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There is known heterogeneity between individuals in infectious disease transmission patterns.

The source of this heterogeneity is thought to affect epidemiological dynamics but studies tend not to control for the overall heterogeneity in the number of secondary cases caused by an infection. To explore the role of individual variation in infection duration and transmission rate on parasite emergence and spread, while controlling for this potential bias, we simulate stochastic outbreaks with and without parasite evolution. As expected, heterogeneity in the number of secondary cases decreases the probability of outbreak emergence. Furthermore, for epidemics that do emerge, assuming more realistic infection duration distributions leads to faster outbreaks and higher epidemic peaks. When parasites require adaptive mutations to cause large epidemics, the impact of heterogeneity depends on the underlying evolutionary model. If emergence relies on within-host evolution, decreasing the infection duration variance decreases the probability of emergence. These results underline the importance of accounting for realistic distributions of transmission rates to anticipate the effect of individual heterogeneity on epidemiological dynamics.

The expected number of secondary cases produced by an infected individual in a naive population is a key concept in epidemiology [6,32]. It is classically referred to as the basic reproduction number and denoted R 0 . Only infections with R 0 ą 1 can cause major outbreaks. However, this mean value does not reflect the impact of super-spreading events, where an individual causes an unusually large number of secondary cases [19,27,36,40,44,59]. The more frequent these events are, the higher the variance in the number of secondary cases, and, therefore, the lower the probability of outbreak emergence and the faster the epidemic growth for outbreaks that do emerge [40].

Several biological processes can explain the heterogeneity in the number of secondary cases [54].

However, models investigating these processes tend only to vary one source of heterogeneity at a time.

By doing so, they do not control for the (overall) heterogeneity in the number of secondary cases, which is known to have strong effects, independently of its source [40]. One of the few exceptions suggests that the biology matters since it finds, for instance, that heterogeneity in host susceptibility has a lesser impact on the probability of emergence than heterogeneity in transmission rate, which can be defined as the product between a contact rate and the probability of transmission given that there is a contact between two individuals [60].

We use a stochastic mechanistic model to explore whether heterogeneity in transmission rates or infection duration have different effects on an epidemic spread. Based on earlier models, we hypothesise that a more homogeneous distribution of infectious period duration decreases the variability of population dynamics in the early outbreak, therefore increasing the probability of outbreak extinction [5], but also increasing epidemic growth as well as epidemic peak size [5,43]. However, we stress that these hypotheses are based on studies that, contrarily to ours, do not control for variations in the distribution of the number of secondary cases. Even if initially maladapted (i.e. R 0 ă 1), a parasite can evolve into a well-adapted strain before fading out and then cause a major outbreak, a phenomenon called 'evolutionary emergence' or 'evolutionary rescue ' [8, 23]. Since higher epidemic sizes can be reached more frequently with increasing heterogeneity secondary cases when R 0 ă 1 [25], we hypothesise that the source of heterogeneity could affect evolutionary emergence. Since we do not explicitly model the within-host evolution process, we consider two extreme evolutionary processes for a mutant strain with R 0 ą 1 to appear [2, 23]: either by taking over a host infected by the resident strain or during a transmission event.

Following earlier studies [25,29,40], we assume that the number of secondary infections caused by each individual follows a Negative-Binomial distribution Z with mean R 0 and dispersion parameter k.

The smaller k, the more dispersed Z . For example, the 2003 SARS outbreak in Singapore led to many superspreading events and transmission chain analyses estimated that k " 0.16 [40] and recent data from COVID-19 epidemics yielded values of k in the order of 0.3 [52].

We model individual transmission rates and infection duration values using lognormal distributions, denoted respectively B and Γ. Most models involving ordinary differential equations are 'memoryless' -that is the duration of the infections is assumed to be exponentially distributed (CV Γ " 1) (but see [5,39,43]). This is biologically unrealistic for recovery events since they often depend on the number of days since infection [15,37] and tends to overestimate the heterogeneity due to infection duration.

We disentangle the specific role of infection duration heterogeneity from that of the secondary cases by varying k, and the coefficient of variation (CV) of the infection duration (CV Γ ). Those two parameters combined govern the distribution of transmission rate.

We simulate outbreaks, without and with evolution, and measure key summary statistics to analyze the impact of different sources of heterogeneity on emerging outbreaks properties. We confirm that the dispersion of the distribution of the number of secondary infections (Z ) is the main driver of the frequency of emergence, but we also find that the source of this heterogeneity has a strong impact on the properties of emerging epidemics, and more interestingly that it can affect the risk of evolutionary emergence.

As an illustration, we compare dynamics that could be obtained with parameters estimated from two outbreaks: SARS in Singapore in 2003 and Ebola in West Africa in 2014, which have similar values of R 0 and k [4, 40] and different infection duration heterogeneity. We estimate CV Γ " 1.04 (95 % credible interval (CI): 0.44-1.9) for Ebola and 0.27 (95 % CI: 0.01 -0.80) for SARS. An explanation for that difference is that the Ebola virus is known to sometimes persist in some body fluids after clearance from the blood [16]. Animal studies also show variability in the host immune response against Ebolavirus infection, which might allow persistence for some individuals [42,50]. Regarding SARS outbreaks, the reason why some infected individuals spread more than others the virus is thought to be a combination of host and environmental properties. On the biological side, individuals causing superspreading events were older [51], and coinfections have been hypothetised to increase the infectivity of SARS-CoV [11]. On the environmental side, superspreaders had a higher number of close contacts, and the diagnosis of the infection was often delayed [51].

Material and Methods

Model without evolution

We implement a non-Markovian version of the Susceptible-Infected-Recovered (SIR) epidemiological model [33], which means that not all rates are held constant throughout an infection [26]. We assume that the host population is of fixed size N and that epidemics are initiated by a single infectious individual. At time t, each individual is characterized by its current state (susceptible, infectious, or removed), and, if infected, the time at which it will recover.

The first source of heterogeneity in the model comes from the transmission rates and has a behavioural (i.e. contact rates) or a biological (i.e. infectiousness) origin. We model it by drawing the per capita transmission rate β i for each individual i from a lognormal distribution, denoted B, with parameters µ B and σ B . For mathematical convenience, and without further qualitative impact, we set the mean of B such that ErBsN " 1. The standard deviation of B is imposed by the choice of the coefficient of variation (CV B ) which is equal to

a e σ 2 B ´1.
The second source of heterogeneity comes from the infection duration and has a biological origin.

We assume that individuals remain in the I compartment for a time drawn randomly from a lognormal distribution, noted Γ, with parameters µ Γ and σ Γ . By construction, the expectation of Γ is R 0 in our model and we vary its coefficient of variation, which is equal to a e σ 2 Γ ´1, between 0.05 and 2.

Coefficients of variation and Z dispersion

Given the construction of our model, the distribution of the number of secondary infections (Z ) is determined by heterogeneities in transmission rate and infection duration. Since the force of infection over the course of an individual's infection is the product of two lognormal distributions (B and Γ), it is itself log-normally distributed, with parameters µ Z " µ B `µΓ and σ Z "

b σ 2 B `σ2 Γ .
Z is therefore a lognormal-Poisson compound distribution.

Evolutionary emergence model

We introduce an additional class of individuals by distinguishing between I r and I m , which refer to individuals infected by the resident (resp. mutant) parasite strain, with reproduction number R r 0 ă 1 (resp. R m 0 ą 1). Initially, we assume that I r " 1 and I m " 0. Mutant infections can emerge from a transmission event or from taking over an infected host. In the case of within-host mutation, the mutation rate represents the instantaneous probability that a mutant appears and takes over the host.

In the case of mutation during transmission, it represents the probability that a mutant is transmitted instead of a resident strain. We assume that the mutation increases the mean transmission rate without altering CV B (i.e. by setting µ B,m " µ B,r `logpR m 0 {R r 0 q). We further assume that the infectious period duration is not impacted by the mutation. For simplicity, we neglect coinfections and therefore assume that, in the case of within-host mutations, the mutant instantaneously takes over the host.

Frequency of emergence

We use the total epidemic size to determine if an outbreak has emerged or not. Emergence is assumed to occur when the total epidemic size is greater than the herd immunity threshold, i.e. 1 ´1{R 0 [6].

Numerical simulations

We simulate epidemics, i.e. the succession of infection and recovery events, using Gillespie's next reaction method [26] to generate non-Markovian distributions. The algorithm runs as follows:

1. Initialize (i.e. set S, I " 1, t " 0) 2. In case of new infected individual i, draw β i and the recovery time of this individual distributions B and Γ respectively.

Update the new force of infection S.

ř I i"1 β i and draw the time to the next infection assuming an exponential distribution.

4. Look for the event with the closest time of occurrence (i.e. either recovery or new infection), and update the compartments (S, I).

5. Update the time t to the time of the new event.

6. Go back to step 2.

In case of evolutionary emergence, we adapt the model depending on how the mutant appears. i) If the mutant appears during transmission, the model includes one force of infection for each class of infected host (I r and I m ), and two additional events: infection by the mutant strain (assuming an exponential distribution with a rate ř Ir i"1 β i µ `řIm j"1 β j ), and recovery of an I m individual. ii) In the scenario where the mutant first takes over the host, we distinguish the event of infection by the mutant strain (assuming an exponential distribution with a rate ř Im j"1 β j ) from the within-host mutation of a resident strain into a mutant strain (assuming an exponential distribution with a rate I r ˆµ).

The model was implemented in Java 11.0.7 using parallel computation to decrease computing time.

Simulation outputs were analyzed with R v.4.1.2. The scripts used are available at https://gitlab. in2p3.fr/ete/heterogeneity-outbreak.

Parameters estimation for known outbreaks

To estimate CV B and CV Γ from observed outbreaks, we analyzed serial interval and secondary cases distributions from Measles [31], Ebola [20,58], pneumonic plague [24], Smallpox [21,46], Monkeypox [30] and SARS outbreaks [38,40]. For the Measles outbreak, patient line data were available, therefore allowing joint distribution estimations, and for the others, we had to assume that the two distributions were independent (see the Table S1 for further details about the data and parameters sources).

To obtain biologically relevant parameters from these empirical data, we infer parameters assuming a model with a latent period, the distribution of which we set using independent sources in the literature [9,35,45,47,58]. For simplicity, we assume that for a given parasite the distribution of the latent period does not vary between outbreaks. We also use independent estimates of R 0 [31,38,58]. We also assume a constant transmission rate during infectious period. We use a Bayesian approach, with the following priors: CV B " N p2, 10q and CV Γ " N p0.5, 1q. We use jags v. 4.3.0 to estimate parameters.

Results

Epidemics emergence without evolution

For a given secondary cases heterogeneity k, the coefficients of variation in infection duration (CV Γ ) and transmission rate (CV B ) are negatively correlated. This is shown in Figure 1 and further explained in the Methods. Since the former should be easier to measure, we focus on the role of infection duration heterogeneity, but the results can also be interpreted in terms of transmission heterogeneity.

To illustrate the feasibility to infer these infection properties, we highlight the parameter value for several well-studied outbreaks in Figure 1. This also shows that our parameter ranges are biologically realistic.

Probability of emergence

Figure 2A shows that the probability of an outbreak emergence only depends on the overall Z heterogeneity, here measured by k. The source of heterogeneity (i.e. infection duration or infectiousness) does not seem to play any role. Results are shown with R 0 " 1.5, but a similar pattern is observed for any R 0 ą 1.

In the following, we analyse the properties of simulated outbreaks without evolution with R 0 " 1.5 and compare key metrics to a reference value close to the Markovian case, i.e. k " 1 and CV Γ " 1.

Growth rate

In the initial phases of an outbreak , the law of large numbers does not apply and prevalence time series shown are strongly affected by stochasticity (Fig. 2B). We quantify the early growth during this stochastic phase by measuring the time until the prevalence reaches the outbreak threshold of 100 infected individuals [28]. As expected [40], decreasing k leads to faster epidemic growth. Furthermore, for a given k, increasing the heterogeneity in infection duration also increases the early epidemic growth (Fig. 2C).

On average, this would make a SARS outbreak reach the outbreak threshold 50% faster than an Ebola outbreak.

We then study the deterministic exponential growth phase, which starts when the number of infected is high enough to reach the law of large numbers, and ends when the depletion of susceptible host population cannot be neglected anymore [28] (Fig. 2B). Figure 2D shows that the growth rate during this phase is mostly impacted by CV Γ . For instance, even with similar R 0 , Ebola outbreaks would have a doubling time of 1.4 times the mean infection duration, while SARS outbreaks would have a doubling time of 0.9 time the mean infection duration. Not taking into account the difference in infectious period distribution between the two epidemics and considering a memoryless model with CV Γ " 1 would lead to an overestimation of the SARS R 0 [56].

Epidemic peak size and final size

The prevalence peak value is highly affected by the heterogeneity in infection duration: its median increases by more than 50% when CV Γ decreases from 1 to 0.5 (Fig. 2 E). k has little effect on the mean epidemic peak size, but there is a correlation between the variance in peak size and that of Z .

Finally, none of our heterogeneity metric seems to affect the median final epidemic size, which is always close to 58% of the population (Fig. 2 F), corresponding to the expected value for R 0 " 1.5 according to classical theory [33]. As for the other metrics, the variance in the total epidemic size decreases with k.
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 1 Figure 1: Numerical estimation of the transmission rate coefficient of variation (CV B ), as a function of secondary cases heterogeneity k and infection duration coefficient of variation CV Γ . Names in white show the range of values estimated using maximum likelihood methods from outbreak data. If k remains constant, increasing CV Γ always decreases CV B . Note that when secondary cases heterogeneity is low (i.e. k is high) it is impossible to have a high CV Γ .