
ξ
(x
c

)
− (lnx)2

2σ2
= −∞. (2.1)

Consider the following functions for β > 0:

1. ξβ(x) = (ln (x+ 1))β , x ≥ 0. Note that the case β ≤ 1 is not much interesting in our setting since it
quantifies tails with finite expectation at most (fat tail cases).

2. ξβ(x) = (ln(x + 1))β(ln(ln(x + 1) + 1))α, x ≥ 0, α ∈ R. This second case is a scale refinement of the
first case. It is not studied here.

These functions satisfy the necessary condition (2.1) if β < 2 and for a large c2. Furthermore, since for any

c > 0, ξβ
(
x
c

)
< ε(lnx− µ)2 for any ε > 0 for x large enough, E

[
exp

(∣∣∣ξβ ( |Y |c )∣∣∣)] < +∞.

Other distributions satisfying E
[
exp

(
ξβ

(
‖Y ‖B
c

))]
< +∞. The associated Orlicz function ΨHT

β (x) :=

exp(ξβ(x)) − 1 is adapted to other distributions than just the log-normal distribution. For any random
variable X admitting finite α-exponential moment with α > 1, then Y defined by ln(Y ) = X will admit β-
heavy tailed for any 1 < β < α. We refer the reader to [CGS20, Table 2] for an exhaustive list of distributions
admitting α-exponential moments. Here are a few examples:

• The Generalized normal distribution with parameters c ∈ R, b > 0, α > 0 has a density f(x) =

cfe
− 1

2 ( |x−c|b )
α

up to a positive normalization constant cf : it clearly admits a finite α-exponential
moment. Hence Y = exp(X) where X has density f hence admits β-heavy tails for β < α.

• The Skew normal distribution with parameters b ∈ R, c ∈ R, v ∈ (0,+∞) has a density f(x) =

cfe
− (x−c)2

2v Φ
(
b(x−c)√

v

)
, where Φ denotes the standard Gaussian cumulative distribution function and

cf is a positive normalization constant: it admits 2-exponential moment. If X has this density, then
Y = exp(X) has β-heavy tails for β < 2.

• The Weibull distribution with parameters λ > 0, k > 0 has a density f(x) = cfx
k−1e−( xλ )

k

1x≥0 up to
a positive normalization constant cf : it has finite k-exponential moment. Consequently, Y = exp(X)
where X has the density as above, admits β-heavy tails for β < k. Such distributions are used, for
instance, for earthquake magnitude modelling [HR99] .

2.3 ΨHT
β -Orlicz norm: properties and inequalities

We state different properties of the Orlicz function to be used for β-heavy tailed distribution.

Proposition 2.1. For β > 0 define ΨHT
β : R+ → R+ by

ΨHT
β (x) := exp(ξβ(x))− 1 with ξβ(x) := (ln (1 + x))β , x ≥ 0. (2.2)

The following properties hold:

1. The application β 7→ ΨHT
β defines a group isomorphism between ((0,+∞),×) and ((ΨHT

β : β > 0), ◦),

and in particular, (ΨHT
β )−1 = ΨHT

1/β.

2β = 2 is possible under restriction on σ: if σ < 1√
2

, then lim infx→∞ ξ2 (x)− (ln x)2

2σ2 = −∞.
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2.3 ΨHT
β -Orlicz norm: properties and inequalities

2. For β > 0, ΨHT
β is an Orlicz function.

3. For β > 1, ΨHT
β is convex.

As a consequence, the associated ΨHT
β -Orlicz norm satisfies to the triangle inequality for β > 1.

Proof. Item 1. Observe that ΨHT
1 (x) = x and ΨHT

β1
(ΨHT

β2
(x)) = ΨHT

β1β2
(x) for any x ≥ 0; the property of group

isomorphism readily follows.
Item 2. This is straightforward to verify.
Item 3. ΨHT

β is a C∞-function on (0,∞), with a second derivative equal to

ΨHT
β
′′
(x) =

exp((ln (1 + x))
β
) (ln(1 + x))

β−2

(1 + x)2
× β ×

(
β (ln(1 + x))

β
+ (β − 1)− ln(1 + x)

)
︸ ︷︷ ︸

=:g(ln(1+x))

.

The function g is continuously differentiable on R+, strictly positive at 0 (g(0) = β − 1 > 0) and goes to
infinity at infinity (since β > 1); the critical points of g′ are solutions to β2yβ−1 − 1 = 0, therefore it is

unique (equal to yβ := β−
2

β−1 ) and corresponds to the minimum of g. Let us evaluate the sign of g at the
minimum:

g(yβ) = βyββ + (β − 1)− yβ =
yβ
β

+ (β − 1)− yβ = (β − 1)

(
1− yβ

β

)
= (β − 1)

(
1− 1

β
β+1
β−1

)
> 0.

All in all, we have proved that ΨHT
β
′′
(x) > 0 for any x > 0.

We now restrict ourselves to the more interesting case β > 1. Let us state our main result: the Talagrand
inequality (1.3) for the ΨHT

β -Orlicz norm.

Theorem 2.1 (Talagrand type inequality). Let β ∈ (1,+∞). Then there is a universal constant Kβ,(2.3) s.t.
for all independent, mean zero, random variables sequence (Ym)m∈[M ] with Ym ∈ LΨHT

β
(B) for all m ∈ [M ],

we have ∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
ΨHT

≤ Kβ,(2.3)


∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT

 . (2.3)

• One of the consequence of this inequality is that if
∥∥maxm∈[M ] ‖Ym‖B

∥∥
ΨHT and

∥∥∥∑m∈[M ] Ym

∥∥∥
L1(B)

are

finite, then
∑
m∈[M ] Ym is β-heavy tailed, which some tractable controls.

• Recall that this inequality is a key step to derive concentration inequality of type (1.4).

We also establish that the general maximal inequality [vdVW96, Lemma 2.2.2.] (recalled in Lemma 3.6)
holds for the ΨHT

β function:

Theorem 2.2 (A ΨHT
β maximal inequality). Let β ∈ (1,+∞). Then there exists a universal constant Cβ,(2.4)

s.t. for any random variables Y1, . . . , YM in LΨHT
β

(B),∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT

≤ Cβ,(2.4)(Ψ
HT
β )−1(M) max

m∈[M ]
‖Ym‖ΨHT . (2.4)

Recall that (ΨHT
β )−1(M) = ΨHT

1/β(M). As a consequence of the Talagrand inequality (2.3) and the maximal

inequality (2.4), by following the same steps as described in (1.4), we can derive the following concentration
inequality:
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3. Proofs

Corollary 2.3 (A concentration inequality for sum of independent β-heavy tailed random variables). Let
β ∈ (1,+∞). Assume that B is an Hilbert space or a Banach space of type 2. Then for any Y1, . . . , YM
independent and centered random variables in LΨHT

β
(B), for any ε > 0,

P

 1

M

∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
B

≥ ε

 ≤ 2 exp

− ln

1 +
εM

Kβ,(2.3)

(
C(2)1/2µ2

√
M + Cβ,(2.4)µΨHT

β
ΨHT

1/β(M)
)
β
 ,

where µΨHT
β

:= maxm∈[M ] ‖Ym‖ΨHT and µ2 := maxm∈[M ]‖Ym‖L2(B), C(2) denotes the universal constant in the

Pisier inequality [Pis16, Proposition 4.35], Kβ,(2.3) the Talagrand constant in (2.3) and Cβ,(2.4) the maximal
inequality constant in (2.4).
If Y1, . . . , YM are i.i.d., µΨHT

β
and µ2 do not depend on M .

3 Proofs

3.1 Preliminary results

Here, we recall Lemmas 8 and 9 of [Tal89], as well as the ”Basic Estimate”, which will enable us to
prove our Theorem 2.1. In addition to the independent B-valued random variables (Ym)m∈[M ], we will
need to consider extra independent Rademacher random variables. Everything is defined as follows. Let(

ΩM × Ω′,
∑M ⊗

∑′
,P
)

the basic probability space, where P = P⊗P′ such that the variables Ym are de-

fined on ΩM and for ω = (ωm)m∈[M ], Ym(ω) depends only on ωm. Let (εm)m∈[M ] be a set of random variables

defined on Ω′ with a Rademacher distribution independent of (Ym)m∈[M ]. The following inequalities can be
proven independently apart from the context of Orlicz norms.

Lemma 3.1 ([Tal89, Lemma 8]). If P
(
maxm∈[M ] ‖Ym‖B ≥ t

)
≤ 1

2 , then

∑
m∈[M ]

P (‖Ym‖B ≥ t) ≤ 2P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
.

Lemma 3.2 ([Tal89, Lemma 9]). Set X(r) the r-th largest term of (‖Ym‖B)m∈[M ]. Then

P
(
X(r) ≥ t

)
≤ 1

r!

 ∑
m∈[M ]

P (‖Ym‖B ≥ t)

r

.

Set

µ := E

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

 ,
µ > 0 because the Ym’s are not all zero random variables (to avoid trivial situations). We now recall a key
inequality, which combined with the previous lemma will enable us to prove our main result.

Theorem 3.1 ([Tal89, Equation (2.5)]). For k, q positive integers s.t. k ≥ q, u > 0 and u′ > 0, we have

P

∥∥∥∥∥∥
∑
i∈[M ]

εiYi

∥∥∥∥∥∥
B

≥ 4qµ+ u+ u′

 ≤ 4 exp

(
− u2

64qµ2

)
+

(
K0

q

)k
+ P

∑
r≤k

X(r) > u′


where the constant K0 is a universal constant.
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3.2 Symmetrisation argument for Ψ convex

3.2 Symmetrisation argument for Ψ convex

In the next Subsection, because we rely on Theorem 3.1, we are going to prove the inequality (2.3) on

symmetric random variables first (e.g. variables Ym s.t. εmYm
d
= Ym). The extension to non-symmetric

variables will be direct thanks to Lemma 3.4 which establishes an ”equivalence in norms” relationship between
the Orlicz norm of the sum of random variables and its associated Rademacher average.

Lemma 3.3. Let Ψ be convex Orlicz function and ‖·‖Ψ the associate Orlicz norm. For any mean zero
random variable Z ∈ LΨ(B), we have ‖Z‖Ψ ≤ ‖Z − Z ′‖Ψ, with Z ′ any B-valued random variable such that
E [Z ′|Z] = 0.

Proof. Let c > 0,

E [Ψ(‖Z‖B /c)]
(a)
= E

[
Ψ

(
‖E [Z − Z ′ | Z]‖B

c

)]
(b)

≤ E
[
Ψ

(
E [‖Z − Z ′‖B | Z]

c

)]
(c)

≤ E
[
E
[
Ψ

(
‖Z − Z ′‖B

c

)
| Z
]]

= E
[
Ψ

(
‖Z − Z ′‖B

c

)]
where in (a) we use Z ′ has a zero conditional mean, in (b) we use that Ψ is non decreasing and the triangular
inequality holds for the ‖.‖B , in (c) we apply the Jensen inequality. Hence by taking c = ‖Z − Z ′‖Ψ > 0, the
right hand side is smaller than 1 (using Property (i) in Section 2.1), and therefore ‖Z‖Ψ ≤ c = ‖Z − Z ′‖Ψ.

Lemma 3.4. Let Ψ be as in Lemma 3.3. Let (Ym)m∈[M ] be a sequence of independent mean-zero random
variables in LΨ(B). Let (εm)m∈[M ] be independent Rademacher random variables, and let (Y ′m)m∈[M ] be an
independent copy of the sequence (Ym)m∈[M ]. Then∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

≤

∥∥∥∥∥∥
∑

m∈[M ]

Ym −
∑

m∈[M ]

Y ′m

∥∥∥∥∥∥
Ψ

=

∥∥∥∥∥∥
∑

m∈[M ]

εm(Ym − Y ′m)

∥∥∥∥∥∥
Ψ

≤ 2

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
Ψ

≤ 4

∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

.

Later on, we will apply these inequalities with Ψ = ΨHT
β and Ψ(x) = x (the associated Orlicz norm corresponds

then to the L1 norm).

Proof. The first inequality comes from the application of Lemma 3.3 with Z =
∑
m∈[M ] Ym and Z ′ =∑

m∈[M ] Y
′
m. Since εm takes values ±1 independently of Z,Z ′, we have Ym−Y ′m

d
= Y ′m−Ym

d
= εm(Ym−Y ′m).

Since the sequences are independent in m, we obtain the equality of Lemma 3.4. The second inequality is a
consequence of the triangular inequality (iv) and the previous identities in distribution.
The last inequality is a consequence of the application of Lemma 3.3 with Z =

∑
m∈[M ] εmYm and Z ′ =∑

m∈[M ] εmY
′
m satisfying E [Z ′|Z] = E

[
E
[∑

m∈[M ] ε
′
mY
′
m |ε′m, Z ′m,m ∈ [M ]

]
| Z
]

= 0 and of the triangular

inequality: ‖Z‖Ψ≤‖Z − Z ′‖Ψ =
∥∥∥∑m∈[M ](Ym − Y ′m)

∥∥∥
Ψ
≤ 2

∥∥∥∑m∈[M ] Ym

∥∥∥
Ψ

.

3.3 Proof of the main result, Theorem 2.1

We will denote K(β) a constant depending only on β, that may vary from line to line. We assume that at
least one of the Ym’s is not zero a.s., otherwise the announced inequality (2.3) is obvious.

In view of the inequalities of Lemma 3.4, it is enough to do the reasoning and show the inequality (2.3) with
the variables (εmYm,m ∈ [M ]) instead of (Ym,m ∈ [M ]).

� Rescaling. Note that (2.3) is invariant by homogeneous rescaling (see Property (ii) of Section 2.1), i.e.
the inequality remains the same for the random variables Ỹm := εmYm

C for any C > 0. For the choice

C :=

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT

> 0,
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3.3 Proof of the main result, Theorem 2.1

observe that ∥∥∥∥∥∥
∑

m∈[M ]

Ỹm

∥∥∥∥∥∥
L1(B)

≤ 1 and

∥∥∥∥ max
m∈[M ]

∥∥∥Ỹm∥∥∥
B

∥∥∥∥
ΨHT

≤ 1, (3.1)

therefore the inequality (2.3) writes ∥∥∥∥∥∥
∑

m∈[M ]

Ỹm

∥∥∥∥∥∥
ΨHT

≤ 2K(β).

Conversely, if the above holds for some K(β) (independent from the Ỹm’s verifying (3.1)), then (2.3) holds
for the Ym’s. All in all, it means that without loss of generality, we can assume∥∥∥∥∥∥

∑
m∈[M ]

εmYm

∥∥∥∥∥∥
L1(B)

≤ 1 and

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT

≤ 1,

and then show, under these assumptions, the existence of K(β) ∈ R (independent on Ym’s) such that

E

exp

ξβ

∥∥∥∑m∈[M ] εmYm

∥∥∥
B

K(β)

 ≤ 2.

� Deviation bounds. By Property (iii) of Section 2.1 and since we assumed
∥∥maxm∈[M ] ‖Ym‖B

∥∥
ΨHT ≤ 1,

P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
≤ 2exp (−ξβ(t)), t ≥ 0.

The function ξβ(·) = (ln (1 + ·))β being continuously increasing from 0 to +∞, there exists t0 s.t. ξβ(t0) =

2 ln 2 and ∀t ≥ t0, 2 exp (−ξβ(t)) ≤ 1/2; for further use, notice the value t0 = e(2 ln 2)
1
β − 1. Then applying

Lemma 3.1, for t ≥ t0, we have∑
m∈[M ]

P (‖Ym‖B ≥ t) ≤ 2P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
≤ 4 exp (−ξβ(t)).

Hence Lemma 3.2 yields for r ∈ N∗, t ≥ t0

P
(
X(r) ≥ t

)
≤ 4r exp (−rξβ(t))

r!
. (3.2)

Denote β̃ = bβc+ 1 ≥ 2. Equation (3.2) yields for t ≥ (eβ̃ − 1)r
β̃
β (notice that t ≥ e2 − 1 ≥ t0 as requested)

P
(
X(r) ≥ tr−

β̃
β

)
≤

4r exp
(
−r[ln(1 + tr−

β̃
β )]β

)
r!

=: f(r, t).

Since β̃/β > 1, the sequence (r−
β̃
β )r≥1 is summable. Set Sβ :=

∑
r≥1 r

− β̃β < +∞ and g(t) := (t/(eβ̃−1))β/β̃ .

From the inclusion {
∑
r≤g(t)X

(r) ≥ tSβ} ⊂
⋃
r≤g(t){X(r) ≥ tr−

β̃
β } and writing a union bound, we get

P

 ∑
r≤g(t)

X(r) ≥ tSβ

 ≤ ∑
r≤g(t)

f(r, t). (3.3)

We claim that for all 1 ≤ r ≤ g(t)

r1/β ln(1 + tr−
β̃
β ) ≥ ln(1 + t). (3.4)

This is a consequence of the above lemma applied with ρ = r
1
β ≥ 1 and τ = tr−

β̃
β ≥ eβ̃ − 1.
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3.3 Proof of the main result, Theorem 2.1

Lemma 3.5. For all ρ ≥ 1 and τ ≥ eβ̃ − 1, we have ρ ln(1 + τ) ≥ ln(1 + τρβ̃).

Proof. The function f(ρ) := ρ ln(1 + τ)− ln(1 + τρβ̃) vanishes at ρ = 1, let us prove that it is non-decreasing

in ρ provided that τ ≥ eβ̃ − 1. Indeed,

f ′(ρ) = ln(1 + τ)− β̃ρβ̃−1τ

1 + ρβ̃τ
.

Since ρβ̃τ ≥ 0 and ρ ≥ 1, we have β̃ρβ̃−1τ

1+ρβ̃τ
≤ β̃

ρ ≤ β̃. Hence, f ′(ρ) ≥ ln(1 + τ)− β̃ ≥ 0. We are done.

Plugging (3.4) into (3.3) yields

P

 ∑
r≤g(t)

X(r) ≥ tSβ

 ≤ ∑
r≤g(t)

4r

r!
exp

(
−[ln(1 + t)]β

)
≤ exp(4) exp(−ξβ(t)).

Let us recall that µ =
∥∥∥∑m∈[M ] εmYm

∥∥∥
L1(B)

≤ 1. We are now at the point to apply Theorem 3.1 with

q = deK0e, u = t, u′ = tSβ , 2qµ ≤ t and k = bg(t)c:

P

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ t (Sβ + 3)

 ≤ P

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ 4qµ+ u+ u′


≤ 4 exp

(
− t2

64qµ2

)
+ exp (−bg(t)c) + P

 ∑
r≤g(t)

X(r) ≥ tSβ


≤ 4 exp

(
− t2

64qµ2

)
+ exp (−bg(t)c) + exp (4− ξβ(t)).

The above inequality is valid for any t ≥ t0 ∨ (2deK0eµ). Besides, in the above upper bound, the last third
is asymptotically the largest one, therefore there exists K(β) > 0 such that

P

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ K(β)t

 ≤ K(β) exp (−ξβ(t)), t ≥ 0.

� Orlicz norm bounds. The estimate implies for all c > 0:

E

exp

ξβ
∥∥∥∥∥∥

∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

/(cK(β))

−1 =

∫ ∞
0

exp (ξβ (t))ξ′β (t)P


∥∥∥∑m∈[M ] εmYm

∥∥∥
B

cK(β)
≥ t

dt

≤ K(β)

∫ ∞
0

ξ′β (t) exp (ξβ (t)− ξβ(ct))dt. (3.5)

Let us check that the above integral is finite for c > 1. Only the integrability at t → +∞ is questionable.
Write

ξβ(t)− ξβ(ct) = (ln(1 + t))β

1−

1 +
ln( (1+ct)

(1+t) )

ln(1 + t)

β
 ≈t→+∞ −β(ln(1 + t))β−1 ln(c).

Therefore, the function to integrate is bounded for t large by (up to constant)

g(t) :=
(ln(1 + t))β−1

(1 + t)
e−

1
2β(ln(1+t))β−1 ln(c).
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3.4 Proof of Theorem 2.2: ΨHT
β -maximal inequality

We easily check that
∫ +∞

0
g(t)dt =

∫ +∞
0

yβ−1e−
1
2βy

β−1 ln(c)dy < +∞ since β > 1 and c > 1.
Furthermore, by monotone convergence theorem, the bound (3.5) converges to 0 as c→ +∞, consequently

E

exp

ξβ

∥∥∥∑m∈[M ] εmYm

∥∥∥
B

cK(β)

 ≤ 2

for a c = cβ large enough. We have proved that
∥∥∥∑m∈[M ] εmYm

∥∥∥
ΨHT
≤ cβK(β).

3.4 Proof of Theorem 2.2: ΨHT
β -maximal inequality

We start by recalling the general maximal inequality on which our proof is based.

Lemma 3.6 ([vdVW96, Lemma 2.2.2]). Let Ψ be a convex Orlicz function satisfying

lim sup
x,y→+∞

Ψ(x)Ψ(y)/Ψ(cΨxy) < +∞ (3.6)

for some constant cΨ > 0. Then, there is a constant K > 0 such that for any B-valued random variables
Y1, . . . , YM , ∥∥∥∥ max

m∈[M ]
‖Ym‖B

∥∥∥∥
Ψ

≤ KΨ−1(M) max
m∈[M ]

‖Ym‖Ψ .

For β > 1, ΨHT
β is a convex Orlicz function, thus it remains to establish (3.6) to get Theorem 2.2. We prove

that one can take cΨ = 1. Let c ≥ 13 s.t. ΨHT
β (c2) ≥ 1. Let x, y st. x ≥ c and y ≥ c: then

ΨHT
β (x)ΨHT

β (y) ≤ e(ln(1+x))βe(ln(1+y))β

≤ e(ln(x))β+(ln(y))β−(ln(xy))βe(ln(1+xy))β e2 supz≥c(ln(1+z))β−(ln z)β︸ ︷︷ ︸
:=C(c)

.

• C(c) is finite: indeed, by standard equivalents, we have that

(ln(1 + z))β − (ln z)β= (ln z)β

([
1 +

ln(1 + z−1)

ln(z)

]β
− 1

)
∼z→∞ β

(ln z)β−1

z

which converges to 0 at infinity.

• Notice that (ln(xy))β − (ln(x))β ≥ (ln(y))β for any x, y ≥ 1. Indeed, setting u = lnx ≥ 0, v = ln y ≥ 0,

(u+ v)β − uβ =

∫ u+v

u

βzβ−1dz ≥
∫ v

0

βzβ−1dz = vβ

(because z 7→ βzβ−1 is increasing since β > 1).

• Last, since e(ln(1+xy))β = ΨHT
β (xy) + 1 ≥ ΨHT

β (c2) + 1 ≥ 2, one has

e(ln(1+xy))β =
e(ln(1+xy))β

e(ln(1+xy))β − 1
ΨHT
β (xy) ≤ 2ΨHT

β (xy).

All in all, we conclude that ΨHT
β (x)ΨHT

β (y) ≤ 2C(c)ΨHT
β (xy), for any x, y ≥ c. We are done.

3one can take c =

√
e(ln 2)1/β − 1 ≥ 1 for which ΨHT

β (c2) = 1.
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4. Conclusion and perspectives REFERENCES

4 Conclusion and perspectives

To conclude, we have extended the Talagrand inequality for an Orlicz norm adapted to variables with β-
heavy tails (Theorem 2.1 and Equation (2.2)). We have also shown that a maximal inequality was satisfied
(Theorem 2.2), which enabled us to establish a concentration inequality for sum of independent and centered
random variables with β-heavy tails (Corollary 2.3). A next step would be to extend this inequality to
supremum of functions of random variables with β-heavy tails, which follows from a standard routine using
a truncation argument as in [Ada08, CGS20] and union bounding technique as in [SS15] for instance.
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