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FINITE ELEMENT METHODS FOR THE DARCY-FORCHHEIMER PROBLEM
COUPLED WITH THE CONVECTION-DIFFUSION-REACTION PROBLEM

TONI SAYAH!, GEORGES SEMAANT, AND FAOUZI TRIKI*

ABSTRACT. In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-
Forchheimer problem by a non-linear external force depending on the concentration. We establish
existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse
a numerical scheme based on the finite element method. An optimal a priori error estimate is then
derived for each numerical scheme. Numerical investigation are performed to confirm the theoretical
accuracy of the discretization.

KEYWORDS. Darcy-Forchheimer problem; convection-diffusion-reaction equation; finite element method;
a priori error estimates.

1. INTRODUCTION.

This work studies the convection-diffusion-reaction equation coupled with Darcy-Forchheimer problem.
The system of equations is

HK*1u+é|u|u+Vp = f(,C) inQ,
p p
divu =0 in 2,
(P)Y _aAC+u-VC+rC = ¢ inQ,
u-n 0 onl,
C =0 onl,

where Q ¢ RY, d = 2,3, be a bounded simply-connected open domain, having a Lipschitz-continuous
boundary T" with an outer unit normal n. The unknowns are the velocity u, the pressure p and the
concentration C' of the fluid. |.| denotes the Euclidean norm, |u|? = u-u. The parameters p, u and 3
represent the density of the fluid, its viscosity and its dynamic viscosity, respectively. [ is also referred as
Forchheimer number when it is a scalar positive constant. The diffusion coefficient o and the parameter
ro are positive constants. The function f represents an external force that depends on the concentration C
and the function g represents an external concentration source. K is the permeability tensor, assumed
to be uniformly positive definite and bounded such that there exists two positive real numbers K, and
Ky such that

0 < Koy < [[K7H| o (qpaa < Ko (1.1)

It should be noted that K,, could be very close to zero and Kjs could be very large.

To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C, but the
present analysis can be easily extended to a non-homogeneous boundary condition.

System (P) couples the Darcy-Forchheimer system with the diffusion-convection-reaction equation sat-
isfied by the the concentration of the fluid. This same system can also couples the Darcy-Forchheimer
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system with the heat equation satisfied by the temperature T' of the fluid, it suffices to set rg = 0 and
replace C by T.

Darcy’s law (see [29] and [35] for instance for the theoretical derivation) describes the creeping flow of
Newtonian fluids in porous media. It is simply the first equation of system (P) without the non-linear

term é|u|u and where the function f may depends on the concentration C' of the fluid. Forchheimer

[18] shows experimentally that when the velocity is higher and the porosity is nonuniform, Darcy’s law
becomes inadequate. He proposed the Darcy-Forchheimer equation which is the first equation of the
system (P). A theoretical derivation of Forchheimer’s law can be found in [27]. Multiple theoretical
and numerical studies of the Darcy-Forchheimer system were performed and among others we mention
[22, 24, 30, 26, 31].

For the coupled problem of Darcy’s law with the heat equation, we can refer to [6] where the coupled
problem is treated using the spectral method. The authors in [4] and [12] considered the same stationary
system but coupled with a nonlinear viscosity that depends on the temperature. In [13], the authors
derived an optimal a posteriori error estimate for each of the numerical schemes proposed in [4]. We can
also refer to [3] where the authors used a vertex-centred finite volume method to discretize the coupled
system. Furthermore, for the time-dependent convection-diffusion-reaction equation coupled with Darcy’s
equation, we refer to [8, 9] where the authors established the corresponding a priori and a posteriori errors.

The coupling system (P) has many physical applications for the Darcy-Forchheimer mixed convection
case [34]. In this case, the Darcy-Forchheimer system is coupled with the concentration C of fluid with
the external force f. We mention that the work of [6] use the spectral method to treat a coupled system
very close to (P) where the Darcy-Forchheimer equation is replaced by the Darcy one. It turns out that
the non-linear term appearing in the first equation of (P) makes the treatment of the coupled system
more complex.

We first derive an equivalent variational formulation to (P) and we show the existence of a solution.
The uniqueness can be reached under additional constraint on the concentration. Then, we discretize the
system by using the finite element method and we show the existence and uniqueness of the corresponding
solution. Later, we establish the a priori error estimate between the exact and numerical solutions under
the condition of smallness of the concentration in the fluid. In order to compute the solution, we introduce
an iterative scheme and we study the corresponding convergence. Finally, numerical investigation are
performed to validate the theoretical results.

The outline of the paper is as follows:

e Section 2 is devoted to the continuous problem and the analysis of the corresponding variational
formulation.

e In section 3, we introduce the discrete problems, recall their main properties, study their a priori
errors and derive optimal estimates.

e In section 4, we introduce an iterative algorithm and prove its convergence.

e Numerical results validating the convergence analysis are presented in Section 5.

2. ANALYSIS OF THE MODEL

2.1. Notation. Let D(Q) be the space of functions that have compact support in Q and have continuous
derivatives of all orders in Q. Let o« = (a1, q,...aq) be a d-uplet of non negative integers, set |a| =

Z?:l a;, and define the partial derivative 9 by
9led

= (o5} a9 Qg
0x{"0x57 ... Oxy

(03

Then, for any positive integer m and number p > 1, recall the classical Sobolev space [2, 28]

Wm™P(Q) ={v e LP(Q); V]a] <m, 0% € LP(Q)}, (2.1)
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equipped with the seminorm
1
Wl = (3 /\8av|pdx)‘" (2.2)
|a]=m Q

and the norm

=

||UHW"‘*T’(Q) :( Z |’U|€Vk,p(ﬂ)) (23)

0<k<m

When p = 2, this space is the Hilbert space H™(2). The definitions of these spaces are extended
straightforwardly to vectors, with the same notation, but with the following modification for the norms
in the non-Hilbert case. Let v be a vector valued function; we set

1
Wl = ([ v ax)?. (24)
where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

H3(©Q) = {veH'(Q); v, =0},

Wyi(Q) = {veWwhi(Q); v, =0}. (2.5)

We shall often use the following Sobolev imbeddings: for any real number p > 1 when d = 2, or

1<p< % when d > 3, there exist constants S, and Sg such that

Voe H'(Q), [v]lwr@) < Spllvlla @ (2.6)
and

Vo€ Hy(Q), |v]lr) < Splolaq)- (2.7)

When p = 2, (2.7) reduces to Poincaré’s inequality.
To deal with the Darcy-Forchheimer, we recall the space

Lg(Q):{veLQ(Q);/dex =0}. (2.8)

2.2. Variational formulation. In this section, we introduce the variational formulation corresponding
to the problem (P).
We assume that the volumic and boundary sources verify the following conditions:

Assumption 2.1. We assume that £ and g verify:
(1) £ can be written as follows:
vx € Q,VC € R, f(x,C) =fh(x) + £1(C), (2.9)
where fy € L3 ()% and £, is Lipschitz-continuous with constant cg, and satisfies the inequality

VEER, || £1(8) lre< en 8],

where cg, is a stirctly positive constant.
(2) g€ L*(Q).

It follows from the nonlinear term in the system (P) that the velocity u and the test function v must belong
to L3(€2)?; then, the gradient of the pressure must belong to L2 (Q)%. Furthermore, the concentration C
must be in H}(Q). Thus, we introduce the spaces

X =134 M=w 3 Q)nL3Q), Y =H\.

Furthermore, we recall the following the inf-sup condition between X and M [22],
/ v(x)Vq(x) dx
o)

inf sup =1 (2.10)
9€M vex [Vl 1s(q)a qu”L%(Q)
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With these assumptions on the sources, we introduce the following variational formulation associated to
problem (P):

Find (u,p,C) € X x M x Y such that:

W€ X, / x) dx + /\u Ju(x )dx—l—/QVp(X)vxdx
v = [ . Ctv0 ax.
Vg e M, /Q Va(x)-u(x) dx = 0,
VS Y, a /Q VO(X)VS(x) dx + /Q (WY C)(x)S (x) dx-+ro / C(x)S(x) dx = /Q (%) S (x) dx.

Equivalence between (P) and (V) in the sense of distribution follows readily from the validity of Green’s
formula:

Vg e M,Vv e H, /QVq(z).v(x)dx =— /Q q(x) div(v(x))dx + (g, v.n)sq

in the space
H={veL3Q)%divv e L5 (Q)},
and the fact that
V = {V € H; v.nlgpg =0, and Vg € M,/ Vq.vdx = 0.}
Q
= {V € H; v.anlpg =0, divv=01in Q},

for further details, we refer to [22].

To study problem (V,,), it is convenient to introduce the mapping v — A(v) defined by:
A: L3Q)T — L:Q)
v = A(v) = Pr—1v + §|v\v.
p p

We refer to [22, 16] for the following properties of A.
Property 2.2. A satisfies the following properties:
(1) A maps L*(Q)? into L2 (Q)* and we have for all v € L3(Q)%:
K p 2
A8 gye < 5 1B o V13 o+ ¥ Iza0e
(2) For all (v,w) € RY x R?, we have,
By o 2p
A®) = A < (4 2]+ ) v (211)
(3) A is monotone from L*(Q) into L2 (Q)?, and we have for all v,w € L3(Q)?,
w
/Q(A(V(X)) — A(w(x))).(v(x) = w(x)) dx = max(cn, |V = W 7aqa o Km v = WllZ2(gya),
where ¢, 18 a strictly positive constant.
(4) A is coercive in L3(2)%.
(5) A is hemi-continuous in L3(Q)?: for fivzed u,v € L*(Q)¢, the mapping
t— / A(u+tv) - vdx
Q

is continuous from R into R.
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Let us first show that for a given C' € Y, the Darcy-Forchheimer problem (first two lines in (V,)) written
as following: Find (u(C'),p(C)) € X x M such that

Vv € X, /QA(u(C)(x)).v(x) dx+/QVp(C)(x).V(X)dx:/Qf(x,C(X))-V(X) dx, 0.12)

Vg € M, /QVq(X).u(C’)(x) dx =0,

admits a unique solution (u,p) = (u(C),p(C)). Problem (2.12) is equivalent to the following: find
(u(C),p(C)) € X x M, such that

Vv ev, /QA(u(C)(x)).v(x) dx = /Qf(sc,C(x)).V(x) dx. (2.13)

Theorem 2.3. For each C € HL(Q), £(.,C) € L2(Q)?, the problem (2.12) has ezactly one solution
(u(C),p(C)) € X x M. Furthermore, (u,p) satisfies the a priori estimates :

1

2

1%
||11(C)||L3(Q)d < <B |f(-70)||Lg(Q)d> ’

T B
I9P(O) 8 qpa < 5 B o gy 10O 1 o + 5 10O oy + IEC Ol -

(2.14)

Proof. Let C' € H} (). Assumption 2.1 allows us to deduce that £(,.C) lies in L2 (Q)%. For the proof,
We refer to [22] (see Theorem 3 page 172). O

Thus, Problem (V,) can be rewritten as a function of the single unknown C'. Indeed, for given C, let
(u(C),p(C)) be the solution of problem (2.12). Then, problem (V) is equivalent to the following reduced
formulation: Find C' € Y such that

VS ey, a/QVC(X).VS(X)dX—i-/Q(u(C’).VC’)(x)S(x) dx—{—ro/QC(x)S(x)dx:/Qg(x)S(x) dx.

(2.15)
Before proving that problem (2.15) admits a solution, we will show the following intermediate lemma:

Lemma 2.4. Let f satisfies Assumption 2.1 and (Ci)r>1 be a sequence of functions in L*(Q) that
converges strongly to C in L*(Q). Then, the sequence (u(Cy),p(Ck))k>1 converges weakly to (u(C), p(C))
in X x M and we have

lim u(Cy) =u(C) strongly in L3(Q)%.

k— 400

Proof. Assumption 2.1 allows us to deduce that the sequence (f(., Cx(.))r>1 converges strongly to f(., C(.))
in L?(Q)? and then bounded in L2(Q)%. Bounds (2.14) yield first the weak convergence (up to a
subsequence) of (u(Cy), Vp(Cy)) in L3(Q2)? x L2 () to some function (1, h). We will show that (1, h) =
(u(C), Vp(C)). Let us first show that 1 is solution of Problem (2.13). We show first that & € V. Indeed,
the second equation of problem (2.13) satisfied by u(Cy), and the weak convergence of u(Cy) to u led to
the relation

Vg € M, / u(x).Vg(x) =0,
and then @ € V. Now, we show that i satisfies pgrzoblem (2.13). The monotonicity of A gives
Wele [ (A - AW) &G - v)(x) dx = 0 (2.16)
The last inequality combined withﬂproblem (2.13) satisfied by u(Cy,) yields
weVe [ AwG)-u(C) ) dx < [ 10 60-(C) v dx (2.17)

We obtain by using the weak convergence of u(Cy) to 0 and the strong convergence of f(., Cy) to f(.,C),
the following relation:

Vv eV, /Q A(v(x)). (1 — v)(x) dx < /Q £(C)(x).(61 — v)(x) dx. (2.18)
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By virtue of the hemi-continuity of A, a classical argument implies that
Vv eV, / At X)dx = / f(C)(x).v(x) dx. (2.19)
Q

Hence u is a solution of (2.13), and thus 4 = u(C). Furthermore, problem (2.13) gives the relation
Vv ev, / — A(u(Ck)(2))).v(x)dx = / (f(z,C(x)) — f(z, Cr(x))).v(x) dx
Q

which allows us by taking v = u(C%) — u(C), by using the monotonicity of A in L3(Q2)?, and the strong
convergence of f(.,Cy) to f(.,C), to obtain the following convergence

Jim u(Cy) = u(C) strongly in L3 ()%
— 00

Finally, we have to treat the convergence of the pressure. Since u(C) is a solution of problem (2.12), we
use the inf-sup condition (2.10) to deduce the existence of p(C) such that (u(C),p(C)) is the solution of
problem (2.12).

We deduce from problem (2.12) that for all v.e X

t/(Vp«n-—Vp«naxxrvcodx - —3/<Aoucwu»>—v4uucmxx»>vuodx
Q Q
+ /Q(f(ac7 C(x)).v(x) — f(z, Ck(x)).v(x)) dx.

The strong convergence of u(C) to u(C) in L3(Q)%, of f(.,Cy) to £(.,C) in L?(Q)?, and the weak
convergence of Vp(Cy) to h in L (Q)?, give

Vv € X, / (Vp(C) — B)(x)-v(x) dx.
Q
Thus h = Vp(C) in L2 (Q)% which finishes the proof. 0

The next theorem shows the existence of at least one solution to the problem (V).
Theorem 2.5. Under assumption 2.1, problem (V,) admits a solution in X x M xY . Furthermore, each

solution (u,p,C) of (V) satisfies the following bound:

SO
|Cl10 < ;2 Il g2,

2

p
lallaye < (5018 1, gy +erS31CT0)) (2.20)

<K B
IVl 5 @ = HK 1}!Lm(9)dxd IIuIILg(Q)d ||uHL3(Q)d + = (|| foll, s (@) +Cf15§\0|1,sz)~

Proof. We propose to construct a solution of (V,) by Galerkin’s method. As Hg () is separable, it has a
countable basis (6;);>1. Let ©,, be the space spanned by the first m basis functions, (6;)1<i<m. Problem
(2.13) is discretized in ©,, by the square system of nonlinear equations: Find C,, = Zwﬁi € 0,,

solution of: V1 < i < m,

a /Q Vo (%). V0, (x)dx + /Q (W(Cy) Vo) (3)6: (x)dx + 76 / i ()63 (x)dx = /Q ()i (x) dx, (2.21)

where (u(Cp,),p(Cy,)) solves (2.12) with C = C,,. Now, given C,, € O,,, we introduce the auxiliary
problem: Find ®(C,,) € ©,, such that, for all S,,, € ©,,, we have

(VD(Cn)s VSim)s = a(VCin, VSim)s + /Q (W(Co )V Con) (). Som (%) -+ /Q Con(%)S
(2.22)
—/Qg(x)Sm(X) dx.
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Relation (2.22) defines a continuous mapping from ©,, into ©,,, due to the fact that ©,, is a finite
dimension space and Lemma 2.4. By taking S,, = C},, we get

(VO(C), VCom) = alCm 2., + 70 [Conln ey — / 9(%)Com (x) dx

> |Cinl1,0(lCmlie — 83 9]l 12(0))-
In other words, we have
(VO(C,),VCp,) >0
for all C,,, € ©,,, such that

SO
|[Cinl1,0 = EQ 91l 20 -

Therefore Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution to
the problem (2.21).
Let C,, be a solution of problem (2.21), satisfying V.S,, € O,

(Vo VSp) + /Q (W(C )V Co) (%)-Som (%) ¢ + 76 /Q o () S () dxt = /Q (%) S (x) dx.

By taking S,,, = C,, in the last equation, we get immediately the bound

S5
Cnlie < =119 llz2 @) -
The last uniform bound implies that, up to a subsequence, (C,,), converges weakly to a function C in

2d
H}(Q). Therefore, it converges strongly in L"(Q), for any r < it and it follows from Lemma 2.4

that (u(Ch,),p(Cim))m converges weakly to (u(C),p(V)) in X x M, and (u(Cy,)). converges strongly to
u(C) in L3(92)?. Now, we freeze the index i in (2.21), and let m tends to infinity. The weak convergence
of (Cm)m to C in HE(Q), and the strong convergence of (u (Cm)) to u(C) in L3(9)? allow us to deduce
that C' is a solution of the following problem: Find C € H}(Q2) such that

oz/QVC’(x).VHi(x)dx—F/Q(u(C)VC')( dx—|—7“o/ C(x dx-/ﬂg(x)@i(x) dx. (2.23)

From this system and the density of the basis in H}(Q), we infer that C is a solution of problem (2.15).
The first bound in (2.20) can be straightly obtained by taking S = C in the last equation in (2.15). The
first and second bounds in (2.20) can be deduced from the inequalities (2.14) and Assumption 2.1. O

Theorem 2.6. Assume that Q is of class C*'. Let (u,p, C) be a solution of Problem (P). If g € L>=(Q),
then the concentration C is in L™ (Q) and satisfies the following bound:

||C||L°°(Q HgHLoo(sz)

Proof. Let (u,p,C) be a solution of Problem (P), then the velocity u € V. Using the fact that V is
separable and that the space
Voo = {® € D(Q)%; div ® = 0}
is dense in V' (see for instance [17] Lemma 10.8), there exists a sequence (uy)yen in Voo which converges
strongly to u in L3(Q)? when N tends to +oo.
Now, for each N € N, let Cy € H}(€) the unique solution to the following problem:
—aACN +unyVCN +19Cn =g in Q, (224)
Cny=0 onI.
The elliptic regularity (see [19]) allows us to get that Cy € W2P(Q) N Hg (), for all p > 1.
Multiplying the first equation of (2.24) by C’2p *1 and integrating by parts give,

2p+1)
m/ |ch+1 >|2 dX + To / 02p+2 )dX = /s)g(X)CJQ\?-"_l(X) dX.
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By remarking that the first term of the left hand side of the previous equation is non-negative and

2p + 2
by applying Holder’s inequality for the right-hand-side with the conjugate exponents m = 2p i T and
p
n = 2p + 2, we get the following inequality:
1
ICN | p2p+2(q) < o 191l L2042y - (2.25)

The next step consists to show that Cy converges strongly to C' € H}(Q2). In order to prove it, we start
by subtracting the third equation of problem (P) from first equation of (2.24) to get, for all S € HE(Q),

a/ V(C*CN)VSdX+T0/(C*ON)SdX:7/ uV(CfC’N)def/(ufuN)VCNde.
Q Q Q Q

By taking S = C' — Cy and by using the antisymmetric property and the esimate (2.20), we obtain

0 Q0

|C — Cn|ria) < 6a 2 lu— un|lps(aya 19/l p2 (o)

which gives the strong convergence of Ciy to C in HJ ().
As Oy is uniformly bounded in L?’*2(f2), we can extract a subsequence still denoted by Cy such that
Cn converges weakly in L?P72(Q) to some function h satisfying (2.25). The strong convergence of C to

C in H*(Q) and the uniqueness of the limit allows us to deduce that h = C in L%(Q) and we get
1
HC”L2P+2(Q) < o ||g||L2p+2(Q) Vp > 1. (2.26)
Thus h = C € L**+2(Q) and Finally, taking the limit in (2.26) as p — oo, we get the desired result.

Theorem 2.7. Under Assumption 2.1, We suppose that the problem (V) admits a solution (u,p,C) €
X x M xY such that VC € L3(Q)%, and that

wK o

[ Cllze@= (2.27)

* Q07
pCe, S5

then, the solution of the problem (V) is unique.

Proof. Let (uy,p1,C1) and (ug, p2, C2) be two solutions of Problem (1), and let u = uy —ua, p = p1 —p2
and C' = C; — Cs. Then, (u,p, C) satisfies for all (v,S5) € X xY,

/ (Afur) — A(ug)) (x).v(x) dx = / (B(C) — £(C)) (x)v(x) dx — / V(o1 — p2) (). v(@)dx,
@ @ @ (2.28)
a/ VC(x)VS(x)dx + / (uVCy +uVO) (x)S(x) dx + ro/ C(x)S(x)dx = 0.
Q Q Q

By taking S = C in the second equation of (2.28), we get by using the Green formula,
ol o+ 70 € )= [ (49C)x)C1(00)dx.

and then
alClR g+ 70 || CllZz <l ullz2@ll VO 2y [IC1l] (o)
Finally, we get
1
IClie < > | allz2@)all C1 llLe=(q) - (2.29)

Substituting v by u in the first equation of (2.28), we get

/Q (A(w) — A(u)) (%)-(u1 — up)(x) dx = / (E(C1) — £(C2)) (x)-(u1 — us)(x) dx.

Q
By using the monotonicity of A, Assumption 2.1, and the fact that f; is cf -Lipschitz, we obtain

1
o [allzze < | £f1(C1) = £1(C2) [ 220

ct,991C 110

(2.30)

IN
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Thus, relations (2.29) and (2.30), give

£ < g c
m ||L2(Q)d_ 5 [ ||L2(Q)dH 1l ) -
p «@
Relation (2.27) allows us to deduce that || u |p2()= 0 and then u; = uy. Relation (2.29) implies
Cy = (5. Finally, the first equation of system (2.28) and the inf-sup condition provide p; = po, which

yields the uniqueness of the solution. O

Corollary 2.8. Under Assumption 2.1 and Theorems 2.6 and 2.7, if the data g satisfies the following
smallness condition
ropuf o

91l e () < “pei sy

then the solution (u,p,C) of Problem (P) is unique in L*(Q)% x W13 (Q) N L2(Q) x HL(Q).

3. DISCRETIZATION

From now on, we assume that 2 is a polygon when d = 2 or polyhedron when d = 3, so it can be completely
meshed. For the space discretization, we consider a regular (see Ciarlet [10]) family of triangulations (75 ),
of Q which is a set of closed non degenerate triangles for d = 2 or tetrahedra for d = 3, called elements,
satisfying

e for cach h, Q is the union of all elements of Tr,;

e the intersection of two distinct elements of 7}, is either empty, a common vertex, or an entire
common edge (or face when d = 3);

e the ratio of the diameter h,; of an element xk € T} to the diameter p, of its inscribed circle when
d = 2 or ball when d = 3 is bounded by a constant independent of h, that is, there exists a
strictly positive constant ¢ independent of h such that,

max b <o. (3.1)
KETh Pr
As usual, h denotes the maximal diameter of all elements of 7;. To define the finite element functions,
let 7 be a non negative integer. For each k in 7j, we denote by P,.(k) the space of restrictions to x
of polynomials in d variables and total degree at most r, with a similar notation on the faces or edges
of k. For every edge (when d = 2) or face (when d = 3) e of the mesh Ty,, we denote by h, the diameter of e.

We shall use the following inverse inequality [14]: for any dimension d, there exists a constant C such
that for any polynomial function v, of degree r on K,

4
lonllLs ey < Crhv ® |lonllL2(x)- (3.2)

The constant C; depends on the regularity parameter o of (3.1), but for the sake of simplicity this is not
indicated.

Let X;, C X, My C M and Yy, C Y be the discrete spaces corresponding to the velocity, the pressure and
the concentration. We assume that X; and Mj, satisfy the following inf-sup condition:

th - Vp dx

Vaqn € My, sup > Ballanllar, s (3.3)

vex,  Ivallx,

where s is a strictly positive constant independent of h.
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Problem (V,) can be discretized as following: Find (up, pp, Cr) € Xp x My, x Y}, such that
Vv, € Xy, / A(uh).vhder/ Vpp - vy dx = / f(Ch) - v dx,
Q Q Q

Van € M, / Van - wp dx = 0,
Q

(Van) (3.4)

1
VS, € Yi, a/ VCLV Sy dX-i-/(uh.VCh)Sh dx + 5/ div(uh) CpLSpdx
Q Q Q

+To/ChSth=/gShdx.
Q Q

In the following, we will introduce the finite dimension spaces X, M}, and Y}. Let x be an element of 7},
with vertices a;, 1 <i < d+1, and corresponding barycentric coordinates A;. We denote by b, € Pyy1(k)
the basic bubble function :

b (x) = A1 (X).. Agr1(%). (3.5)
We observe that b, (x) = 0 on 0k and that b,(x) > 0 in the interior of &.
We introduce the following discrete spaces:
Xp ={vi € (€)% YV € Thy valx € P(r)"},
My, ={qn € C°(Q); V& € Th, qnlx € P1(r)} N LE(Q),
Yy, ={qn € C°(Q); V& € Th, qulx € P1(k)} N H(Q), (3.6)

— —

Vi :{Vh (S Xh;th € Mh,/ th -V dx = 0}7
Q

where
P(r) =Pi(k) & Vect{b, }.

In this case, for the inf-sup condition (3.3), we refer to [21].

We shall use the following results:

(1) For the concentration: there exists an approximation operator (when d = 2, see Bernardi and
Girault [5] or Clément [11]; when d = 2 or d = 3, see Scott and Zhang [33]), Ry in LW P (Q);Y},)
such that for all k in Ty, m =0,1,1=0,1, and all p > 1,

VS e WHEP(Q), |S = Ru(S)lwmr(ey < c(p,m, 1) IS pris1m A, (3.7)

where A, is the macro element containing the values of S used in defining Ry(.5).

(2) For the velocity: We introduce a variant of R, denoted by Fj, (see [4] and [20]) which is stable
in L3(Q)%:

vv e LX), [|Fa)llps e < CslVllLs(aa, (3.8)

such that Fp,(v) € Vj, when divv = 0, and satisfies (3.7).

(3) For the pressure: As M) contains all constants, an easy modification of Rj yields an operator
rn, € LOWEP(Q) N LE(Q); M},) (see for instance Abboud, Girault and Sayah [1]), satisfying (3.7).
Indeed, rj, can be constructed as follows:

1
Vge M, 71hq= Rnq— [ / (Rnq)(x)dx.
Q

Existence of a solution of (V) is derived by duplicating the steps of the previous section concerning the
existence of a solution of Problem (V). First (V) is split as in the previous section, i.e., find Cj, € Y},
such that: VS), € Y},

1
a/VC’hVShdx—f—/(uh(Ch).VC’h)Sh dX-i-g‘/diV(uh(C‘h))CYhSth—FT()/C‘hshd)(:/gSth7
Q Q Q Q Q
(3.9)
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where uy,(C},) is the velocity solution of: Find (up(Ch), pn(Ch)) € Xp x My, such that

Vv € X, /A(uh(Ch)).vhdx—i—/ Vph(ch) -V dx = / f(.,Ch> - v dx,
Q Q Q

(3.10)
thEMh, th-uhdxzo.
Q

For each C}, € X}, an easy finite-dimensional variant of the argument of Theorem 2.3 allows one to prove
that the scheme (3.10) has a unique solution (uy,(Ch),pr(Cr)) € Xp X My, and this solution satisfies the
a priori estimates similar to (2.14):

N

p
||11h(Ch)||L3(Q)d < (ﬂ |f(-ach>||L§(Q)d> )

oy B
82192005 g < 22 1 ey 9O gy + 2 I C g + (O]

(@) — L3 @)e-

(3.11)
We address now the existence of at least one solution of the problem (3.9) written with the only variable
C},. For this purpose, we apply Brouwer’s Fixed-Point Theorem. Indeed, we introduce the following map:
For a given Cj, € Y}, find ®(C}) € Y}, such that: VS, € Yy,

(®(Ch),Sn) = oz/QVC’hVShdx+/Q(uh(Ch).VOh)Shdx

+1/div(uh(Ch))ChShdx+ro/C’hShdx—/gShdx.
2 Jo Q Q

This last relation defines a mapping from Y} into itself, and we easily derive its continuity. By taking
Sy = C},, we get

(VO(Ch), VCh) = alChl2 o + 70 [ Chll e — /Q 9(%)Cn(x) dx,

> |Chlr,a(alChlia = 53 19l 12 (0))-
In other words, we have
(VO(Ch),VCy) 20,
for all Cj, € Y}, such that

SO
C === 2y -
|Chl10 o gl Q)

The Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution of the
problem (3.9). Hence, problem (V,;) admits at least one solution (up,pn, Ch) € Xp x M}, x Yy,. Further-
more, by taking S}, = C}, in the last equation of (V,;) gives, in addition to inequality (3.11), the following
bound:

SO
|Chlra < f g llz2) - (3.12)

Finally, uniqueness follows easily since C}, belongs to L>°(2). This is summed up in the following existence
and uniqueness theorems.

Theorem 3.1. Under assumption 2.1, (Vo) has at least a solution (up,pn,Cr) € Xp x My x Y},.
Moreover, every solution of (Vup) satisfies bounds similar to (2.20).

Theorem 3.2. We assume that the data £ and g satisfies assumption 2.1. Suppose that problem (Vi)
has a solution (Up,1,Pn,1,Ch1) € Xp X My, x Yy, such that
2auK,,

Ch’ o + 59 Ch’ 1,3 <— < 3.13
1Chall oo () + S61Chalwrse g 50 (3.13)

Then problem (V1) has no other solution in Xp X My, X Yy,



12 T. SAYAH, G. SEMAAN, AND F. TRIKI

Proof. We consider two solutions (up.1,pn,1,Ch,1) and (up,2,pn 2, Ch,2) of problem (V,;) and we denote
by up = up1 —un2, Ph = Ph,1 — Ph,2 and Cy = Vj, 1 — Cp 2. By following the sames steps of the proof of
Theorem 2.7, uy, satisfies the analogue of (2.30),

%Km 2y < €k, SSICh]10- (3.14)

The treatment of the concentration is slightly different. By using the Green’s formula, the difference of
the equations satisfied by the concentrations reads with S, = Ty,

1
Oz|Ch|iQ < B ’/(uhVCh)Ch,l dx — / (uhVCm)Ch dx|. (3.15)
Q Q
Therefore, using Holder’s inequality, we obtain
Hu||L2(Q)d 0
Chlie < =5 = (ICh1ll p= (o) + 561Ch1lwra@)- (3.16)

Thus, inequalities (3.14) and (3.16) give,
* QO
" CflsQ Hu||L2 Q)d
Bl < 25 (O ey + SChalwro)). (3.17)

Condition (3.13) allows us to deduce that |[up||;2(q)« = 0 and hence up,1 = up,2. Inequality (3.16) gives
Ch, = Ch 2. Finally, the inf-sup condition provides pp 1 = ps,. (Il

Now, we address the convergence of the a subsequence of the numerical solution to the exact one.
Bounds (3.12) and (3.11), and the compactness of the embedding of H(Q) into LP(Q2) ((p > 1ifd =
2,1 <p<6ifd=3), allow us to get the following lemma:

Lemma 3.3. Let f and g satisfy Assumption 2.1 and let (up,pn,Cr) be any solution of the discrete
problem (V,p,). We can extract a subsequence, still denoted (up, pn, Cp) verifying

lim Cj, = C weakly in Hj(Q),

h—0
}lbir%C’h =C  strongly in LP(?), (p>1ifd=2,1<p<6 ifd=23),
—
3.18
limu, =a  weakly in L3(Q), (3.18)
h—0

lim Vp, =h  weakly in L%(Q)d7
h—0

where 1 € L3(Q)?, h € L%(Q)d and C € H(Q).

Proposition 3.4. Let (up,pn,Cr) be any solution of the discrete problem (Vap). Under assumption of
Lemma 3.3, we have h = Vp, where (u,p) solves the first two equations of (V) with C = C. Furthermore,
we have the following strong convergence :

limu, = a strongly in L3(Q)% (3.19)
h—0

Proof. First, we shall show that i is a solution of problem (2.12) for C' = C.
The monotonicity of A gives

Vv, € Vp, /(A(llh) — A(Vh)).(uh — Vh) dx > 0. (3.20)
Q
As uy, is a solution of problem (V,;), we get
Vv, € Vp, / A(u;z).(uh — Vh) dx = / f(, C’h).(uh — Vh) dx. (321)
Q Q

Therefore,

Vv, € Vp, /Q.A(Vh>.(uh — Vh) dx < /Qf(., Ch)-(uh —vp) dx. (3.22)
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We now choose v, = Fp(v) where v is an arbitrary element of V. The strong covergence of Fp,(v) to v
in L3(Q)4 and (2.11) allow us to get

A(Fr(v)) " A(v) strongly in L (Q)%. (3.23)

Furthermore, since u;, — F,(v) converges weakly to i — v in L3(Q)¢ and f(.,C},) converges strongly to
f(.,C) in L%(Q)d, we get by passing to the limit in (3.22),

Vv eV, A(V).(ﬁ—v)dxg/f(.,é).(ﬁ—v)dx. (3.24)
Q Q

By virtue of the hemi-continuity of A, a classical argument then yields
Ywvev, / A(a).vdx = / £(.,C).vdx. (3.25)
Q Q

Hence 1 is the solution of (2.12), and we construct by using the inf-sup condition (2.10) the corresponding
pressure p.

The next step consists to show that u; converges strongly to @ in L3(2)¢. In order to prove it, we start
by taking v = vy, in (2.12) and subtracting from (3.10), we have

Vv € Vy, /Q(A(uh) - A(ﬁ)).vh dx = / (f(, Ch) — f(, O)).Vh dx + \/Q V(]_) - ph).Vh dx

« (3.26)
= / (£(.,Cn) — £(.,0)).vy dx Jr/ Vp.vy, dx.
Q Q
By inserting A(Fp, (1)) and taking vy, = up — Fp(Q), we get
[ (Alwn) = A @)~ Fa@) x =~ [ (A @) ~ Aw).(an ~ Faw) dx
@ & (3.27)
+ [ pun = Fu) it [ (.G~ £, 0w, - Fifa)) dx
Q Q
The monotonicity of A allows us to obtain,
Cm [an = Fu(@)| 75y < ‘ /(A(fh(ﬁ)) — A(w)).(up — Fp(@)) dx
@ (3.28)

+‘/9Vp.(uhf]-'h(ﬁ))dx’+‘/Q(f(.,Ch)ff(.,C')).(uhf]-'h(ﬁ))dx.

We pass to the limit in the previous equation. We deduce from the strong convergence of A(Fx(@)) to
A(@) and of f(.,Cy) to f(.,C) get that the first and last terms of the right hand side of the previous
inequality tend to 0. Furthermore, the weak convergence of uj, to u, and the strong convergence of F, ()
to @ imply the convergence of the second term of the right hand side of the previous inequality to 0.
Thus, uy, converges strongly to u in L3(Q)%.

To finish the proof, it remains to show that h = Vjp, which can be easily obtained by passing to the limit
in (3.26), and by using the strong convergence of uy to @ in L3(2)%, and the uniqueness of the weak
limit.

O

Theorem 3.5. Let £ and g satisfy Assumption 2.1, the limit (u,p,C) defined in Proposition 3.4 is a
solution of problem (V).

Proof. We have proved in Proposition 3.4 that (i, p, C') solves the first two equations of problem (V). It
remains to show that (i1, C') solves the third equation of problem (V,). We consider the third equation
of problem (V). By taking Sj, = RS for a regular S € D(2) (taking into account the density of D(2)
in H}(£2)), we can show easily the convergence of the linear terms except the non-linear ones which can
be written as:

1 1 1
/ (uh.VCh)Sh dx + — / div(uh) CpLSpdx = = / (uh.VCh)Sh dx — — / (uh.VSh)Ch dx (3.29)
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The strong convergence of Sy, to S in H}(£2), and in L5(9), the strong convergence of uy, to @ in L3(Q2)4,

and the weak convergence of C}, to C in H}(2) lead to the convergence of (3.29). O

After showing the convergence of the discrete solution (uy, ps, Cy,) of problem (V) to a solution (1, p, C)
of problem (V,), we next derive the corresponding a priori error estimate.

Theorem 3.6. Under Assumption 2.1, let (up, pr, Cr) be a solution of problem (Vyp,), and (u,p,C) be a
solution of problem (Vap,). If (,p,C) are such that C € Wh3(Q)NL>®(Q), u € L=(Q)? and p € H(Q),
and satisfies the following condition:

apKy,

SC 1. + | Cllpo) < ————,
6l |W13(Q) I CllL (@)= 2\/§pC§‘158

(3.30)

then, we have the following a priori error estimates:
1

Cc-C <
C=Chlmey = 100 T

((1+ e10)IC = Ru(C) 1oy + carv/era [V (rn(p) = D)l 2 gy
3
+Carv/C3u H Fru—u HiB(Q)d +Carv/Cau H Fpu—u ||L2(Q)d )7
(3.31)
2
[u—uy, H%?(Q)dﬁ cru [[V(p — Th(P))HLz(Q)d + c2u|C — Chﬁql(g) +csu || Fhu—u ”%S(Q)d

+ cqu || Frn(u) —u) H%Z(sz)dv

(3.32)
|l w = [[zsg@ye < hy V(0 = mn (D)1 7oty + chal € — Chlafsigy + cha | Frtt = 1 [| (e
2/3
+ o | Fa(w) =) 75y
(3.33)
and
IV =2n) 11,3 )0 S €1/C = Chlrg + ezp | 0= [lza@ys +esp | V@) =) Il 3 g0 (3:34)

where 1y, Cor are constants given in relation (3.52), €1y, Cou, C3u, Cay aTe given in relation (3.42), ¢}, Chys
Chy» Cay, GTE given in relation (3.42), and cip, cop, c3p are given in relation (3.49).

Proof. We shall proof the result by proceeding by steps.

1) Let us estimate the velocity error in terms of the temperature error. By taking the difference between
the first equations of (V') and (V4,,1) and testing with v = v, € V},, we obtain

[t - A ax - |

[(5(0)~ 11(C)viax - /Q V(p— 14 (p)) v dx. (3.35)

Then by inserting Fj(u), and testing with v, = Fp,(u) — u; that belongs indeed to V},, we easily derive

/(A(fh(u)) — A(up))vpdx = /(fl(C’) —£1(Cp))vpdx + / (A(Fp(u)) — A(u))vpdx.
@ @ @ (3.36)

- / V(p—rn(p)) vi dx.
Q
Let us bound the second term in the right hand side of (3.36). We have

/Q(A(]:h(u)) —A(u))vpdx = %/QK_l(}'h(u) —u).vpdx+ % /Q(|]-'h(u)| — [u|)(Fru — u)vy dx

B B
+;/Q\u\(}'hu—u)vhdx—&-;/Q(|]:h(u)|— [u))uvy, dx. .
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Then,

| [ (A w) = Aw)vidx] < B Fw) =) Loyl v oo
& 3 28 (3.38)
+; | Fru—u H%3(Q)dH Vi |[z3(q)e +? || poe el Fru—u |2yl va Iz -

Thus, the monoticity of A and the fact that f; is cf -Lipschitz with values in R allows us to obtain,
Cs
> | F(w) = ap (|73 ) Fn(w) = up [F200a < V() = p) 2@l v [lL2(0)a
* 0 KM
cg, 52|C = Crlaiy || va HLZ(Q)d +T | Frn(u) =) [[2)all Vi [l22(0) (3.39)
B 2 26
+; | Fru—u HL3(Q)dH Vi |[23(0)e +? || zoe@)all Fru—u |2yl v Iz -

To treat the last inequality, we bound all the terms of the right hand side containing b =|| vy, ||12(q)«
using the formula

1 € . uK
b< —a®+ =b? the="—™"
a72€a —|—2 s with € 8,07

and, the term containing b =|| v, ||13(q)a, using the formula

4
o2 3 3 3 . _ 1/3
b< (252 b thd=(-—)"".
52080+ (5, with 6= (o)
Then we infer the following bound:
Cs 2 4p 2
1 | Fr(a) —up HL3(Q)d + = || Fr(u) =y ||L2(Q)d§ lfme | V(rn(p) —p) ||L2(Q)d
4p 4uK?2
+——(c,99)%C — Ch‘Hl(Q) + —2 || Fi(u) —u) H%z(g)d (3.40)
Pt pK
45 ; 165
+m | Fru—u 750 +Mﬂ7 | (17 yall Frw = a 1720 -

By using the following triangle inequality

1
5 = [ o)a <l Fa(w) = wn [[F0pa + | Fa(w) =l o),

we get
2
| a—uy ||%2(Q)d < aul[Vrap) = pllz2)ya + c20lC — Chﬁ{l(ﬂ) (3.41)
“+C34 || .7:h11 —u ||?i3(Q)d +Can || fh(u) - u) ||2L2(Q)dv
where
32p? . 32437 32K3, 12842
Cly = /.L2K72n7 Coy = Clu(cfl 52) ,  C3u = m and Cqy = K,%L QKQ ||uHL°°(Q)d +2.
(3.42)
Furthermore, relation (3.40) gives
3 ,U/Km 2 2 3
| Fr(u) —up ||L3(Q)d§ 72/)0 (Clu IV (rn(p) —p)||L2(Q)d + c24|C — Ch‘Hl(Q) +cgu || Fru—u HLS(Q)d

2
-t | P () = a0 ).
Thus, a triangle inequality allows us to get
2/3 2/3
P)I7ataya + hulC = Culifigy + cha | Frtt = 1 [| s e

+c£1u ” -Fh( ) ) ”Lz (Q)ds

| w—up ||z < cl, [V(ra(p) —
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where

/_3MKm ro_ 13 A A ro_ 3 Y A
c, = 2pes Clu = Cy ¥ Clu, Coy = Coy/Cou, oy = (1 + cay) and cy,, = €, Cay.- (3.43)

Hence relations (3.32) and (3.33) are proved.

2) The proof of the error estimate for the pressure follows the same lines of the previous step. By taking
the difference between the first equations of (V) and (V,4), inserting ry,(p) and testing with v;, € X,
we obtain

wmmﬂmsz/

<ﬁ«»—ﬁ«h»wdx—/kAmwnMumwmm— V(p = r1(p)va do.
Q Q

Q Q
(3.44)

In order to estimate the second term in the right hand side of (3.44), we will proceed as follows

/Q (A(u) — A(up)) vy de = ﬁ/ K~ (u—up)vy, da + g /Q [ul(u —up)vy de + i/ﬂ(|u| — |up|)upvy dx

/j,KM 6
; Q12w = wnll s gya Vil psgaya + = P w =l s qya 1Vall Ls e (Il s qye + [anll s qya)-
(3.45)
Applying (2.20) and (3.11), we get
pE M 1/3
A (A(u) — A(up)) v dz < TIQI w =l s gy 1Vall Ls @)a +
A4
28,8 cr, 5353 s (3.46)
7(; ||f0||L2 Q)4 + —a HgHLz(Q)d ) u— uhHLS(Q)d ||Vh||L3(Q)d
CfISgSS 1
We denote v = ( [I£oll, 2 @ T —— |9l 2 () )2. By following the same steps of the previous part,
a
and the inf-sup condltlon (3.3), we get
8o | V(rne) =) 5 s <
* J13:$Y; 28
1175910~ il (PS04 2 ) I s + 190 = 7m0 5
(3.47)
The following triangle inequality
19— 20) I, 5 e < T8 ) —28) 5+ 1 Vn )~ ) ] 5
allows us to get
V@ =pr) Il 3 g)eS cplC = Crlig +cop [lu = l[psys +eap | Vralp) =p) |3 qur (3:48)
where
1 1 [ uKuy 283 1
c1p, = —ck SYQM6, ¢ :(01/34— and ¢c3, = (— +1). 3.49
= RSO, ey = o (M0 1 2 ) and ey = (41, (349)

Hence relation (3.34) is proved.

3) Next we estimate the error of concentration in terms of the velocity error. We take the difference
between the third equations of systems (V) and (V,p,), insert S (C), and use the Green formula to get
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for all S, € X3,

a/ V(Rh(C)—Ch)-VShdx+ro/(Rh(C)—C’h)Shdx:
Q Q

a/V(Rh(C)—C)~VSth+T0/<Rh(C)—C)Shdx
Q Q

1 1 (3.50)
4y [ VR(C) Sk =5 [ (wn - TSR - ) s
Q Q
1 1
+= / ((up, —u)-VCO)Spdx — = / ((up, —u) -V Sp,)C dx.
2 Ja 2 Ja
The terms in the last two lines of the right-hand side are bounded by
lunlzsc@ye (1€ = Ba(O)lmr @l Shlsc@) + 1€ = Ru(C)zs(@y|Silm o) (3.51)

= ull 2@y (IClw 5@ 1Sl zo) + IC L= (o) |Shl1 (o )-

Then the choice S, = Ry(C) — Cj, the antisymmetric property of the transport term, the fact that uy
is bounded in L3(Q)? as

2

funlisioys < (50115 gy +or,531Ch))
and Sobolev’s imbedding yield

|RL(C) — Ch|H1(Q) < 1. |C — Rh(O)lHl(Q) + corllup, — ll”Lz(Q)d,

where
70(S59)? S’O 0 1 1,0
e = (1+ ===+ = ( (1o 1l 5 o +e531C11,0))*) and ear = 5= (SGIClwrs()+ | C L (o).
(3.52)
By using the following triangle inequality:
|C = Chlur ) < [Ru(C) = Cluyq) + [Bi(C) — Chlm (o)
we get
|IC = Chlaiey < (1+c)|C— Ru(O)|ur(a) + corllun — ullp2q)a. (3.53)

4) Finally, by combining relations (3.41) and (3.53), and using relation (3.30), we obtain relation (3.31). O

By using the properties of the operators Ry, Fp and 13, we get the following result:

Theorem 3.7. Under the assumptions of Theorem 3.6 and if the solution (u,p,C) of problem (V)
satisfies C € H?(Q), u € WH3(Q)4 and p € H?(R), then we have the following a priori error estimate:

|IC = Chlar@y+ lu—upn |2 + | V(e —pn) ||, 3,,.< Cih (3.54)

L3 (2)d—

and
u—uy, || < C1h?/3, 3.55
@)

where Cy and Cy are strictly positive constants independent of h.

4. ITERATIVE ALGORITHM

In order to solve the discrete system, we propose in this section an iterative algorithm the discrete prob-
lem at each step and converges to the exact solution under additional conditions on the exact solution.
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The algorithm proceeds as follows: Let u? € X} and Cy € Y, the initial guesses. Having (u,C}) €
X, x 'Yy, at each iteration i, we compute (u2+17p2+1, C;LH) € X x My, x Y}, such that
Wi X [ (i wvadxr 2t s 2l gt v i
Q pPJa P Ja
+/ Vpitt vy dx = / £(C}) - vy, dx,

Q Q

(Vani) § Vqn € My, /Qth ‘uittdx =0,

) ) . 1 ) )
VSh € Vi, a / VOV Sy dx + / (. VOt Sy dx + 3 / div(ujtt) Ot Sy dx
Q Q Q

+T()/C;L+1Sth:/gSth,
Q Q

(4.1)
where v is a real strictly positive parameter. Later on, the parameter v will be chosen to ensure the
convergence of algorithm (V). At each iteration ¢, having u} and Cj, the first two lines of (Vn;)

computes (u;'j'l, pﬁfl). Next, we substitute u?‘l by its value in the third equation of (V;5;) to compute
(olany

In the following, we study Scheme (V,;;), and we begin by prove the existence and uniqueness of the
corresponding solution.

Theorem 4.1. In addition to assumption 2.1, we suppose that £y € L*(Q)4. For each (v, C}) € X, x Y},
problem (V,pi) admits a unique solution (u?fl,pﬁl,Cﬁl) € Xp x My xYy. Moreover, we have the
following bound

-
Ch,

S9
L0 s = 190l 2 () - (4.2)

Furthermore, if the initial value u% satisfies the condition

2
”ugHLz(Q)d S Ll(fvg)a (43)
where
1 (SO)Q
Li(f,g9) = Z(HfOHLQ(Q)d + Cf1# ||g||L2(Q))2>
and if vy satisfies the condition
32 _
v > %C’?Lg(f,g,Ll(f,g))h 54/2, (4.4)
where
1 3p (59)? o, 3uKE, 35° 67 —d, 2 :
Lo(f = — | ——(||f —= Cih 4.5
W0 =75 (Q,MKm(' ollez@ye +en =, = Mol + 5 v g, G ) o (D)
then, the following inequalities hold
1112
g 2 e < Za(E.9): (46)
and
P13 2p, 2p Y
[ih HL3(Q)d = E(,UKm + §)L1(f7 9). (4.7)

Proof. To prove the existence and uniqueness of the solution of Problem (V,5;) which is a square finite

dimension linear system, it suffices to show the uniqueness which is readily checked for each (uj,C}) €
Xp % Yy, In fact, let (wph!, pptt, C4 ) and (upty, pit), Cp)) be two solutions of problem (Vap;). Denote
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1+1 i+1 7+1 7+1 . .
wp =W, -l and &, = pp,, —Dha- We deduce from the problem (V,;;) that (wp, &) is the solution

of the followmg problem

Yoy, € Xy, ’y/Whvhdx—FE/ Kﬁlwhvhdx—l—é/ |u2|whvhdx—|—/V§hvhdx:0,
Q P Ja P Ja Q

th e My, /thwh dx = 0.
Q

Taking (vp,qn) = (wp, &) and remarking that / |u ||wy,|? dx is non negative, we obtain by using the
Q
properties of K1, the following bound

2o
(’Y + p> HwhHi?(Q)d <0.

Thus, we deduce that wj, =0 (u;;rll = u}f;) and the discret inf-sup condition (3.3) implies that £, = 0
(pﬁj‘ ! pﬁj‘ !). This gives the uniqueness of the velocity and the pressure for each iteration i.
Let us now prove the uniqueness of the concentration. We denote by C,’;H = C’iﬁl — C}:‘;. Then, the

third equation of problem (Vg;) gives: Find C,Zfl € Y}, such that for all S, € Y},
, . , 1 . .
a/ VC VS, dx + / (. VOrh) Sy dx + 5/ div(u;jl)cg+1shdx+ro/ CittSpdx =0, (4.8)
Q Q Q Q

where (u H'l, p}j‘l) is the unique solution of the first two equations of problem (V,;). By taking S;, = C};H

and using the antisymmetric property we get the uniqueness of the concentration.

The bound (4.2) can be deduced immediately by taking S; = C;'' in the third equation of problem
(Vani), and by using the Cauchy-Schwartz inequality.

To prove the bound (4.6), we need first to estimate the error Hu”l uﬁlHB(Q)d in terms of the previous
value uh Taking the first equation of problem (V,p;) with v, = u;fl — U—Z yields

o L uh!|m(m+ / K~ (u) ! —uj Jdx- = / [y, (! ) dx = /Q £(C}) (u)," —uj)dx.

By inserting uh in the second and third terms of the last equation, we get,

v [t = Gy + 2 / K~ (i = uj)(upt! —uj)dx + = / i, [ — | dx

(4.9)

= Af(CZ)(uZH —uj)dx — f/ K ', H'l —uj)d / [uj, [ug, (u Z'H —uj) dx.

Using the properties of K1, the Cauchy-Shwartz inequality and relation (3.2) give the following

K, , .
5 = gy + 2 0 = i aage < (O e 17 = i o
NK i i i B - i i i
+= [, AR uhHLZ(Q)d HuhHLZ(Q)d + ;CIh vz HuhHL2(Q)d Hthr1 - uhHLZ(Q)d
(4.10)
jaien

1 €
We apply the relation ab < 2—(12 + §b2 with e = to each term on the right-hand side of the previous
€

inequality, and we obtain

i i Pk i SuK;
7 e+ g T e € g [FCD e+ 2 e
332 - i
+ 2puKm016h il oo

(4.11)
Therefore, Assumption 2.1 and relation (4.2), allows us to get

[y, — uﬁLHLZ(sz)d < Ly(f, 9, HuhHL2 sz)d (4.12)
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where
1
1 [ 3p (SS) 3uK3 3 o a0\’
L?(f7g7y)_ \/> (2 K (H 0||L2 Q)d+cf1 ||g||L2(Q )2+ QPKZV—’— 2umeC?h V2 . (413)
Then, we are now in position to show relation (4.6). We consider the first equation of problem (Vg;)
with v, = uﬁfl and we obtain
=i | gt 2L = [ R ix
B i+1 1412
(o) = i .
(4.14)
1
Using the properties of K~!, the Cauchy-Shwartz inequality and the relations ab < 2—€a2 + %b2 and
1 K
a’b < 3(67363 +2674 ) wih e = MT and § = (%)2/3, we get
Y l,i+1 2 g +1 i2 NKm i+1 i+1
H ||L2(Q)d HuhHL2 @ T35 ||uZ - uhHL2 (@ T [, HL2 @ T 5, H ||L3(Q)d
190 (o [y (419)
< g 2 i
We denote by
. 5y 166 112
Cl(HUZHL%Q)d) 597 C,h 3d/2L2(f 9, UZHLz(Q)d)
and we get by using (4.12) that
i v 16p —3d i+1
03 ) £ T~ g i -
Therefore, we obtain the following bound:
T, i+1 i 112 j i+1 i 2 PEm i
H HLZ(Q)d -5 Hu;LHLz(Q)d + Cl(Hu;ZHLZ(Q)d) [y, — u;LHLZ(Q)d + 9 [, HL2(Q)d
P (4.16)

2
+ - H hL1||LS,(Q)L1 < Mipml/l(fvg)'

We now prove estimate (4.6) by induction on ¢ > 1 under some condition on . Starting with relation
(4.3), we suppose that we have

HuhHLz(Q)d < Ll(f7g)- (4.17)
We have two situations:

HuZHHLZ(Q)d < HuhHLQ(Q)d, which immediately leads to

||ul+1||L2(Q)d < Ll(f,g)
HuZHHLz(Q)d > HuZHB(Q)d. By using the induction condition (4.17), taking

1 16ﬁclh 34/21,(F, Ly (£, g))

1 6 B (4.18)

37,01 B2 Lo (8, [0 2 0

we get C’l(HuZHLQ(Q)d) > 0, and deduce from relation (4.16) that
1+1
H HL2(Q)d < Ll(fvg)'
Then relation (4.6) holds. The bound (4.7) is a simple consequence of (4.16) and (4.6). O

The next theorem shows the convergence of the solution (u, p,C}) of problem (V;) to the solution of
problem (Vgp).
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Theorem 4.2. In addition to assumption 2.1, we assume that the concentration solution of the problem
(Vo) satisfies

wK o

0
Under the assumptions of Theorem 4.1, and if v satisfies the condition
2pC3 4
—=h 4.20
LRyl (4.20)
where Cy = éC?(Ll(f,g))l/Q and if
p
1 ||C||Loo(Q) 6/(6—d)
h < Clwr, _— 4.21
—_ (20101 (‘ ‘er‘q’(ﬂ) + Sg )) ) ( )

where Cy is the constant in (3.54), then the solution (ui,pi,C}) of problem (Vapi) converges in L*(€2)4 x
L2(Q) x HY(Q) to the solution of problem (V).

Proof. We start by substracting the third equation of problem (Vgp;) from the one of problem (V) to
get

a/ V(Cn —Cy VS, dx+/
Q

w, VC, S, dx — / WtV CeIrtt S, dx + g / (Ch — CJTHY S, dx
Q Q Q

) ) (4.22)
= — / diVllZ}-LJrlc}iflSh dx — */ divuhC’hSh dx.
2 Q 2 Q

Inserting VC}, in the last term of the left-hand side and C}, in the first term of the right-hand side of the
previous relation lead to

a/ V(Cp — CJTYV Sy dx + 1o / (Ch — CJTHY Sy dx — / w v (Cyt - ) Sy dx
@ @ @ (4.23)

1 A ,
= 5/ divu;;rl(cllfl — Ch)Sh dX+/
Q

. 1 )
(ufl - uh)VChSh dx + 5 / diV(u;;rl — U—h)ChSh dx.
Q2 Q

Finally, by inserting VC' in the second term of right-hand side and using the Green’s formula and the
antisymmetric property, we get

Oé/ V(Ch — C;L+1>VS}L dx + To / (Ch — C};“)Sh dx =
Q Q

1 . 1 )
3 /Q(u;ﬁl —w)V(Ch = O)Shdx + 5 /Q(u;jl —uy,)VOS), dx (4.24)
1 , 1 .
= / (uf —w) VS, (Ch — O)dx— / (W — up)VS).Cdx.
Q Q

By taking S, = Cj, — C}fl, we obtain

Oé‘Ch — C;;L+1|1,Q < Sg Hu}tkl - uhHLg(Q)d |Ch - C|1,Q
S8 |1t 1 i+l (4:29)
) [ _uhHL2(Q)d [Clwaq) +§”C”L°°(Q) i, _“h”m(ﬂ)d'

Finally, we get by using relation (3.2):

O — Ot o < 58 oo n-1l810_ o C 1@y | i 4.26
ICh —C} e < 5 |2CT \ w10+ |Clwis) + <0 |uj, uhHLz(Q)d- (4.26)
6
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Furthermore, by taking the difference between the first equations of problems (V,p) and (Vgp;) with

vy = ujtt —uy, we get

Y, i+1 Y Y itl 2 o —1y, 041
||u+ uhHLZ (LY [, — uh”L2(Q)d+ Hu+ uhHLz(Q)d"’_;/QK ™ — | dx
5‘/1|uh| [ huitt (uitt - h»dX%ijj£(|l+1hf+lhUJuh)(}fluh)dx (4.27)

/Q (E(C1) — £(Cw).(uit — uy) dx.

By using the monotonicity property of the operator A we obtain,

i+1 NKm H i+1

’Y Y [ Q2 2
Hu uhHL2(Q)d - Huh uh“Lz(Q)d +35 Hu - uhHL2(Q)d +— - uhHLQ(Q)d
< Loz Ju

B

- uh”L?(Q)d HuhLlHLZ(Q)d [y, — uhHLQ(Q)d + CESS‘C;L = Chlio [Ju;™ - uh||L2(Q)d

C?h_d/Q(Ll(f g 1/2 ||uz+1 u7f;7,||L2(Q)d ||u7}2L+1 - uhHLQ(Q)d + CESS|C;L - Ch|119 ||ul}-L+1 - uhHLZ(Q)d !
(4.28)
_Ba 1/2 . 1 5 €45 . _ pK,
We denote by Co = —C7(Ly(f, g))"/“, and we use the relation ab < 2.0 + §b with € = —, o we get
p € P

Y i 2 7 Y iy uKm i 2
5 i =l e = 5 11k = wnl gy + 5 [0 = i ey + 5 0 = [
4.29)
C . SO (
< L2 i = e+ L5 0~ il
2 2
We choose 2 > &h*d, and we denote by C3 = T &h*d > 0 to conclude that
Tyl 2 gl i 2 i i i i 2
Hu i uhHL2(Q)d 3 [, — uh“L?(sz)d +Cs Hthrl - uH‘LZ(Q)d + 2 Hthr1 - uhHLZ(Q)d
< P(Cf1 2) |C _C |
S TR, Oh 1,0
Combining (4.30) with (4.26) and using the priori estimate (3.54), we get
Y Ngai 2 Y i 2 i i P 2
Hu ! uhHL2(Q)d 3 [, — uhHLZ(Q)d +Cs [t — uhHLQ(Q)d 2 [[uy," uhHLZ(Q)d

* Q0 Q0
P Cg 525 - i 2
7(71 )2 {2C’IClh(6 d)/6 + ‘C|W173(Q) + ||C||L°°(Q):| Huh - uhHLQ(Q)d .

— uKo, 2c
(4.31)
Finally, Assumptions (4.19) and (4.21) allow us to get
Y M . -
(5 + =, (i - W[ 2o = 1k = ][} e ) + C5 0™ = wh |72
e , (4.32)
+ 4pm ||uH_1 7uhHL2 Q)d <0.

We deduce that, for all i > 1, we have ( if |luj, — uh||L2(Q)d #0)

[y, — uh”L?(Q)d < [ - uhHLz(Q)d ’

and then we deduce the convergence of the sequence (u?fl —uy,) in L2(2)4, and then the convergence of

the sequence uj, in L?(2)?. By taking the limit of (4.32), we get that uj"" converges to u; in L2(Q)<.

Relation (4.26) allows us to deduce that C}™' converges to C, in H3(R).
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Next, we study the convergence of the pressure, taking the difference between the first equations of
systems (V) and (Vgpi), and we obtain for all v, € X, the equation

/ Vit — pr)vhdx = / (£(Ch) — £(C}))vpdx — 7/ (it — uf) vy dx + n / K~ up —uj vy, dx
Q Q Q P Ja
&) ayi B il
+p((luh| lup,[)un, vi) + p(|uh|(uh "), ).
We get by using the inverse inequality (3.2) the following:

’ / V(p}j'l — Dr)Vh dx‘
Q

i [[VallL2 ()

< ¢, SO — Chlia 2™

||VhHL3(Q)d th||L3(Q)d
; ; 131$Ys ; [Vl L2(q)a
(o, — w2y + Eo 2 fan — 0t 2 qya) o
||VhHL3(Q)d

B

-2 i i
+Eclh o [lup, — wpl|p2@ye ([ [anllLs)ye + [[ag || 23 @)ye)-

For a given mesh, owning the inf-sup condition (3.3), and using the strong convergence of u} to u,
in L2(Q)%, and of Ci to Cj, in H}(Q), we deduce the strong convergence of Vpi to Vp, in L3 ().
Furthermore, the fact that p} and pj are in the discrete space of IP; finite elements M, C LZ(2) which
is defined in (3.6), allows us to deduce the strong convergence of p to py, in L*(Q). O

Remark 4.3. If h is not small enough, we can replace the conditions (4.19) and (4.21) in Theorem 4.2
by the following condition
2
Cll; e K
H ||L () < 12350

p (CE 8958
S 4p

. —d
,U,Tm 2er )2 2C1C4 (dzam(Q))(ﬁ )/6 + |C|W13(Q) +

In fact, this condition can be used in the relation (4.31) in the proof of the previous theorem.

Remark 4.4. The convergence of the iterative solution (ui, p, Ci) of problem (Vupi) to the exact solution
(u,p,C) of problem (V,) is simple consequence of Theorems 3.6 and 4.2. In fact, conditions (4.4) and
(4.20) satisfied by v to ensure the convergence of the iterative solution (ufl,pﬁl, C,?L) to the discrete solution

(up, pn, Ch) lead us to consider v as a function of h (y(h)) and satisfying these two relations. Thanks to
the triangle inequality, have:

1(a,p, C) = (u},, P} Ch)l | xx My <
||(u7p7 C) - (uhvpfwch)HXXMxY + H(uhyphach) - (uzvp;mC}ZL)HXXMXY

Under the assumptions of Theorem 4.2 with v(h) satisfying conditions (4.4) and (4.20), (u},pi,C})
converges to (up, pp, Ch) in Xy X My X Yy, and, there exists an integer ig(h) depending on h such that
for all i > ig(h) we have

(an, pry Cr) — (f,, ph, Ci)llx xarxy < [|(w,p, C) — (Wh, phy Cn)ll x xarxy -

Consequently, for all i > ig(h), we get

[(w,p,C) = (), ph Ch )l x xnrxy < 2[[(w,p, C) — (Wn, pr, Cr)l|x x2rxy -

Thus we obtain the convergence of the iterative solution to the exact one.

5. NUMERICAL RESULTS

In this section, we present numerical experiments corresponding to our coupled problem for d = 2. These
simulations have been performed using the code FreeFem++ due to F. Hecht and O. Pironneau, see [23].
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We will show in this section numerical investigations corresponding to problems (V,;;) by using for the
convergence the stopping criterion Erry < e where € is a given tolerance considered in this work equal
to 107° and Erry, is defined by

. i = llzs 2 + V@ =PRIl g g +ICK = Chlio
rr = 1 ] 1
I o+ V7 g e + 1 Tl

The initial guesses u) and C} are considered in one of these two situations:

(1) CP =0 and u =0.
(2) Cg =0 and u% = u%d are calculated by using Darcy’s problem which corresponds to g =~ = 0.

We will see later that the second case where u% is the solution of Darcy’s problem improve the conver-
gence of the algorithms.

We also consider the errors
I, = w22 + IV (2] = )1, 3 0 + IS — Clio

Tllzzgeys + V81T, 3 s + IClie

Err =

)

and _
[}, —ufla ()2
[[ullz2 ()2
which describe the rate of the a priori error estimation for a large values of the iteration index 1.

ErrlL3 =

5.1. First numerical test: analytical solution. In this section, we will show numerical results cor-
responding to the problem where we know the exact solution. Let Q =]0,1[2C R? where each edge is
divided into N equal segments so that € is divided into N? equal squares and finally into 2N? equal
triangles. For simplicity, we take y = p=1and K = 1.

We consider the following exact solution with a parameter &:

p(x,y) = cos(mzx) cos(my),
u(z,y) = &(—sin(rx) cos(ry), cos(mx) sin(my))?, (5.1)
Clz,y) = 2*(z = )2y - 1)%,

where div(u) =01in Q, u-n =0 and C = 0 on 9. Furthermore, we take f;(C) = (4C, 3sin(C)). Thus,
we compute f and g by using their expressions in problem (P).

To study the dependency of the convergence with the parameter 7, we consider N = 60, 8 = 20, £ = 20,
a =19 = 1, and for each 7y, we stop the algorithm (V,;) when the error Erry, < le=®. Tables 1 shows
the error Err and the number of iterations Nbr for u) = 0 and C? = 0, while Table 2 shows similar
results for ug = uf,; and CY = 0. These two tables describe the convergence of algorithm (V,5;) with
respect to v. We remark that the number of iterations is relatively small when + is large. In both cases,
the best convergence is obtained for v = 100. The main advantage is for the case where ug = u?Ld are
computed with Darcy’s problem is that the number of iterations Nbr is less than the one obtained with
the case u% = 0. For further studies, we consider f = 10, £ = 20, v = 100 and the initial guesses

v 0.001 | .01 d 1 10 100 | 1000
Nbr | 4078 | 4009 | 3432 | 1440 | 234 29 115
Err | 0.068 | 0.068 | 0.068 | 0.068 | 0.068 | 0.068 | 0.068

TABLE 1. Error Err (in logarithmic scale) and number of iterations Nbr for each =
associated to Example (5.1) with algorithm (V) for uf) = 0. (8 = 20, £ = 20).

ug = u%d and C,? = 0. Tables 3 and 4 show the obtained rate of convergence which seems in agreement
with the theoretical findings. We notice that the theoretical rate of convergence of the velocity in norm
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v 0.001 | .01 d 1 10 100 | 1000
Nbr | 2027 | 1993 | 1710 | 714 110 18 76
Err | 0.068 | 0.068 | 0.068 | 0.068 | 0.068 | 0.068 | 0.068
TABLE 2. Error Err (in logarithmic scale) and number of iterations Nbr for each ~
associated to Example (5.1) with algorithm (V,;) for u) = u,. (8 = 20, £ = 20).

L2(€)2, the pressure in norm W13 (Q) and the concentration in norm H}(Q) are equal to 1; the rate of
convergence of the velocity in norm L3(Q)? is 2/3.

h [logio{ 1w —un 2 /1 2 ) | Rate | logio( [ u—wn llzs /] u llzs ) | Rate
1/120 -4.2812 -4.1598
1/140 -4.4047 1.84 -4.2431 1.23
1/160 -4.5111 1.83 -4.3154 1.24
1/180 -4.6029 1.79 -4.3711 1.09
1/200 -4.6830 1.74 -4.4183 1.03

TABLE 3. Rate of convergence of the velocity in norms L?(2)? and L3(Q)3.

(5.1) with algorithm (V,p). (8 = 20, £ = 20).

Example

h 10910( | »— pn ||W1,% ) Rate lOglo( | C—Ch ||H5 ) Rate
1/120 -1.8902 -1.7090
1/140 -1.9611 1.05 -1.7759 0.99
1/160 -2.0215 1.04 -1.8339 1.00
1/180 -2.0742 1.03 -1.8851 1.00
1/200 -2.1210 1.02 -1.93 0.98

TABLE 4. Rate of convergence of the pressure in norm W2 (©2) and the concentration
in norm H{(€2). Example (5.1) with algorithm (V,5:). (8 = 20, & = 20).

5.2. Second numerical test: Driven cavity. The driven cavity is a standard benchmark for testing
the performance of algorithms in fluid problems. It is treated in several works ([25], [7], [32] and [15]).
In this section, we show numerical simulation corresponding to the Led Driven Cavity in order to study
the dependency of the convergence with respect to v and the data.

Let Q =]0,13, K =1, u= 1,70 =0, 8 =20, fy = 0, f;(C) = (10C,10C), and g = 0. We complete
the Darcy-Forchheimer equations with the boundary conditions u.n = 0 on 0f2, and the concentration
equation with the boundary condition C' = 7 (n is a parameter) on I'y = [0,1] x {1} (top of ), and
C =0 on 0Q\I';. In this section, the initial guesses of algorithm (V,;) are C,? =1 and ug = u(,)lg.

We begin first by testing the convergence of the algorithm with respect of + for a given n = 20. We
consider N = 20 and we test the algorithm for multiple values of v. We consider that the algorithms
don’t converge if the condition Err; < le™® is not reached after 5000 iterations. Table 5 shows for
n = 20, the dependency of the convergence of the algorithm with respect to v and the better convergence
corresponds to the value v = 10. This result shows clearly that the convergence depends on ~ as
announced in relation (4.20) of Theorem 4.2.

Figures 1, 2 and 3 show for v = 10 and 5 = 20, the velocity, the pressure and the concentration in €.

Let us now test the convergence with respect to n for v = 10. Table 6 shows the dependency of the
convergence of the algorithm with respect to n (i.e. with respect to the concentration C). This result
shows clearly that the convergence depends on the concentration as announced in relation (4.19) of
Theorem 4.2.
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0 0001|.01|.1 |.5 |.55 |.6 7 .8 1 10 100 | 1000
Nbr - - - | — | 2440|1463 | 732 | 504 | 313 |27 49 283
cov/div | div div | div | div | conv | conv | conv | conv | conv | conv | conv | conv

TABLE 5. Test of the convergence for the driven cavity with respect to v for n = 20.

IsoValue

Vec Value

\ w2278 ~ 03,
He e

W2.74054 m72.0103

2 279 m77.1794

FIiGURE 1. Numerical velocity FIGURE 2. Numerical pressure
(Driven cavity), v = 10,7 = 20. (Driven cavity), v = 10,7 = 20.

IsoValue

FIGURE 3. Numerical concentration (Driven cavity), v = 10,7 = 20.

n 1 20 100 | 150 | 170 | 175 | 180 | 200
Nbr 24 27 7 235 | 728 | 1493 | — -

conv/div | conv | conv | conv | conv | cov | conv | div | div
TABLE 6. Test of the convergence for the driven cavity with respect to n for v = 10.
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