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FINITE ELEMENT METHODS FOR THE DARCY-FORCHHEIMER PROBLEM

COUPLED WITH THE CONVECTION-DIFFUSION-REACTION PROBLEM

TONI SAYAH†, GEORGES SEMAAN†, AND FAOUZI TRIKI‡

Abstract. In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-

Forchheimer problem by a non-linear external force depending on the concentration. We establish
existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse

a numerical scheme based on the finite element method. An optimal a priori error estimate is then

derived for each numerical scheme. Numerical investigation are performed to confirm the theoretical
accuracy of the discretization.

Keywords. Darcy-Forchheimer problem; convection-diffusion-reaction equation; finite element method;

a priori error estimates.

1. Introduction.

This work studies the convection-diffusion-reaction equation coupled with Darcy-Forchheimer problem.
The system of equations is

(P )



µ

ρ
K−1u +

β

ρ
|u|u +∇p = f(., C) in Ω,

divu = 0 in Ω,

−α∆C + u · ∇C + r0C = g in Ω,

u · n = 0 on Γ,

C = 0 on Γ,

where Ω ⊂ IRd, d = 2, 3, be a bounded simply-connected open domain, having a Lipschitz-continuous
boundary Γ with an outer unit normal n. The unknowns are the velocity u, the pressure p and the
concentration C of the fluid. |.| denotes the Euclidean norm, |u|2 = u · u. The parameters ρ, µ and β
represent the density of the fluid, its viscosity and its dynamic viscosity, respectively. β is also referred as
Forchheimer number when it is a scalar positive constant. The diffusion coefficient α and the parameter
r0 are positive constants. The function f represents an external force that depends on the concentration C
and the function g represents an external concentration source. K is the permeability tensor, assumed
to be uniformly positive definite and bounded such that there exists two positive real numbers Km and
KM such that

0 < Km ≤
∥∥K−1

∥∥
L∞(Ω)d×d

≤ KM . (1.1)

It should be noted that Km could be very close to zero and KM could be very large.
To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C, but the
present analysis can be easily extended to a non-homogeneous boundary condition.
System (P ) couples the Darcy-Forchheimer system with the diffusion-convection-reaction equation sat-
isfied by the the concentration of the fluid. This same system can also couples the Darcy-Forchheimer
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system with the heat equation satisfied by the temperature T of the fluid, it suffices to set r0 = 0 and
replace C by T .

Darcy’s law (see [29] and [35] for instance for the theoretical derivation) describes the creeping flow of
Newtonian fluids in porous media. It is simply the first equation of system (P ) without the non-linear

term
β

ρ
|u|u and where the function f may depends on the concentration C of the fluid. Forchheimer

[18] shows experimentally that when the velocity is higher and the porosity is nonuniform, Darcy’s law
becomes inadequate. He proposed the Darcy-Forchheimer equation which is the first equation of the
system (P ). A theoretical derivation of Forchheimer’s law can be found in [27]. Multiple theoretical
and numerical studies of the Darcy-Forchheimer system were performed and among others we mention
[22, 24, 30, 26, 31].

For the coupled problem of Darcy’s law with the heat equation, we can refer to [6] where the coupled
problem is treated using the spectral method. The authors in [4] and [12] considered the same stationary
system but coupled with a nonlinear viscosity that depends on the temperature. In [13], the authors
derived an optimal a posteriori error estimate for each of the numerical schemes proposed in [4]. We can
also refer to [3] where the authors used a vertex-centred finite volume method to discretize the coupled
system. Furthermore, for the time-dependent convection-diffusion-reaction equation coupled with Darcy’s
equation, we refer to [8, 9] where the authors established the corresponding a priori and a posteriori errors.

The coupling system (P ) has many physical applications for the Darcy-Forchheimer mixed convection
case [34]. In this case, the Darcy-Forchheimer system is coupled with the concentration C of fluid with
the external force f . We mention that the work of [6] use the spectral method to treat a coupled system
very close to (P ) where the Darcy-Forchheimer equation is replaced by the Darcy one. It turns out that
the non-linear term appearing in the first equation of (P ) makes the treatment of the coupled system
more complex.
We first derive an equivalent variational formulation to (P ) and we show the existence of a solution.
The uniqueness can be reached under additional constraint on the concentration. Then, we discretize the
system by using the finite element method and we show the existence and uniqueness of the corresponding
solution. Later, we establish the a priori error estimate between the exact and numerical solutions under
the condition of smallness of the concentration in the fluid. In order to compute the solution, we introduce
an iterative scheme and we study the corresponding convergence. Finally, numerical investigation are
performed to validate the theoretical results.
The outline of the paper is as follows:

• Section 2 is devoted to the continuous problem and the analysis of the corresponding variational
formulation.

• In section 3, we introduce the discrete problems, recall their main properties, study their a priori
errors and derive optimal estimates.

• In section 4, we introduce an iterative algorithm and prove its convergence.
• Numerical results validating the convergence analysis are presented in Section 5.

2. Analysis of the model

2.1. Notation. Let D(Ω) be the space of functions that have compact support in Ω and have continuous
derivatives of all orders in Ω. Let α = (α1, α2, . . . αd) be a d-uplet of non negative integers, set |α| =∑d
i=1 αi, and define the partial derivative ∂α by

∂α =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαdd
.

Then, for any positive integer m and number p ≥ 1, recall the classical Sobolev space [2, 28]

Wm,p(Ω) = {v ∈ Lp(Ω); ∀ |α| ≤ m, ∂αv ∈ Lp(Ω)}, (2.1)
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equipped with the seminorm

|v|Wm,p(Ω) =
( ∑
|α|=m

∫
Ω

|∂αv|p dx
) 1
p (2.2)

and the norm

‖v‖Wm,p(Ω) =
( ∑

0≤k≤m

|v|p
Wk,p(Ω)

) 1
p . (2.3)

When p = 2, this space is the Hilbert space Hm(Ω). The definitions of these spaces are extended
straightforwardly to vectors, with the same notation, but with the following modification for the norms
in the non-Hilbert case. Let v be a vector valued function; we set

‖v‖Lp(Ω)d =
( ∫

Ω

|v|p dx
) 1
p , (2.4)

where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

H1
0 (Ω) = {v ∈ H1(Ω); v|Γ = 0},

W 1,q
0 (Ω) = {v ∈W 1,q(Ω); v|Γ = 0}. (2.5)

We shall often use the following Sobolev imbeddings: for any real number p ≥ 1 when d = 2, or
1 ≤ p ≤ 2 d

d−2 when d ≥ 3, there exist constants Sp and S0
p such that

∀ v ∈ H1(Ω), ‖v‖Lp(Ω) ≤ Sp‖v‖H1(Ω) (2.6)

and

∀ v ∈ H1
0 (Ω), ‖v‖Lp(Ω) ≤ S0

p |v|H1(Ω). (2.7)

When p = 2, (2.7) reduces to Poincaré’s inequality.
To deal with the Darcy-Forchheimer, we recall the space

L2
0(Ω) =

{
v ∈ L2(Ω);

∫
Ω

v dx = 0
}
. (2.8)

2.2. Variational formulation. In this section, we introduce the variational formulation corresponding
to the problem (P ).
We assume that the volumic and boundary sources verify the following conditions:

Assumption 2.1. We assume that f and g verify:

(1) f can be written as follows:

∀x ∈ Ω,∀C ∈ IR, f(x, C) = f0(x) + f1(C), (2.9)

where f0 ∈ L
3
2 (Ω)d and f1 is Lipschitz-continuous with constant c∗f1 and satisfies the inequality

∀ξ ∈ IR, ‖ f1(ξ) ‖IRd≤ cf1 |ξ|,

where cf1 is a stirctly positive constant.
(2) g ∈ L2(Ω).

It follows from the nonlinear term in the system (P ) that the velocity u and the test function v must belong

to L3(Ω)d; then, the gradient of the pressure must belong to L
3
2 (Ω)d. Furthermore, the concentration C

must be in H1
0 (Ω). Thus, we introduce the spaces

X = L3(Ω)d, M = W 1, 32 (Ω) ∩ L2
0(Ω), Y = H1

0 (Ω).

Furthermore, we recall the following the inf-sup condition between X and M [22],

inf
q∈M

sup
v∈X

∫
Ω

v(x)∇q(x) dx

‖v‖L3(Ω)d ‖∇q‖L 3
2 (Ω)

= 1. (2.10)
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With these assumptions on the sources, we introduce the following variational formulation associated to
problem (P ):

(Va)



Find (u, p, C) ∈ X ×M × Y such that:

∀v ∈ X, µ
ρ

∫
Ω

(K−1u(x)).v(x) dx +
β

ρ

∫
Ω

|u(x)|u(x)v(x) dx +

∫
Ω

∇p(x).v(x) dx

=

∫
Ω

f(x,C(x))v(x) dx,

∀q ∈M,

∫
Ω

∇q(x).u(x) dx = 0,

∀S ∈ Y, α
∫

Ω

∇C(x)∇S(x) dx +

∫
Ω

(u.∇C)(x)S(x) dx+r0

∫
Ω

C(x)S(x) dx =

∫
Ω

g(x)S(x) dx.

Equivalence between (P ) and (Va) in the sense of distribution follows readily from the validity of Green’s
formula:

∀q ∈M, ∀v ∈ H,
∫

Ω

∇q(x).v(x)dx = −
∫

Ω

q(x) div(v(x))dx + 〈q,v.n〉∂Ω

in the space

H = {v ∈ L3(Ω)d; divv ∈ L
3d
d+3 (Ω)},

and the fact that

V =
{
v ∈ H; v.n|∂Ω = 0, and ∀q ∈M,

∫
Ω

∇q.vdx = 0.
}

=
{
v ∈ H; v.n|∂Ω = 0, divv = 0 in Ω

}
,

for further details, we refer to [22].

To study problem (Va), it is convenient to introduce the mapping v −→ A(v) defined by:

A : L3(Ω)d 7→ L
3
2 (Ω)d

v 7→ A(v) =
µ

ρ
K−1v +

β

ρ
|v|v.

We refer to [22, 16] for the following properties of A.

Property 2.2. A satisfies the following properties:

(1) A maps L3(Ω)d into L
3
2 (Ω)d and we have for all v ∈ L3(Ω)d:

‖A(v)‖
L

3
2 (Ω)d

≤ µ

ρ

∥∥K−1
∥∥
∞ ‖v‖L 3

2 (Ω)d
+
β

ρ
‖v‖2L3(Ω)d .

(2) For all (v,w) ∈ Rd × Rd, we have,

|A(v)−A(w)| ≤
(
µ

ρ

∥∥K−1
∥∥
∞ +

2β

ρ
(|v|+ |w|)

)
|v −w|. (2.11)

(3) A is monotone from L3(Ω)d into L
3
2 (Ω)d, and we have for all v,w ∈ L3(Ω)d,∫

Ω

(A(v(x))−A(w(x))).(v(x)−w(x)) dx ≥ max(cm ‖v −w‖3L3(Ω)d ,
µ

ρ
Km ‖v −w‖2L2(Ω)d),

where cm is a strictly positive constant.
(4) A is coercive in L3(Ω)d.
(5) A is hemi-continuous in L3(Ω)d: for fixed u,v ∈ L3(Ω)d, the mapping

t −→
∫

Ω

A(u + tv) · v dx

is continuous from IR into IR.
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Let us first show that for a given C ∈ Y , the Darcy-Forchheimer problem (first two lines in (Va)) written
as following: Find (u(C), p(C)) ∈ X ×M such that

∀v ∈ X,
∫

Ω

A(u(C)(x)).v(x) dx +

∫
Ω

∇p(C)(x).v(x) dx =

∫
Ω

f(x,C(x)).v(x) dx,

∀q ∈M,

∫
Ω

∇q(x).u(C)(x) dx = 0,

(2.12)

admits a unique solution (u, p) = (u(C), p(C)). Problem (2.12) is equivalent to the following: find
(u(C), p(C)) ∈ X ×M , such that

∀v ∈ V,
∫

Ω

A(u(C)(x)).v(x) dx =

∫
Ω

f(x,C(x)).v(x) dx. (2.13)

Theorem 2.3. For each C ∈ H1
0 (Ω), f(., C) ∈ L

3
2 (Ω)d, the problem (2.12) has exactly one solution

(u(C), p(C)) ∈ X ×M . Furthermore, (u, p) satisfies the a priori estimates :

‖u(C)‖L3(Ω)d ≤
(
ρ

β
‖f(., C)‖

L
3
2 (Ω)d

) 1
2

,

‖∇p(C)‖
L

3
2 (Ω)d

≤ µ

ρ

∥∥K−1
∥∥
L∞(Ω)d×d

‖u(C)‖
L

3
2 (Ω)d

+
β

ρ
‖u(C)‖2L3(Ω)d + ‖f(., C)‖

L
3
2 (Ω)d

.

(2.14)

Proof. Let C ∈ H1
0 (Ω). Assumption 2.1 allows us to deduce that f(, .C) lies in L

3
2 (Ω)d. For the proof,

We refer to [22] (see Theorem 3 page 172). �

Thus, Problem (Va) can be rewritten as a function of the single unknown C. Indeed, for given C, let
(u(C), p(C)) be the solution of problem (2.12). Then, problem (Va) is equivalent to the following reduced
formulation: Find C ∈ Y such that

∀S ∈ Y, α

∫
Ω

∇C(x).∇S(x) dx +

∫
Ω

(u(C).∇C)(x)S(x) dx + r0

∫
Ω

C(x)S(x)dx =

∫
Ω

g(x)S(x) dx.

(2.15)
Before proving that problem (2.15) admits a solution, we will show the following intermediate lemma:

Lemma 2.4. Let f satisfies Assumption 2.1 and (Ck)k≥1 be a sequence of functions in L2(Ω) that
converges strongly to C in L2(Ω). Then, the sequence (u(Ck), p(Ck))k≥1 converges weakly to (u(C), p(C))
in X ×M and we have

lim
k→+∞

u(Ck) = u(C) strongly in L3(Ω)d.

Proof. Assumption 2.1 allows us to deduce that the sequence (f(., Ck(.))k≥1 converges strongly to f(., C(.))

in L
3
2 (Ω)d and then bounded in L

3
2 (Ω)d. Bounds (2.14) yield first the weak convergence (up to a

subsequence) of (u(Ck),∇p(Ck)) in L3(Ω)d×L 3
2 (Ω) to some function (û, ĥ). We will show that (û, ĥ) =

(u(C),∇p(C)). Let us first show that û is solution of Problem (2.13). We show first that û ∈ V . Indeed,
the second equation of problem (2.13) satisfied by u(Ck), and the weak convergence of u(Ck) to û led to
the relation

∀q ∈M,

∫
Ω

û(x).∇q(x) = 0,

and then û ∈ V . Now, we show that û satisfies problem (2.13). The monotonicity of A gives

∀v ∈ V,
∫

Ω

(A(u(Ck))−A(v)) (x).(u(Ck)− v)(x) dx ≥ 0. (2.16)

The last inequality combined with problem (2.13) satisfied by u(Ck) yields

∀v ∈ V,
∫

Ω

A(v(x)).(u(Ck)− v)(x) dx ≤
∫

Ω

f(Ck)(x).(u(Ck)− v)(x) dx. (2.17)

We obtain by using the weak convergence of u(Ck) to û and the strong convergence of f(., Ck) to f(., C),
the following relation:

∀v ∈ V,
∫

Ω

A(v(x)).(û− v)(x) dx ≤
∫

Ω

f(C)(x).(û− v)(x) dx. (2.18)
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By virtue of the hemi-continuity of A, a classical argument implies that

∀v ∈ V,
∫

Ω

A(û(x)).v(x) dx =

∫
Ω

f(C)(x).v(x) dx. (2.19)

Hence û is a solution of (2.13), and thus û = u(C). Furthermore, problem (2.13) gives the relation

∀v ∈ V,
∫

Ω

(A(u(C)(x))−A(u(Ck)(x))).v(x) dx =

∫
Ω

(f(x,C(x))− f(x,Ck(x))).v(x) dx

which allows us by taking v = u(Ck)− u(C), by using the monotonicity of A in L3(Ω)d, and the strong
convergence of f(., Ck) to f(., C), to obtain the following convergence

lim
k→∞

u(Ck) = u(C) strongly in L3(Ω)d.

Finally, we have to treat the convergence of the pressure. Since u(C) is a solution of problem (2.12), we
use the inf-sup condition (2.10) to deduce the existence of p(C) such that (u(C), p(C)) is the solution of
problem (2.12).
We deduce from problem (2.12) that for all v ∈ X∫

Ω

(∇p(C)−∇p(Ck))(x).v(x) dx = −
∫

Ω

(A(u(C)(x))−A(u(Ck)(x))).v(x) dx

+

∫
Ω

(f(x,C(x)).v(x)− f(x,Ck(x)).v(x)) dx.

The strong convergence of u(Ck) to u(C) in L3(Ω)d, of f(., Ck) to f(., C) in L
3
2 (Ω)d, and the weak

convergence of ∇p(Ck) to ĥ in L
3
2 (Ω)d, give

∀v ∈ X,
∫

Ω

(∇p(C)− ĥ)(x).v(x) dx.

Thus ĥ = ∇p(C) in L
3
2 (Ω)d which finishes the proof. �

The next theorem shows the existence of at least one solution to the problem (Va).

Theorem 2.5. Under assumption 2.1, problem (Va) admits a solution in X×M×Y . Furthermore, each
solution (u, p, C) of (Va) satisfies the following bound:

|C|1,Ω ≤
S0

2

α
‖ g ‖L2(Ω),

‖u‖L3(Ω)d ≤
(
ρ

β
(‖ f0 ‖

L
3
2 (Ω)d

+cf1S
0
3
2
|C|1,Ω)

) 1
2

,

‖∇p‖
L

3
2 (Ω)d

≤ µ

ρ

∥∥K−1
∥∥
L∞(Ω)d×d

‖u‖
L

3
2 (Ω)d

+
β

ρ
‖u‖2L3(Ω)d +

ρ

β
(‖ f0 ‖

L
3
2 (Ω)d

+cf1S
0
3
2
|C|1,Ω).

(2.20)

Proof. We propose to construct a solution of (Va) by Galerkin’s method. As H1
0 (Ω) is separable, it has a

countable basis (θi)i≥1. Let Θm be the space spanned by the first m basis functions, (θi)1≤i≤m. Problem

(2.13) is discretized in Θm by the square system of nonlinear equations: Find Cm =

m∑
i=1

wiθi ∈ Θm

solution of: ∀1 ≤ i ≤ m,

α

∫
Ω

∇Cm(x).∇θi(x)dx +

∫
Ω

(u(Cm)∇Cm)(x)θi(x)dx + r0

∫
Ω

Cm(x)θi(x)dx =

∫
Ω

g(x)θi(x) dx, (2.21)

where (u(Cm), p(Cm)) solves (2.12) with C = Cm. Now, given Cm ∈ Θm, we introduce the auxiliary
problem: Find Φ(Cm) ∈ Θm such that, for all Sm ∈ Θm, we have

(∇Φ(Cm),∇Sm)2 = α(∇Cm,∇Sm)2 +

∫
Ω

(u(Cm)∇Cm)(x).Sm(x) dx+r0

∫
Ω

Cm(x)Sm(x) dx

−
∫

Ω

g(x)Sm(x) dx.

(2.22)
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Relation (2.22) defines a continuous mapping from Θm into Θm, due to the fact that Θm is a finite
dimension space and Lemma 2.4. By taking Sm = Cm, we get

(∇Φ(Cm),∇Cm) = α|Cm|21,Ω + r0 ‖Cm‖2L2(Ω) −
∫

Ω

g(x)Cm(x) dx

≥ |Cm|1,Ω(α|Cm|1,Ω − S0
2 ‖g‖L2(Ω)).

In other words, we have

(∇Φ(Cm),∇Cm) ≥ 0

for all Cm ∈ Θm such that

|Cm|1,Ω =
S0

2

α
‖g‖L2(Ω) .

Therefore Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution to
the problem (2.21).
Let Cm be a solution of problem (2.21), satisfying ∀Sm ∈ Θm,

α(∇Cm,∇Sm) +

∫
Ω

(u(Cm)∇Cm)(x).Sm(x) dx + r0

∫
Ω

Cm(x)Sm(x) dx =

∫
Ω

g(x)Sm(x) dx.

By taking Sm = Cm in the last equation, we get immediately the bound

|Cm|1,Ω ≤
S0

2

α
‖ g ‖L2(Ω) .

The last uniform bound implies that, up to a subsequence, (Cm)m converges weakly to a function C in

H1
0 (Ω). Therefore, it converges strongly in Lr(Ω), for any r <

2d

d− 2
, and it follows from Lemma 2.4

that (u(Cm), p(Cm))m converges weakly to (u(C), p(V )) in X ×M , and (u(Cm))m converges strongly to
u(C) in L3(Ω)d. Now, we freeze the index i in (2.21), and let m tends to infinity. The weak convergence
of (Cm)m to C in H1

0 (Ω), and the strong convergence of (u(Cm))m to u(C) in L3(Ω)d allow us to deduce
that C is a solution of the following problem: Find C ∈ H1

0 (Ω) such that

α

∫
Ω

∇C(x).∇θi(x)dx +

∫
Ω

(u(C)∇C)(x)θi(x)dx + r0

∫
Ω

C(x)θi(x)dx =

∫
Ω

g(x)θi(x) dx. (2.23)

From this system and the density of the basis in H1
0 (Ω), we infer that C is a solution of problem (2.15).

The first bound in (2.20) can be straightly obtained by taking S = C in the last equation in (2.15). The
first and second bounds in (2.20) can be deduced from the inequalities (2.14) and Assumption 2.1. �

Theorem 2.6. Assume that Ω is of class C1,1. Let (u, p, C) be a solution of Problem (P ). If g ∈ L∞(Ω),
then the concentration C is in L∞(Ω) and satisfies the following bound:

‖C‖L∞(Ω) ≤
1

r0
‖g‖L∞(Ω) .

Proof. Let (u, p, C) be a solution of Problem (P ), then the velocity u ∈ V . Using the fact that V is
separable and that the space

V∞ = {Φ ∈ D(Ω)d; div Φ = 0}
is dense in V (see for instance [17] Lemma 10.8), there exists a sequence (uN )N∈N in V∞ which converges
strongly to u in L3(Ω)d when N tends to +∞.
Now, for each N ∈ N, let CN ∈ H1

0 (Ω) the unique solution to the following problem:{
−α4CN + uN∇CN + r0CN = g in Ω,

CN = 0 on Γ.
(2.24)

The elliptic regularity (see [19]) allows us to get that CN ∈W 2,p(Ω) ∩H1
0 (Ω), for all p ≥ 1.

Multiplying the first equation of (2.24) by C2p+1
N and integrating by parts give,

α(2p+ 1)

2(p+ 1)2

∫
Ω

|∇Cp+1
N (x)|2 dx + r0

∫
Ω

C2p+2
N (x) dx =

∫
Ω

g(x)C2p+1
N (x) dx.
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By remarking that the first term of the left hand side of the previous equation is non-negative and

by applying Holder’s inequality for the right-hand-side with the conjugate exponents m =
2p+ 2

2p+ 1
and

n = 2p+ 2, we get the following inequality:

‖CN‖L2p+2(Ω) ≤
1

r0
‖g‖L2p+2(Ω) . (2.25)

The next step consists to show that CN converges strongly to C ∈ H1
0 (Ω). In order to prove it, we start

by subtracting the third equation of problem (P ) from first equation of (2.24) to get, for all S ∈ H1
0 (Ω),

α

∫
Ω

∇(C − CN )∇S dx + r0

∫
Ω

(C − CN )S dx = −
∫

Ω

u∇(C − CN )S dx−
∫

Ω

(u− uN )∇CNS dx.

By taking S = C − CN and by using the antisymmetric property and the esimate (2.20), we obtain

|C − CN |H1(Ω) ≤
S0

6S
0
2

α
‖u− uN‖L3(Ω)d ‖g‖L2(Ω)

which gives the strong convergence of CN to C in H1
0 (Ω).

As CN is uniformly bounded in L2p+2(Ω), we can extract a subsequence still denoted by CN such that
CN converges weakly in L2p+2(Ω) to some function h satisfying (2.25). The strong convergence of CN to

C in H1(Ω) and the uniqueness of the limit allows us to deduce that h = C in L
2p+1
2p+2 (Ω) and we get

‖C‖L2p+2(Ω) ≤
1

r0
‖g‖L2p+2(Ω) ∀p ≥ 1. (2.26)

Thus h = C ∈ L2p+2(Ω) and Finally, taking the limit in (2.26) as p→∞, we get the desired result.

Theorem 2.7. Under Assumption 2.1, We suppose that the problem (Va) admits a solution (u, p, C) ∈
X ×M × Y such that ∇C ∈ L3(Ω)d, and that

‖ C ‖L∞(Ω)≤
µKmα

ρc∗f1S
0
2

, (2.27)

then, the solution of the problem (Va) is unique.

Proof. Let (u1, p1, C1) and (u2, p2, C2) be two solutions of Problem (Va), and let u = u1−u2, p = p1−p2

and C = C1 − C2. Then, (u, p, C) satisfies for all (v, S) ∈ X × Y ,∫
Ω

(A(u1)−A(u2)) (x).v(x) dx =

∫
Ω

(f(C1)− f(C2)) (x).v(x) dx−
∫

Ω

∇(p1 − p2)(x).v(x)dx,

α

∫
Ω

∇C(x)∇S(x) dx +

∫
Ω

(u∇C1 + u2∇C)(x)S(x) dx + r0

∫
Ω

C(x)S(x) dx = 0.

(2.28)

By taking S = C in the second equation of (2.28), we get by using the Green formula,

α|C|21,Ω + r0 ‖ C ‖2L2(Ω)=

∫
Ω

(u∇C)(x)C1(x) dx,

and then

α|C|21,Ω + r0 ‖ C ‖2L2(Ω)≤‖ u ‖L2(Ω)d‖ ∇C ‖L2(Ω)d ||C1||L∞(Ω).

Finally, we get

|C|1,Ω ≤
1

α
‖ u ‖L2(Ω)d‖ C1 ‖L∞(Ω) . (2.29)

Substituting v by u in the first equation of (2.28), we get∫
Ω

(A(u1)−A(u2)) (x).(u1 − u2)(x) dx =

∫
Ω

(f(C1)− f(C2)) (x).(u1 − u2)(x) dx.

By using the monotonicity of A, Assumption 2.1, and the fact that f1 is c∗f1 -Lipschitz, we obtain

µ

ρ
Km ‖ u ‖L2(Ω)d ≤ ‖ f1(C1)− f1(C2) ‖L2(Ω)d

≤ c∗f1S
0
2 |C|1,Ω.

(2.30)
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Thus, relations (2.29) and (2.30), give

µ

ρ
Km ‖ u ‖L2(Ω)d≤

c∗f1
α
S0

2 ‖ u ‖L2(Ω)d‖ C1 ‖L∞(Ω) .

Relation (2.27) allows us to deduce that ‖ u ‖L2(Ω)= 0 and then u1 = u2. Relation (2.29) implies
C1 = C2. Finally, the first equation of system (2.28) and the inf-sup condition provide p1 = p2, which
yields the uniqueness of the solution. �

Corollary 2.8. Under Assumption 2.1 and Theorems 2.6 and 2.7, if the data g satisfies the following
smallness condition

‖g‖L∞(Ω) ≤
r0µKmα

ρc∗f1S
0
2

,

then the solution (u, p, C) of Problem (P ) is unique in L3(Ω)d ×W 1, 32 (Ω) ∩ L2
0(Ω)×H1

0 (Ω).

3. Discretization

From now on, we assume that Ω is a polygon when d = 2 or polyhedron when d = 3, so it can be completely
meshed. For the space discretization, we consider a regular (see Ciarlet [10]) family of triangulations (Th)h
of Ω which is a set of closed non degenerate triangles for d = 2 or tetrahedra for d = 3, called elements,
satisfying

• for each h, Ω̄ is the union of all elements of Th;
• the intersection of two distinct elements of Th is either empty, a common vertex, or an entire

common edge (or face when d = 3);
• the ratio of the diameter hκ of an element κ ∈ Th to the diameter ρκ of its inscribed circle when
d = 2 or ball when d = 3 is bounded by a constant independent of h, that is, there exists a
strictly positive constant σ independent of h such that,

max
κ∈Th

hκ
ρκ
≤ σ. (3.1)

As usual, h denotes the maximal diameter of all elements of Th. To define the finite element functions,
let r be a non negative integer. For each κ in Th, we denote by Pr(κ) the space of restrictions to κ
of polynomials in d variables and total degree at most r, with a similar notation on the faces or edges
of κ. For every edge (when d = 2) or face (when d = 3) e of the mesh Th, we denote by he the diameter of e.

We shall use the following inverse inequality [14]: for any dimension d, there exists a constant CI such
that for any polynomial function vh of degree r on K,

‖vh‖L3(κ) ≤ CIh
− d6
κ ‖vh‖L2(κ). (3.2)

The constant CI depends on the regularity parameter σ of (3.1), but for the sake of simplicity this is not
indicated.

Let Xh ⊂ X, Mh ⊂M and Yh ⊂ Y be the discrete spaces corresponding to the velocity, the pressure and
the concentration. We assume that Xh and Mh satisfy the following inf-sup condition:

∀ qh ∈Mh, sup
vh∈Xh

∫
Ω

∇qh · vh dx

‖vh‖Xu
≥ β2‖qh‖Mh

, (3.3)

where β2 is a strictly positive constant independent of h.
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Problem (Va) can be discretized as following: Find (uh, ph, Ch) ∈ Xh ×Mh × Yh such that

(Vah)



∀vh ∈ Xh,

∫
Ω

A(uh).vhdx +

∫
Ω

∇ph · vh dx =

∫
Ω

f(Ch) · vh dx,

∀qh ∈Mh,

∫
Ω

∇qh · uh dx = 0,

∀Sh ∈ Yh, α
∫

Ω

∇Ch∇Sh dx +

∫
Ω

(uh.∇Ch)Sh dx +
1

2

∫
Ω

div(uh)ChShdx

+r0

∫
Ω

ChSh dx =

∫
Ω

gSh dx.

(3.4)

In the following, we will introduce the finite dimension spaces Xh,Mh and Yh. Let κ be an element of Th
with vertices ai, 1 ≤ i ≤ d+1, and corresponding barycentric coordinates λi. We denote by bκ ∈ Pd+1(κ)
the basic bubble function :

bκ(x) = λ1(x)...λd+1(x). (3.5)

We observe that bκ(x) = 0 on ∂κ and that bκ(x) > 0 in the interior of κ.
We introduce the following discrete spaces:

Xh ={vh ∈ (C0(Ω̄))d; ∀κ ∈ Th, vh|κ ∈ P(κ)
d},

Mh ={qh ∈ C0(Ω̄); ∀κ ∈ Th, qh|κ ∈ IP1(κ)} ∩ L2
0(Ω),

Yh ={qh ∈ C0(Ω̄); ∀κ ∈ Th, qh|κ ∈ IP1(κ)} ∩H1
0 (Ω),

Vh ={vh ∈ Xh;∀qh ∈Mh,

∫
Ω

∇qh · vh dx = 0},

(3.6)

where

P(κ) = P1(κ)⊕Vect{bκ}.

In this case, for the inf-sup condition (3.3), we refer to [21].

We shall use the following results:

(1) For the concentration: there exists an approximation operator (when d = 2, see Bernardi and
Girault [5] or Clément [11]; when d = 2 or d = 3, see Scott and Zhang [33]), Rh in L(W 1,p(Ω);Yh)
such that for all κ in Th, m = 0, 1, l = 0, 1, and all p ≥ 1,

∀S ∈W l+1,p(Ω), |S −Rh(S)|Wm,p(κ) ≤ c(p,m, l)hl+1−m|S|W l+1,p(∆κ), (3.7)

where ∆κ is the macro element containing the values of S used in defining Rh(S).
(2) For the velocity: We introduce a variant of Rh denoted by Fh (see [4] and [20]) which is stable

in L3(Ω)d:

∀v ∈ L3(Ω)d, ||Fh(v)||L3(κ)d ≤ Cs||v||L3(∆κ)d , (3.8)

such that Fh(v) ∈ Vh when divv = 0, and satisfies (3.7).
(3) For the pressure: As Mh contains all constants, an easy modification of Rh yields an operator

rh ∈ L(W 1,p(Ω) ∩ L2
0(Ω);Mh) (see for instance Abboud, Girault and Sayah [1]), satisfying (3.7).

Indeed, rh can be constructed as follows:

∀q ∈M, rhq = Rhq −
1

|Ω|

∫
Ω

(Rhq)(x)dx.

Existence of a solution of (Vah) is derived by duplicating the steps of the previous section concerning the
existence of a solution of Problem (Va). First (Vah) is split as in the previous section, i.e., find Ch ∈ Yh
such that: ∀Sh ∈ Yh,

α

∫
Ω

∇Ch∇Sh dx +

∫
Ω

(uh(Ch).∇Ch)Sh dx +
1

2

∫
Ω

div(uh(Ch))ChShdx + r0

∫
Ω

ChSh dx =

∫
Ω

gSh dx,

(3.9)
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where uh(Ch) is the velocity solution of: Find (uh(Ch), ph(Ch)) ∈ Xh ×Mh, such that
∀vh ∈ Xh,

∫
Ω

A(uh(Ch)).vhdx +

∫
Ω

∇ph(Ch) · vh dx =

∫
Ω

f(., Ch) · vh dx,

∀qh ∈Mh,

∫
Ω

∇qh · uh dx = 0.
(3.10)

For each Ch ∈ Xh, an easy finite-dimensional variant of the argument of Theorem 2.3 allows one to prove
that the scheme (3.10) has a unique solution (uh(Ch), ph(Ch)) ∈ Xh×Mh, and this solution satisfies the
a priori estimates similar to (2.14):

‖uh(Ch)‖L3(Ω)d ≤
(
ρ

β
‖f(., Ch)‖

L
3
2 (Ω)d

) 1
2

,

β2 ‖∇ph(Ch)‖
L

3
2 (Ω)d

≤ µ

ρ

∥∥K−1
∥∥
L∞(Ω)d×d

‖uh(Ch)‖
L

3
2 (Ω)d

+
β

ρ
‖uh(Ch)‖2L3(Ω)d + ‖f(., Ch)‖

L
3
2 (Ω)d

.

(3.11)
We address now the existence of at least one solution of the problem (3.9) written with the only variable
Ch. For this purpose, we apply Brouwer’s Fixed-Point Theorem. Indeed, we introduce the following map:
For a given Ch ∈ Yh, find Φ(Ch) ∈ Yh such that: ∀Sh ∈ Yh,

(Φ(Ch), Sh) = α

∫
Ω

∇Ch∇Sh dx +

∫
Ω

(uh(Ch).∇Ch)Sh dx

+
1

2

∫
Ω

div(uh(Ch))ChShdx + r0

∫
Ω

ChSh dx−
∫

Ω

gSh dx.

This last relation defines a mapping from Yh into itself, and we easily derive its continuity. By taking
Sh = Ch, we get

(∇Φ(Ch),∇Ch) = α|Ch|21,Ω + r0 ‖Ch‖2L2(Ω) −
∫

Ω

g(x)Ch(x) dx,

≥ |Ch|1,Ω(α|Ch|1,Ω − S0
2 ‖g‖L2(Ω)).

In other words, we have

(∇Φ(Ch),∇Ch) ≥ 0,

for all Ch ∈ Yh such that

|Ch|1,Ω =
S0

2

α
‖g‖L2(Ω) .

The Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution of the
problem (3.9). Hence, problem (Vah) admits at least one solution (uh, ph, Ch) ∈ Xh×Mh×Yh. Further-
more, by taking Sh = Ch in the last equation of (Vah) gives, in addition to inequality (3.11), the following
bound:

|Ch|1,Ω ≤
S0

2

α
‖ g ‖L2(Ω) . (3.12)

Finally, uniqueness follows easily since Ch belongs to L∞(Ω). This is summed up in the following existence
and uniqueness theorems.

Theorem 3.1. Under assumption 2.1, (Vah) has at least a solution (uh, ph, Ch) ∈ Xh × Mh × Yh.
Moreover, every solution of (Vah) satisfies bounds similar to (2.20).

Theorem 3.2. We assume that the data f and g satisfies assumption 2.1. Suppose that problem (Vah)
has a solution (uh,1, ph,1, Ch,1) ∈ Xh ×Mh × Yh such that

‖Ch,1‖L∞(Ω) + S0
6 |Ch,1|W 1,3(Ω) <

2αµKm

ρc∗f1S
0
2

. (3.13)

Then problem (Vah) has no other solution in Xh ×Mh × Yh.



12 T. SAYAH, G. SEMAAN, AND F. TRIKI

Proof. We consider two solutions (uh,1, ph,1, Ch,1) and (uh,2, ph,2, Ch,2) of problem (Vah) and we denote
by uh = uh,1 − uh,2, ph = ph,1 − ph,2 and Ch = Vh,1 −Ch,2. By following the sames steps of the proof of
Theorem 2.7, uh satisfies the analogue of (2.30),

µ

ρ
Km ‖uh‖L2(Ω)3 ≤ c∗f1S

0
2 |Ch|1,Ω. (3.14)

The treatment of the concentration is slightly different. By using the Green’s formula, the difference of
the equations satisfied by the concentrations reads with Sh = Th,

α|Ch|21,Ω ≤
1

2

∣∣∣∣∫
Ω

(uh∇Ch)Ch,1 dx−
∫

Ω

(uh∇Ch,1)Ch dx

∣∣∣∣ . (3.15)

Therefore, using Hölder’s inequality, we obtain

|Ch|1,Ω ≤
‖u‖L2(Ω)d

2α
(‖Ch,1‖L∞(Ω) + S0

6 |Ch,1|W 1,3(Ω)). (3.16)

Thus, inequalities (3.14) and (3.16) give,

µ

ρ
Km ‖u‖L2(Ω)d ≤

c∗f1S
0
2 ‖u‖L2(Ω)d

2α
(‖Ch,1‖L∞(Ω) + S0

6 |Ch,1|W 1,3(Ω)). (3.17)

Condition (3.13) allows us to deduce that ‖uh‖L2(Ω)d = 0 and hence uh,1 = uh,2. Inequality (3.16) gives

Ch,1 = Ch,2. Finally, the inf-sup condition provides ph,1 = ph2 . �

Now, we address the convergence of the a subsequence of the numerical solution to the exact one.
Bounds (3.12) and (3.11), and the compactness of the embedding of H1(Ω) into Lp(Ω) ((p ≥ 1 if d =
2, 1 ≤ p < 6 if d = 3), allow us to get the following lemma:

Lemma 3.3. Let f and g satisfy Assumption 2.1 and let (uh, ph, Ch) be any solution of the discrete
problem (Vah). We can extract a subsequence, still denoted (uh, ph, Ch) verifying

lim
h→0

Ch = C̄ weakly in H1
0 (Ω),

lim
h→0

Ch = C̄ strongly in Lp(Ω), (p ≥ 1 if d = 2, 1 ≤ p < 6 if d = 3),

lim
h→0

uh = ū weakly in L3(Ω),

lim
h→0
∇ph = h̄ weakly in L

3
2 (Ω)d,

(3.18)

where ū ∈ L3(Ω)d, h̄ ∈ L 3
2 (Ω)d and C̄ ∈ H1

0 (Ω).

Proposition 3.4. Let (uh, ph, Ch) be any solution of the discrete problem (Vah). Under assumption of
Lemma 3.3, we have h̄ = ∇p̄, where (ū, p̄) solves the first two equations of (Va) with C = C̄. Furthermore,
we have the following strong convergence :

lim
h→0

uh = ū strongly in L3(Ω)d. (3.19)

Proof. First, we shall show that ū is a solution of problem (2.12) for C = C̄.
The monotonicity of A gives

∀vh ∈ Vh,
∫

Ω

(A(uh)−A(vh)).(uh − vh) dx ≥ 0. (3.20)

As uh is a solution of problem (Vah), we get

∀vh ∈ Vh,
∫

Ω

A(uh).(uh − vh) dx =

∫
Ω

f(., Ch).(uh − vh) dx. (3.21)

Therefore,

∀vh ∈ Vh,
∫

Ω

A(vh).(uh − vh) dx ≤
∫

Ω

f(., Ch).(uh − vh) dx. (3.22)
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We now choose vh = Fh(v) where v is an arbitrary element of V . The strong covergence of Fh(v) to v
in L3(Ω)d and (2.11) allow us to get

A(Fh(v)) −→
h→0
A(v) strongly in L

3
2 (Ω)d. (3.23)

Furthermore, since uh − Fh(v) converges weakly to ū − v in L3(Ω)d and f(., Ch) converges strongly to

f(., C̄) in L
3
2 (Ω)d, we get by passing to the limit in (3.22),

∀v ∈ V,
∫

Ω

A(v).(ū− v) dx ≤
∫

Ω

f(., C̄).(ū− v) dx. (3.24)

By virtue of the hemi-continuity of A, a classical argument then yields

∀v ∈ V,
∫

Ω

A(ū).v dx =

∫
Ω

f(., C̄).v dx. (3.25)

Hence ū is the solution of (2.12), and we construct by using the inf-sup condition (2.10) the corresponding
pressure p̄.

The next step consists to show that uh converges strongly to ū in L3(Ω)d. In order to prove it, we start
by taking v = vh in (2.12) and subtracting from (3.10), we have

∀vh ∈ Vh,
∫

Ω

(A(uh)−A(ū)).vh dx =

∫
Ω

(f(., Ch)− f(., C̄)).vh dx+

∫
Ω

∇(p̄− ph).vh dx

=

∫
Ω

(f(., Ch)− f(., C̄)).vh dx +

∫
Ω

∇p̄.vh dx.
(3.26)

By inserting A(Fh(ū)) and taking vh = uh −Fh(ū), we get∫
Ω

(A(uh)−A(Fh(ū))).(uh −Fh(ū)) dx = −
∫

Ω

(A(Fh(ū))−A(ū)).(uh −Fh(ū)) dx

+

∫
Ω

∇p̄.(uh −Fh(ū)) dx +

∫
Ω

(f(., Ch)− f(., C̄)).(uh −Fh(ū)) dx.

(3.27)

The monotonicity of A allows us to obtain,

cm ‖uh −Fh(ū)‖3L3(Ω)d ≤
∣∣∣ ∫

Ω

(A(Fh(ū))−A(ū)).(uh −Fh(ū)) dx
∣∣∣

+
∣∣∣ ∫

Ω

∇p̄.(uh −Fh(ū)) dx
∣∣∣+
∣∣∣ ∫

Ω

(f(., Ch)− f(., C̄)).(uh −Fh(ū)) dx
∣∣∣. (3.28)

We pass to the limit in the previous equation. We deduce from the strong convergence of A(Fh(ū)) to
A(ū) and of f(., Ch) to f(., C̄) get that the first and last terms of the right hand side of the previous
inequality tend to 0. Furthermore, the weak convergence of uh to ū, and the strong convergence of Fh(ū)
to ū imply the convergence of the second term of the right hand side of the previous inequality to 0.
Thus, uh converges strongly to ū in L3(Ω)d.
To finish the proof, it remains to show that h̄ = ∇p̄, which can be easily obtained by passing to the limit
in (3.26), and by using the strong convergence of uh to ū in L3(Ω)d, and the uniqueness of the weak
limit.

�

Theorem 3.5. Let f and g satisfy Assumption 2.1, the limit (ū, p̄, C̄) defined in Proposition 3.4 is a
solution of problem (Va).

Proof. We have proved in Proposition 3.4 that (ū, p̄, C̄) solves the first two equations of problem (Va). It
remains to show that (ū, C̄) solves the third equation of problem (Va). We consider the third equation
of problem (Vah). By taking Sh = RhS for a regular S ∈ D(Ω) (taking into account the density of D(Ω)
in H1

0 (Ω)), we can show easily the convergence of the linear terms except the non-linear ones which can
be written as:∫

Ω

(uh.∇Ch)Sh dx +
1

2

∫
Ω

div(uh)ChShdx =
1

2

∫
Ω

(uh.∇Ch)Sh dx−
1

2

∫
Ω

(uh.∇Sh)Ch dx (3.29)
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The strong convergence of Sh to S in H1
0 (Ω), and in L6(Ω), the strong convergence of uh to ū in L3(Ω)d,

and the weak convergence of Ch to C̄ in H1
0 (Ω) lead to the convergence of (3.29). �

After showing the convergence of the discrete solution (uh, ph, Ch) of problem (Vah) to a solution (ū, p̄, C̄)
of problem (Va), we next derive the corresponding a priori error estimate.

Theorem 3.6. Under Assumption 2.1, let (uh, ph, Ch) be a solution of problem (Vah), and (u, p, C) be a
solution of problem (Vah). If (u, p, C) are such that C ∈W 1,3(Ω)∩L∞(Ω), u ∈ L∞(Ω)d and p ∈ H1(Ω),
and satisfies the following condition:

S0
6 |C|W 1,3(Ω)+ ‖ C ‖L∞(Ω)≤

αµKm

2
√

2ρC∗f1S
0
2

, (3.30)

then, we have the following a priori error estimates:

|C − Ch|H1(Ω) ≤ 1

1− c2r
√
c2u

(
(1 + c1r)|C −Rh(C)|H1(Ω) + c2r

√
c1u ‖∇(rh(p)− p)‖L2(Ω)d

+c2r
√
c3u ‖ Fhu− u ‖

3
2

L3(Ω)d
+c2r

√
c4u ‖ Fhu− u ‖L2(Ω)d

)
,

(3.31)

‖ u− uh ‖2L2(Ω)d≤ c1u ‖∇(p− rh(p))‖2L2(Ω)d + c2u|C − Ch|2H1(Ω) + c3u ‖ Fhu− u ‖3L3(Ω)d

+ c4u ‖ Fh(u)− u) ‖2L2(Ω)d ,

(3.32)

‖ u− uh ‖L3(Ω)d≤ c′1u ‖∇(p− rh(p)‖2/3
L2(Ω)d

+ c′2u|C − Ch|
2/3
H1(Ω) + c′3u ‖ Fhu− u ‖L3(Ω)d

+ c′4u ‖ Fh(u)− u) ‖2/3
L2(Ω)d

,

(3.33)
and

‖ ∇(p− ph) ‖
L

3
2 (Ω)d

≤ c1p|C − Ch|1,Ω + c2p ‖ u− uh ‖L3(Ω)d +c3p ‖ ∇(rh(p)− p) ‖
L

3
2 (Ω)d

, (3.34)

where c1r, c2r are constants given in relation (3.52), c1u, c2u, c3u, c4u are given in relation (3.42), c′1u, c
′
2u,

c′3u, c
′
4u are given in relation (3.42), and c1p, c2p, c3p are given in relation (3.49).

Proof. We shall proof the result by proceeding by steps.

1) Let us estimate the velocity error in terms of the temperature error. By taking the difference between
the first equations of (V ) and (Vh,1) and testing with v = vh ∈ Vh, we obtain∫

Ω

(A(u)−A(uh))vh dx =

∫
Ω

(f1(C)− f1(Ch))vh dx−
∫

Ω

∇(p− rh(p))vh dx. (3.35)

Then by inserting Fh(u), and testing with vh = Fh(u)− uh that belongs indeed to Vh, we easily derive∫
Ω

(A(Fh(u))−A(uh))vhdx =

∫
Ω

(f1(C)− f1(Ch))vh dx +

∫
Ω

(A(Fh(u))−A(u))vhdx.

−
∫

Ω

∇(p− rh(p))vh dx.

(3.36)

Let us bound the second term in the right hand side of (3.36). We have∫
Ω

(A(Fh(u))−A(u))vhdx =
µ

ρ

∫
Ω

K−1(Fh(u)− u).vh dx +
β

ρ

∫
Ω

(|Fh(u)| − |u|)(Fhu− u)vh dx

+
β

ρ

∫
Ω

|u|(Fhu− u)vh dx +
β

ρ

∫
Ω

(|Fh(u)| − |u|)uvh dx.

(3.37)
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Then,∣∣∣ ∫
Ω

(A(Fh(u))−A(u))vhdx
∣∣∣ ≤ µKM

ρ
‖ Fh(u)− u) ‖L2(Ω)d‖ vh ‖L2(Ω)d

+
β

ρ
‖ Fhu− u ‖2L3(Ω)d‖ vh ‖L3(Ω)d +

2β

ρ
‖ u ‖L∞(Ω)d‖ Fhu− u ‖L2(Ω)d‖ vh ‖L2(Ω)d .

(3.38)

Thus, the monoticity of A and the fact that f1 is c∗f1-Lipschitz with values in IRd allows us to obtain,

cs
2
‖ Fh(u)− uh ‖3L3(Ω)d +

µKm

2ρ
‖ Fh(u)− uh ‖2L2(Ω)d≤‖ ∇(rh(p)− p) ‖L2(Ω)d‖ vh ‖L2(Ω)d

c∗f1S
0
2 |C − Ch|H1(Ω) ‖ vh ‖L2(Ω)d +

µKM

ρ
‖ Fh(u)− u) ‖L2(Ω)d‖ vh ‖L2(Ω)d

+
β

ρ
‖ Fhu− u ‖2L3(Ω)d‖ vh ‖L3(Ω)d +

2β

ρ
‖ u ‖L∞(Ω)d‖ Fhu− u ‖L2(Ω)d‖ vh ‖L2(Ω)d .

(3.39)

To treat the last inequality, we bound all the terms of the right hand side containing b =‖ vh ‖L2(Ω)d

using the formula

ab ≤ 1

2ε
a2 +

ε

2
b2, with ε =

µKm

8ρ
,

and, the term containing b =‖ vh ‖L3(Ω)d , using the formula

a2b ≤ 1

3
(2δ

3
2 a3 + (

1

δ
)3b3), with δ = (

4

3cs
)1/3.

Then we infer the following bound:

cs
4
‖ Fh(u)− uh ‖3L3(Ω)d +

µKm

4ρ
‖ Fh(u)− uh ‖2L2(Ω)d≤

4ρ

µKm
‖ ∇(rh(p)− p) ‖2L2(Ω)d

+
4ρ

µKm
(c∗f1S

0
2)2|C − Ch|2H1(Ω) +

4µK2
M

ρKm
‖ Fh(u)− u) ‖2L2(Ω)d

+
4β

3
2

3ρ
3
2

√
3cs
‖ Fhu− u ‖3L3(Ω)d +

16β2

µρKm
‖ u ‖2L∞(Ω)d‖ Fhu− u ‖2L2(Ω)d .

(3.40)

By using the following triangle inequality

1

2
‖ u− uh ‖2L2(Ω)d≤‖ Fh(u)− uh ‖2L2(Ω)d + ‖ Fh(u)− u ‖2L2(Ω)d ,

we get

‖ u− uh ‖2L2(Ω)d ≤ c1u ‖∇(rh(p)− p)‖2L2(Ω)d + c2u|C − Ch|2H1(Ω)

+c3u ‖ Fhu− u ‖3L3(Ω)d +c4u ‖ Fh(u)− u) ‖2L2(Ω)d ,
(3.41)

where

c1u =
32ρ2

µ2K2
m

, c2u = c1u(c∗f1S
0
2)2, c3u =

32β
3
2

3µKm

√
3csρ

and c4u =
32K2

M

K2
m

+
128β2

µ2K2
m

‖u‖2L∞(Ω)d + 2.

(3.42)

Furthermore, relation (3.40) gives

‖ Fh(u)− uh ‖3L3(Ω)d≤
µKm

2ρcs

(
c1u ‖∇(rh(p)− p)‖2L2(Ω)d + c2u|C − Ch|2H1(Ω) + c3u ‖ Fhu− u ‖3L3(Ω)d

+ c4u ‖Fh(u)− u‖2L2(Ω)d

)
.

Thus, a triangle inequality allows us to get

‖ u− uh ‖L3(Ω)d≤ c′1u ‖∇(rh(p)− p)‖2/3
L2(Ω)d

+ c′2u|C − Ch|
2/3
H1(Ω) + c′3u ‖ Fhu− u ‖L3(Ω)d

+ c′4u ‖ Fh(u)− u) ‖2/3
L2(Ω)d

,
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where

c′u = 3

√
µKm

2ρcs
, c′1u = c′u

3
√
c1u, c′2u = c′u

3
√
c2u, c′3u = c′u(1 + 3

√
c3u) and c′4u = c′u

3
√
c4u. (3.43)

Hence relations (3.32) and (3.33) are proved.

2) The proof of the error estimate for the pressure follows the same lines of the previous step. By taking
the difference between the first equations of (Va) and (Vah), inserting rh(p) and testing with vh ∈ Xh,
we obtain∫

Ω

∇(rh(p)− ph)vhdx =

∫
Ω

(f1(C)− f1(Ch))vh dx−
∫

Ω

(A(u)−A(uh))vh dx−
∫

Ω

∇(p− rh(p))vh dx.

(3.44)
In order to estimate the second term in the right hand side of (3.44), we will proceed as follows∫

Ω

(
A(u)−A(uh)

)
vh dx =

µ

ρ

∫
Ω

K−1(u− uh)vh dx+
β

ρ

∫
Ω

|u|(u− uh)vh dx+
β

ρ

∫
Ω

(|u| − |uh|)uhvh dx

≤ µKM

ρ
|Ω|1/3 ‖u− uh‖L3(Ω)d ‖vh‖L3(Ω)d +

β

ρ
‖u− uh‖L3(Ω)d ‖vh‖L3(Ω)d (‖u‖L3(Ω)d + ‖uh‖L3(Ω)d).

(3.45)
Applying (2.20) and (3.11), we get∫

Ω

(
A(u)−A(uh)

)
vh dx ≤

µKM

ρ
|Ω|1/3 ‖u− uh‖L3(Ω)d ‖vh‖L3(Ω)d +

2β

ρ

(β
ρ
‖f0‖

L
3
2 (Ω)d

+
cf1S

0
3
2

S0
2

α
‖g‖L2(Ω)d

) 1
2 ‖u− uh‖L3(Ω)d ‖vh‖L3(Ω)d .

(3.46)

We denote γ =
(β
ρ
‖f0‖

L
3
2 (Ω)d

+
cf1S

0
3
2

S0
2

α
‖g‖L2(Ω)d

) 1
2 . By following the same steps of the previous part,

and the inf-sup condition (3.3), we get

β2 ‖ ∇(rh(p)− ph) ‖
L

3
2 (Ω)d

≤

c∗f1 |Ω|
1/6S0

2 |C − Ch|1,Ω +

(
µKM

ρ
|Ω|1/3 +

2β

ρ
γ

)
‖ u− uh ‖L3(Ω)d + ‖∇(p− rh(p))‖

L
3
2 (Ω)d

.

(3.47)
The following triangle inequality

‖ ∇(p− ph) ‖
L

3
2 (Ω)d

≤‖ ∇(rh(p)− ph) ‖
L

3
2 (Ω)d

+ ‖ ∇(rh(p)− p) ‖
L

3
2 (Ω)d

allows us to get

‖ ∇(p− ph) ‖
L

3
2 (Ω)d

≤ c1p|C − Ch|1,Ω + c2p ‖ u− uh ‖L3(Ω)d +c3p ‖ ∇(rh(p)− p) ‖
L

3
2 (Ω)d

, (3.48)

where

c1p =
1

β2
c∗f1S

0
2 |Ω|1/6, c2p =

1

β2

(
µKM

ρ
|Ω|1/3 +

2β

ρ
γ

)
and c3p = (

1

β2
+ 1). (3.49)

Hence relation (3.34) is proved.

3) Next we estimate the error of concentration in terms of the velocity error. We take the difference
between the third equations of systems (Va) and (Vah), insert Sh(C), and use the Green formula to get
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for all Sh ∈ Xh

α

∫
Ω

∇(Rh(C)− Ch) · ∇Sh dx + r0

∫
Ω

(Rh(C)− Ch)Sh dx =

α

∫
Ω

∇(Rh(C)− C) · ∇Sh dx + r0

∫
Ω

(Rh(C)− C)Sh dx

+
1

2

∫
Ω

(uh · ∇(Rh(C)− C))Sh dx−
1

2

∫
Ω

(uh · ∇Sh)(Rh(C)− C) dx

+
1

2

∫
Ω

((uh − u) · ∇C)Sh dx−
1

2

∫
Ω

((uh − u) · ∇Sh)C dx.

(3.50)

The terms in the last two lines of the right-hand side are bounded by

‖uh‖L3(Ω)d

(
|C −Rh(C)|H1(Ω)‖Sh‖L6(Ω) + ‖C −Rh(C)‖L6(Ω)|Sh|H1(Ω)

)
+‖uh − u‖L2(Ω)d

(
|C|W 1,3(Ω)‖Sh‖L6(Ω) + ‖C‖L∞(Ω)|Sh|H1(Ω)

)
.

(3.51)

Then the choice Sh = Rh(C) − Ch, the antisymmetric property of the transport term, the fact that uh
is bounded in L3(Ω)d as

‖uh‖L3(Ω)d ≤
(
ρ

β
(‖ f0 ‖

L
3
2 (Ω)d

+cf1S
0
3
2
|C|1,Ω)

) 1
2

,

and Sobolev’s imbedding yield

|Rh(C)− Ch|H1(Ω) ≤ c1r|C −Rh(C)|H1(Ω) + c2r‖uh − u‖L2(Ω)d ,

where

c1r =
(
1 +

r0(S0
2)2

α
+
S0

6

α

( ρ
β

(‖ f0 ‖
L

3
2 (Ω)d

+cf1S
0
3
2
|C|1,Ω)

) 1
2
)

and c2r =
1

2α
(S0

6 |C|W 1,3(Ω)+ ‖ C ‖L∞(Ω)).

(3.52)

By using the following triangle inequality:

|C − Ch|H1(Ω) ≤ |Rh(C)− C|H1(Ω) + |Rh(C)− Ch|H1(Ω),

we get

|C − Ch|H1(Ω) ≤ (1 + c1r)|C −Rh(C)|H1(Ω) + c2r‖uh − u‖L2(Ω)d . (3.53)

4) Finally, by combining relations (3.41) and (3.53), and using relation (3.30), we obtain relation (3.31). �

By using the properties of the operators Rh, Fh and rh, we get the following result:

Theorem 3.7. Under the assumptions of Theorem 3.6 and if the solution (u, p, C) of problem (Va)
satisfies C ∈ H2(Ω), u ∈W 1,3(Ω)d and p ∈ H2(Ω), then we have the following a priori error estimate:

|C − Ch|H1(Ω)+ ‖ u− uh ‖L2(Ω)d + ‖ ∇(p− ph) ‖
L

3
2 (Ω)d

≤ C1h (3.54)

and

‖ u− uh ‖L3(Ω)d≤ C1h
2/3, (3.55)

where C1 and C2 are strictly positive constants independent of h.

4. Iterative algorithm

In order to solve the discrete system, we propose in this section an iterative algorithm the discrete prob-
lem at each step and converges to the exact solution under additional conditions on the exact solution.
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The algorithm proceeds as follows: Let uh0 ∈ Xh and C0
h ∈ Y0 the initial guesses. Having (uih, C

i
h) ∈

Xh × Yh at each iteration i, we compute (ui+1
h , pi+1

h , Ci+1
h ) ∈ Xh ×Mh × Yh, such that

(Vahi)



∀vh ∈ Xh, γ

∫
Ω

(ui+1
h − uih)vhdx +

µ

ρ

∫
Ω

(K−1ui+1
h ).vh dx +

β

ρ

∫
Ω

|uih|ui+1
h vh dx

+

∫
Ω

∇pi+1
h · vh dx =

∫
Ω

f(Cih) · vh dx,

∀qh ∈Mh,

∫
Ω

∇qh · ui+1
h dx = 0,

∀Sh ∈ Yh, α
∫

Ω

∇Ci+1
h ∇Sh dx +

∫
Ω

(ui+1
h .∇Ci+1

h )Sh dx +
1

2

∫
Ω

div(ui+1
h )Ci+1

h Shdx

+r0

∫
Ω

Ci+1
h Sh dx =

∫
Ω

gSh dx,

(4.1)
where γ is a real strictly positive parameter. Later on, the parameter γ will be chosen to ensure the
convergence of algorithm (Vahi). At each iteration i, having uih and Cih, the first two lines of (Vahi)

computes (ui+1
h , pi+1

h ). Next, we substitute ui+1
h by its value in the third equation of (Vahi) to compute

Ci+1
h .

In the following, we study Scheme (Vahi), and we begin by prove the existence and uniqueness of the
corresponding solution.

Theorem 4.1. In addition to assumption 2.1, we suppose that f0 ∈ L2(Ω)d. For each (uih, C
i
h) ∈ Xh×Yh,

problem (Vahi) admits a unique solution (ui+1
h , pi+1

h , Ci+1
h ) ∈ Xh × Mh × Yh. Moreover, we have the

following bound

|Ci+1
h |1,Ω ≤

S0
2

α
‖g‖L2(Ω) . (4.2)

Furthermore, if the initial value u0
h satisfies the condition∥∥u0

h

∥∥2

L2(Ω)d
≤ L1(f , g), (4.3)

where

L1(f , g) =
1

4
(‖f0‖L2(Ω)d + cf1

(S0
2)2

α
‖g‖L2(Ω))

2,

and if γ satisfies the condition

γ >
32β

27ρ
C9
IL2(f , g, L1(f , g))h−3d/2, (4.4)

where

L2(f , g, ν) =
1
√
γ

(
3ρ

2µKm
(‖f0‖L2(Ω)d + cf1

(S0
2)2

α
‖g‖L2(Ω))

2 +
3µK2

M

2ρKm
ν +

3β2

2µρKm
C6
Ih
−dν2

) 1
2

, (4.5)

then, the following inequalities hold ∥∥ui+1
h

∥∥2

L2(Ω)d
≤ L1(f , g), (4.6)

and ∥∥ui+1
h

∥∥3

L3(Ω)d
≤ 2ρ

β
(

2ρ

µKm
+
γ

2
)L1(f , g). (4.7)

Proof. To prove the existence and uniqueness of the solution of Problem (Vahi) which is a square finite
dimension linear system, it suffices to show the uniqueness which is readily checked for each (uih, C

i
h) ∈

Xh×Yh. In fact, let (ui+1
h,1 , p

i+1
h,1 , C

i+1
h,1 ) and (ui+1

h,2 , p
i+1
h,2 , C

i+1
h,2 ) be two solutions of problem (Vahi). Denote
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wh = ui+1
h,1 −ui+1

h,2 and ξh = pi+1
h,1 − p

i+1
h,2 . We deduce from the problem (Vahi) that (wh, ξh) is the solution

of the following problem
∀vh ∈ Xh, γ

∫
Ω

whvh dx +
µ

ρ

∫
Ω

K−1whvh dx +
β

ρ

∫
Ω

|uih|whvh dx +

∫
Ω

∇ξhvh dx = 0,

∀qh ∈Mh,

∫
Ω

∇qhwh dx = 0.

Taking (vh, qh) = (wh, ξh) and remarking that

∫
Ω

|uih||wh|2 dx is non negative, we obtain by using the

properties of K−1, the following bound(
γ +

µKm

ρ

)
‖wh‖2L2(Ω)d ≤ 0.

Thus, we deduce that wh = 0 (ui+1
h,1 = ui+1

h,2 ) and the discret inf-sup condition (3.3) implies that ξh = 0

(pi+1
h,1 = pi+1

h,2 ). This gives the uniqueness of the velocity and the pressure for each iteration i.

Let us now prove the uniqueness of the concentration. We denote by Ci+1
h = Ci+1

h,1 − C
i+1
h,2 . Then, the

third equation of problem (Vahi) gives: Find Ci+1
h ∈ Yh such that for all Sh ∈ Yh

α

∫
Ω

∇Ci+1
h ∇Sh dx +

∫
Ω

(ui+1
h .∇Ci+1

h )Sh dx +
1

2

∫
Ω

div(ui+1
h )Ci+1

h Shdx + r0

∫
Ω

Ci+1
h Sh dx = 0, (4.8)

where (ui+1
h , pi+1

h ) is the unique solution of the first two equations of problem (Vahi). By taking Sh = Ci+1
h

and using the antisymmetric property we get the uniqueness of the concentration.

The bound (4.2) can be deduced immediately by taking Sh = Ci+1
h in the third equation of problem

(Vahi), and by using the Cauchy-Schwartz inequality.
To prove the bound (4.6), we need first to estimate the error

∥∥ui+1
h − uih

∥∥
L2(Ω)d

in terms of the previous

value uih. Taking the first equation of problem (Vahi) with vh = ui+1
h − uih yields

γ
∥∥ui+1

h − uih
∥∥2

L2(Ω)d
+
µ

ρ

∫
Ω

K−1ui+1
h (ui+1

h −u
i
h)dx+

β

ρ

∫
Ω

|uih|ui+1
h (ui+1

h −u
i
h)dx =

∫
Ω

f(Cih)(ui+1
h −u

i
h)dx.

By inserting uih in the second and third terms of the last equation, we get,

γ
∥∥ui+1

h − uih
∥∥2

L2(Ω)d
+
µ

ρ

∫
Ω

K−1(ui+1
h − uih)(ui+1

h − uih) dx +
β

ρ

∫
Ω

|uih||ui+1
h − uih|2 dx

=

∫
Ω

f(Cih)(ui+1
h − uih) dx− µ

ρ

∫
Ω

K−1uih.(u
i+1
h − uih) dx− β

ρ

∫
Ω

|uih|uih(ui+1
h − uih) dx.

(4.9)

Using the properties of K−1, the Cauchy-Shwartz inequality and relation (3.2) give the following

γ
∥∥ui+1

h − uih
∥∥2

L2(Ω)d
+
µKm

ρ

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
≤
∥∥f(Cih)

∥∥
L2(Ω)d

∥∥ui+1
h − uih

∥∥
L2(Ω)d

+
µKM

ρ

∥∥ui+1
h − uih

∥∥
L2(Ω)d

∥∥uih∥∥L2(Ω)d
+
β

ρ
C3
Ih
−d/2 ∥∥uih∥∥2

L2(Ω)d

∥∥ui+1
h − uih

∥∥
L2(Ω)d

.

(4.10)

We apply the relation ab ≤ 1

2ε
a2 +

ε

2
b2 with ε =

µKm

3ρ
to each term on the right-hand side of the previous

inequality, and we obtain

γ
∥∥ui+1

h − uih
∥∥2

L2(Ω)d
+
µKm

2ρ

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
≤ 3ρ

2µKm

∥∥f(Cih)
∥∥2

L2(Ω)d
+

3µK2
M

2Kmρ

∥∥uih∥∥2

L2(Ω)d

+
3β2

2ρµKm
C6
Ih
−d ∥∥uih∥∥4

L2(Ω)d
.

(4.11)
Therefore, Assumption 2.1 and relation (4.2), allows us to get∥∥ui+1

h − uih
∥∥
L2(Ω)d

≤ L2(f , g,
∥∥uih∥∥2

L2(Ω)d
), (4.12)
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where

L2(f , g, ν) =
1
√
γ

(
3ρ

2µKm
(‖f0‖L2(Ω)d + cf1

(S0
2)2

α
‖g‖L2(Ω))

2 +
3µK2

M

2ρKm
ν +

3β2

2µρKm
C6
Ih
−dν2

) 1
2

. (4.13)

Then, we are now in position to show relation (4.6). We consider the first equation of problem (Vahi)
with vh = ui+1

h , and we obtain

γ

∫
Ω

(ui+1
h − uih).ui+1

h dx +
µ

ρ

∫
Ω

K−1ui+1
h ui+1

h dx +
β

ρ

∥∥ui+1
h

∥∥3

L3(Ω)d
=

∫
Ω

f(Cih).ui+1
h dx

+
β

ρ

∫
Ω

(|ui+1
h | − |u

i
h|)|ui+1

h |
2 dx.

(4.14)

Using the properties of K−1, the Cauchy-Shwartz inequality and the relations ab ≤ 1

2ε
a2 +

ε

2
b2 and

a2b ≤ 1

3
(

1

δ3
b3 + 2δ

3
2 a3) wih ε =

µKm

ρ
and δ = (

3β

4ρ
)2/3, we get

γ

2

∥∥ui+1
h

∥∥2

L2(Ω)d
− γ

2

∥∥uih∥∥2

L2(Ω)d
+
γ

2

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
+
µKm

2ρ

∥∥ui+1
h

∥∥2

L2(Ω)d
+

β

2ρ

∥∥ui+1
h

∥∥3

L3(Ω)d

≤ ρ

2µKm

∥∥f(Cih)
∥∥2

L2(Ω)d
+

16β

27ρ
C9
Ih
−3d/2

∥∥ui+1
h − uih

∥∥3

L2(Ω)d
.

(4.15)

We denote by

C1(
∥∥uih∥∥L2(Ω)d

) =
γ

2
− 16β

27ρ
C9
Ih
−3d/2L2(f , g,

∥∥uih∥∥2

L2(Ω)d
)

and we get by using (4.12) that

C1(
∥∥uih∥∥L2(Ω)d

) ≤ γ

2
− 16β

27ρ
C9
Ih
−3d/2

∥∥ui+1
h − uih

∥∥
L2(Ω)d

.

Therefore, we obtain the following bound:

γ

2

∥∥ui+1
h

∥∥2

L2(Ω)d
− γ

2

∥∥uih∥∥2

L2(Ω)d
+ C1(

∥∥uih∥∥L2(Ω)d
)
∥∥ui+1

h − uih
∥∥2

L2(Ω)d
+
µKm

2ρ

∥∥ui+1
h

∥∥2

L2(Ω)d

+
β

2ρ

∥∥ui+1
h

∥∥3

L3(Ω)d
≤ 2ρ

µKm
L1(f , g).

(4.16)

We now prove estimate (4.6) by induction on i ≥ 1 under some condition on γ. Starting with relation
(4.3), we suppose that we have ∥∥uih∥∥2

L2(Ω)d
≤ L1(f , g). (4.17)

We have two situations:

•
∥∥ui+1

h

∥∥
L2(Ω)d

≤
∥∥uih∥∥L2(Ω)d

, which immediately leads to∥∥ui+1
h

∥∥2

L2(Ω)d
≤ L1(f , g).

•
∥∥ui+1

h

∥∥
L2(Ω)d

≥
∥∥uih∥∥L2(Ω)d

. By using the induction condition (4.17), taking

γ

2
>

16β

27ρ
C9
Ih
−3d/2L2(f , L1(f , g))

>
16β

27ρ
C9
Ih
−3d/2L2(f ,

∥∥uih∥∥2

L2(Ω)d
),

(4.18)

we get C1(
∥∥uih∥∥L2(Ω)d

) > 0, and deduce from relation (4.16) that∥∥ui+1
h

∥∥2

L2(Ω)d
≤ L1(f , g).

Then relation (4.6) holds. The bound (4.7) is a simple consequence of (4.16) and (4.6). �

The next theorem shows the convergence of the solution (uih, p
i
h, C

i
h) of problem (Vahi) to the solution of

problem (Vah).
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Theorem 4.2. In addition to assumption 2.1, we assume that the concentration solution of the problem
(Va) satisfies

S0
6 |C|W 1,3(Ω) + ‖C‖L∞(Ω) ≤

µKmα

2ρc∗f1S
0
2

. (4.19)

Under the assumptions of Theorem 4.1, and if γ satisfies the condition

γ >
2ρC2

2

µKm
h−d, (4.20)

where C2 =
β

ρ
C3
I (L1(f , g))1/2 and if

h ≤
( 1

2CIC1
(|C|W 1,3(Ω) +

‖C‖L∞(Ω)

S0
6

)
)6/(6−d)

, (4.21)

where C1 is the constant in (3.54), then the solution (uih, p
i
h, C

i
h) of problem (Vahi) converges in L2(Ω)d×

L2(Ω)×H1(Ω) to the solution of problem (Vah).

Proof. We start by substracting the third equation of problem (Vahi) from the one of problem (Vah) to
get

α

∫
Ω

∇(Ch − Ci+1
h )∇Sh dx +

∫
Ω

uh∇ChSh dx−
∫

Ω

ui+1
h ∇C

i+1
h Sh dx + r0

∫
Ω

(Ch − Ci+1
h )Sh dx

=
1

2

∫
Ω

divui+1
h Ci+1

h Sh dx−
1

2

∫
Ω

divuhChSh dx.

(4.22)

Inserting ∇Ch in the last term of the left-hand side and Ch in the first term of the right-hand side of the
previous relation lead to

α

∫
Ω

∇(Ch − Ci+1
h )∇Sh dx + r0

∫
Ω

(Ch − Ci+1
h )Sh dx−

∫
Ω

ui+1
h ∇(Ci+1

h − Ch)Sh dx

=
1

2

∫
Ω

divui+1
h (Ci+1

h − Ch)Sh dx +

∫
Ω

(ui+1
h − uh)∇ChSh dx +

1

2

∫
Ω

div(ui+1
h − uh)ChSh dx.

(4.23)

Finally, by inserting ∇C in the second term of right-hand side and using the Green’s formula and the
antisymmetric property, we get

α

∫
Ω

∇(Ch − Ci+1
h )∇Sh dx + r0

∫
Ω

(Ch − Ci+1
h )Sh dx =

1

2

∫
Ω

(ui+1
h − uh)∇(Ch − C)Sh dx +

1

2

∫
Ω

(ui+1
h − uh)∇CSh dx

−1

2

∫
Ω

(ui+1
h − uh)∇Sh.(Ch − C) dx− 1

2

∫
Ω

(ui+1
h − uh)∇Sh.C dx.

(4.24)

By taking Sh = Ch − Ci+1
h , we obtain

α|Ch − Ci+1
h |1,Ω ≤ S0

6

∥∥ui+1
h − uh

∥∥
L3(Ω)d

|Ch − C|1,Ω

+
S0

6

2

∥∥ui+1
h − uh

∥∥
L2(Ω)d

|C|W 1,3(Ω) +
1

2
‖C‖L∞(Ω)

∥∥ui+1
h − uh

∥∥
L2(Ω)d

.
(4.25)

Finally, we get by using relation (3.2):

|Ch − Ci+1
h |1,Ω ≤

S0
6

2α

[
2CIh

−d/6|C − Ch|1,Ω + |C|W 1,3(Ω) +
‖C‖L∞(Ω)

S0
6

]∥∥ui+1
h − uh

∥∥
L2(Ω)d

. (4.26)
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Furthermore, by taking the difference between the first equations of problems (Vah) and (Vahi) with
vh = ui+1

h − uh, we get

γ

2

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
− γ

2

∥∥uih − uh
∥∥2

L2(Ω)d
+
γ

2

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
+
µ

ρ

∫
Ω

K−1|ui+1
h − uh|2 dx

+
β

ρ

∫
Ω

(|uih| − |ui+1
h |)u

i+1
h (ui+1

h − uh))dx +
β

ρ

∫
Ω

(|ui+1
h |u

i+1
h − |uh|uh)(ui+1

h − uh)dx

=

∫
Ω

(f(Cih)− f(Ch)).(ui+1
h − uh) dx.

(4.27)

By using the monotonicity property of the operator A we obtain,

γ

2

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
− γ

2

∥∥uih − uh
∥∥2

L2(Ω)d
+
γ

2

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
+
µKm

ρ

∥∥ui+1
h − uh

∥∥2

L2(Ω)d

≤ β

ρ
C3
Ih
−d/2 ∥∥ui+1

h − uih
∥∥
L2(Ω)d

∥∥ui+1
h

∥∥
L2(Ω)d

∥∥ui+1
h − uh

∥∥
L2(Ω)d

+ c∗f1S
0
2 |Cih − Ch|1,Ω

∥∥ui+1
h − uh

∥∥
L2(Ω)d

≤ β

ρ
C3
Ih
−d/2(L1(f , g))1/2

∥∥ui+1
h − uih

∥∥
L2(Ω)d

∥∥ui+1
h − uh

∥∥
L2(Ω)d

+ c∗f1S
0
2 |Cih − Ch|1,Ω

∥∥ui+1
h − uh

∥∥
L2(Ω)d

.

(4.28)

We denote by C2 =
β

ρ
C3
I (L1(f , g))1/2, and we use the relation ab ≤ 1

2ε
a2 +

ε

2
b2 with ε =

µKm

2ρ
, we get

γ

2

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
− γ

2

∥∥uih − uh
∥∥2

L2(Ω)d
+
γ

2

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
+
µKm

2ρ

∥∥ui+1
h − uh

∥∥2

L2(Ω)d

≤ ρC2
2

µKm
h−d

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
+
ρ(c∗f1S

0
2)2

µKm
|Cih − Ch|21,Ω.

(4.29)

We choose
γ

2
>

ρC2
2

µKm
h−d, and we denote by C3 =

γ

2
− ρC2

2

µKm
h−d > 0 to conclude that

γ

2

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
− γ

2

∥∥uih − uh
∥∥2

L2(Ω)d
+ C3

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
+
µKm

2ρ

∥∥ui+1
h − uh

∥∥2

L2(Ω)d

≤
ρ(c∗f1S

0
2)2

µKm
|Cih − Ch|21,Ω.

(4.30)

Combining (4.30) with (4.26) and using the priori estimate (3.54), we get

γ

2

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
− γ

2

∥∥uih − uh
∥∥2

L2(Ω)d
+ C3

∥∥ui+1
h − uih

∥∥2

L2(Ω)d
+
µKm

2ρ

∥∥ui+1
h − uh

∥∥2

L2(Ω)d

≤ ρ

µKm
(
c∗f1S

0
2S

0
6

2α
)2
[
2CIC1h

(6−d)/6 + |C|W 1,3(Ω) + ‖C‖L∞(Ω)

]2 ∥∥uih − uh
∥∥2

L2(Ω)d
.

(4.31)
Finally, Assumptions (4.19) and (4.21) allow us to get

(
γ

2
+
µKm

4ρ
)
( ∥∥ui+1

h − uh
∥∥2

L2(Ω)d
−
∥∥uih − uh

∥∥2

L2(Ω)d

)
+ C3

∥∥ui+1
h − uih

∥∥2

L2(Ω)d

+
µKm

4ρ

∥∥ui+1
h − uh

∥∥2

L2(Ω)d
≤ 0.

(4.32)

We deduce that, for all i ≥ 1, we have ( if
∥∥uih − uh

∥∥
L2(Ω)d

6= 0)∥∥ui+1
h − uh

∥∥
L2(Ω)d

<
∥∥uih − uh

∥∥
L2(Ω)d

,

and then we deduce the convergence of the sequence (ui+1
h −uh) in L2(Ω)d, and then the convergence of

the sequence uih in L2(Ω)d. By taking the limit of (4.32), we get that ui+1
h converges to uh in L2(Ω)d.

Relation (4.26) allows us to deduce that Ci+1
h converges to Ch in H1

0 (Ω).
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Next, we study the convergence of the pressure, taking the difference between the first equations of
systems (Vah) and (Vahi), and we obtain for all vh ∈ Xh the equation∫

Ω

∇(pi+1
h − ph)vh dx =

∫
Ω

(f(Ch)− f(Cih))vhdx− γ
∫

Ω

(ui+1
h − uih)vh dx +

µ

ρ

∫
Ω

K−1(uh − ui+1
h )vh dx

+
β

ρ
((|uh| − |uih|)uh,vh) +

β

ρ
(|uih|(uh − ui+1

h ),vh).

We get by using the inverse inequality (3.2) the following:∣∣∣ ∫
Ω

∇(pi+1
h − ph)vh dx

∣∣∣
||vh||L3(Ω)d

≤ c∗f1S
0
2 |Ch − Cih|1,Ω

||vh||L2(Ω)d

||vh||L3(Ω)d

+(γ||uih − ui+1
h ||L2(Ω)d +

µKM

ρ
||uh − ui+1

h ||L2(Ω)d)
||vh||L2(Ω)d

||vh||L3(Ω)d

+
β

ρ
CIh

− d6 ||uh − uih||L2(Ω)d(||uh||L3(Ω)d + ||uih||L3(Ω)d).

For a given mesh, owning the inf-sup condition (3.3), and using the strong convergence of uih to uh
in L2(Ω)d, and of Cih to Ch in H1

0 (Ω), we deduce the strong convergence of ∇pih to ∇ph in L
3
2 (Ω).

Furthermore, the fact that pih and ph are in the discrete space of IP1 finite elements Mh ⊂ L2
0(Ω) which

is defined in (3.6), allows us to deduce the strong convergence of pih to ph in L2(Ω). �

Remark 4.3. If h is not small enough, we can replace the conditions (4.19) and (4.21) in Theorem 4.2
by the following condition

ρ

µKm
(
c∗f1S

0
2S

0
6

2α
)2

[
2CIC1(diam(Ω))(6−d)/6 + |C|W 1,3(Ω) +

‖C‖L∞(Ω)

S0
6

]2

<
µKm

4ρ
.

In fact, this condition can be used in the relation (4.31) in the proof of the previous theorem.

Remark 4.4. The convergence of the iterative solution (uih, p
i
h, C

i
h) of problem (Vahi) to the exact solution

(u, p, C) of problem (Va) is simple consequence of Theorems 3.6 and 4.2. In fact, conditions (4.4) and
(4.20) satisfied by γ to ensure the convergence of the iterative solution (uih, p

i
h, C

i
h) to the discrete solution

(uh, ph, Ch) lead us to consider γ as a function of h (γ(h)) and satisfying these two relations. Thanks to
the triangle inequality, have:

||(u, p, C)− (uih, p
i
h, C

i
h)||X×M×Y ≤

||(u, p, C)− (uh, ph, Ch)||X×M×Y + ||(uh, ph, Ch)− (uih, p
i
h, C

i
h)||X×M×Y .

Under the assumptions of Theorem 4.2 with γ(h) satisfying conditions (4.4) and (4.20), (uih, p
i
h, C

i
h)

converges to (uh, ph, Ch) in Xh ×Mh × Yh, and, there exists an integer i0(h) depending on h such that
for all i ≥ i0(h) we have

||(uh, ph, Ch)− (uih, p
i
h, C

i
h)||X×M×Y ≤ ||(u, p, C)− (uh, ph, Ch)||X×M×Y .

Consequently, for all i ≥ i0(h), we get

||(u, p, C)− (uih, p
i
h, C

i
h)||X×M×Y ≤ 2||(u, p, C)− (uh, ph, Ch)||X×M×Y .

Thus we obtain the convergence of the iterative solution to the exact one.

5. Numerical results

In this section, we present numerical experiments corresponding to our coupled problem for d = 2. These
simulations have been performed using the code FreeFem++ due to F. Hecht and O. Pironneau, see [23].
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We will show in this section numerical investigations corresponding to problems (Vahi) by using for the
convergence the stopping criterion ErrL ≤ ε where ε is a given tolerance considered in this work equal
to 10−5 and ErrL is defined by

ErrL =
||ui+1

h − uih||L3(Ω)2 + ||∇(pi+1
h − pih)||

L
3
2 (Ω)2

+ |Ci+1
h − Cih|1,Ω

||ui+1
h ||L3(Ω)2 + ||∇pi+1

h ||L 3
2 (Ω)2

+ |Ci+1
h |1,Ω

.

The initial guesses u0
h and C0

h are considered in one of these two situations:

(1) C0
h = 0 and u0

h = 0.
(2) C0

h = 0 and u0
h = u0

hd are calculated by using Darcy’s problem which corresponds to β = γ = 0.

We will see later that the second case where u0
h is the solution of Darcy’s problem improve the conver-

gence of the algorithms.

We also consider the errors

Err =
||uih − u||L2(Ω)2 + ||∇(pih − p)||L 3

2 (Ω)2
+ |Cih − C|1,Ω

||u||L2(Ω)2 + ||∇p||
L

3
2 (Ω)2

+ |C|1,Ω
,

and

ErrL3 =
||uih − u||L3(Ω)2

||u||L3(Ω)2

,

which describe the rate of the a priori error estimation for a large values of the iteration index i.

5.1. First numerical test: analytical solution. In this section, we will show numerical results cor-
responding to the problem where we know the exact solution. Let Ω =]0, 1[2⊂ IR2 where each edge is
divided into N equal segments so that Ω is divided into N2 equal squares and finally into 2N2 equal
triangles. For simplicity, we take µ = ρ = 1 and K = I.
We consider the following exact solution with a parameter ξ:

p(x, y) = cos(πx) cos(πy),

u(x, y) = ξ(− sin(πx) cos(πy), cos(πx) sin(πy))T ,

C(x, y) = x2(x− 1)2y2(y − 1)2,

(5.1)

where div(u) = 0 in Ω, u · n = 0 and C = 0 on ∂Ω. Furthermore, we take f1(C) = (4C, 3 sin(C)). Thus,
we compute f and g by using their expressions in problem (P ).

To study the dependency of the convergence with the parameter γ, we consider N = 60, β = 20, ξ = 20,
α = r0 = 1, and for each γ, we stop the algorithm (Vahi) when the error ErrL < 1e−5. Tables 1 shows
the error Err and the number of iterations Nbr for u0

h = 0 and C0
h = 0, while Table 2 shows similar

results for u0 = u0
hd and C0

h = 0. These two tables describe the convergence of algorithm (Vahi) with
respect to γ. We remark that the number of iterations is relatively small when γ is large. In both cases,
the best convergence is obtained for γ = 100. The main advantage is for the case where u0

h = u0
hd are

computed with Darcy’s problem is that the number of iterations Nbr is less than the one obtained with
the case u0

h = 0. For further studies, we consider β = 10, ξ = 20, γ = 100 and the initial guesses

γ 0.001 .01 .1 1 10 100 1000
Nbr 4078 4009 3432 1440 234 29 115
Err 0.068 0.068 0.068 0.068 0.068 0.068 0.068

Table 1. Error Err (in logarithmic scale) and number of iterations Nbr for each γ
associated to Example (5.1) with algorithm (Vahi) for u0

h = 0. (β = 20, ξ = 20).

u0
h = u0

hd and C0
h = 0. Tables 3 and 4 show the obtained rate of convergence which seems in agreement

with the theoretical findings. We notice that the theoretical rate of convergence of the velocity in norm
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γ 0.001 .01 .1 1 10 100 1000
Nbr 2027 1993 1710 714 110 18 76
Err 0.068 0.068 0.068 0.068 0.068 0.068 0.068

Table 2. Error Err (in logarithmic scale) and number of iterations Nbr for each γ
associated to Example (5.1) with algorithm (Vahi) for u0

h = u0
hd. (β = 20, ξ = 20).

L2(Ω)2, the pressure in norm W 1, 32 (Ω) and the concentration in norm H1
0 (Ω) are equal to 1; the rate of

convergence of the velocity in norm L3(Ω)3 is 2/3.

h log10

(
‖ u− uh ‖L2 / ‖ u ‖L2

)
Rate log10

(
‖ u− uh ‖L3 / ‖ u ‖L3

)
Rate

1/120 -4.2812 -4.1598
1/140 -4.4047 1.84 -4.2431 1.23
1/160 -4.5111 1.83 -4.3154 1.24
1/180 -4.6029 1.79 -4.3711 1.09
1/200 -4.6830 1.74 -4.4183 1.03

Table 3. Rate of convergence of the velocity in norms L2(Ω)2 and L3(Ω)3. Example
(5.1) with algorithm (Vahi). (β = 20, ξ = 20).

h log10

(
‖ p− ph ‖

W 1, 3
2

)
Rate log10

(
‖ C − Ch ‖H1

0

)
Rate

1/120 -1.8902 -1.7090
1/140 -1.9611 1.05 -1.7759 0.99
1/160 -2.0215 1.04 -1.8339 1.00
1/180 -2.0742 1.03 -1.8851 1.00
1/200 -2.1210 1.02 -1.93 0.98

Table 4. Rate of convergence of the pressure in norm W 1, 32 (Ω) and the concentration
in norm H1

0 (Ω). Example (5.1) with algorithm (Vahi). (β = 20, ξ = 20).

5.2. Second numerical test: Driven cavity. The driven cavity is a standard benchmark for testing
the performance of algorithms in fluid problems. It is treated in several works ([25], [7], [32] and [15]).
In this section, we show numerical simulation corresponding to the Led Driven Cavity in order to study
the dependency of the convergence with respect to γ and the data.

Let Ω =]0, 1[2, K = I, µ = 1, r0 = 0, β = 20, f0 = 0, f1(C) = (10C, 10C), and g = 0. We complete
the Darcy-Forchheimer equations with the boundary conditions u.n = 0 on ∂Ω, and the concentration
equation with the boundary condition C = η (η is a parameter) on Γ1 = [0, 1] × {1} (top of Ω), and
C = 0 on ∂Ω\Γ1. In this section, the initial guesses of algorithm (Vahi) are C0

h = 1 and u0
h = u0

hg.

We begin first by testing the convergence of the algorithm with respect of γ for a given η = 20. We
consider N = 20 and we test the algorithm for multiple values of γ. We consider that the algorithms
don’t converge if the condition ErrL < 1e−5 is not reached after 5000 iterations. Table 5 shows for
η = 20, the dependency of the convergence of the algorithm with respect to γ and the better convergence
corresponds to the value γ = 10. This result shows clearly that the convergence depends on γ as
announced in relation (4.20) of Theorem 4.2.

Figures 1, 2 and 3 show for γ = 10 and η = 20, the velocity, the pressure and the concentration in Ω.

Let us now test the convergence with respect to η for γ = 10. Table 6 shows the dependency of the
convergence of the algorithm with respect to η (i.e. with respect to the concentration C). This result
shows clearly that the convergence depends on the concentration as announced in relation (4.19) of
Theorem 4.2.
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γ 0.001 .01 .1 .5 .55 .6 .7 .8 1 10 100 1000
Nbr – – – – 2440 1463 732 504 313 27 49 283
cov/div div div div div conv conv conv conv conv conv conv conv

Table 5. Test of the convergence for the driven cavity with respect to γ for η = 20.

Vec Value
0
0.152252
0.304504
0.456756
0.609008
0.76126
0.913513
1.06576
1.21802
1.37027
1.52252
1.67477
1.82703
1.97928
2.13153
2.28378
2.43603
2.58829
2.74054
2.89279

Figure 1. Numerical velocity
(Driven cavity), γ = 10, η = 20.

IsoValue
-21.0338
-15.8647
-10.6956
-5.52648
-0.357356
4.81176
9.98088
15.15
20.3191
25.4882
30.6574
35.8265
40.9956
46.1647
51.3338
56.503
61.6721
66.8412
72.0103
77.1794

Figure 2. Numerical pressure
(Driven cavity), γ = 10, η = 20.

IsoValue
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10.5
11.5
12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5

Figure 3. Numerical concentration (Driven cavity), γ = 10, η = 20.

η 1 20 100 150 170 175 180 200
Nbr 24 27 77 235 728 1493 – –
conv/div conv conv conv conv cov conv div div

Table 6. Test of the convergence for the driven cavity with respect to η for γ = 10.
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