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Abstract

Infectious disease transmission patterns in some outbreaks can be more heterogeneous than in others,
with striking effects on the way epidemics unfold. Some studies show that the biological sources of
heterogeneity may matter, but they tend to do so without controlling for the overall heterogeneity in the
number of secondary cases caused by an infection. Here, we control for this important bias to explore
the role of individual variation in infection duration and transmission rate on parasite emergence and
spread. We simulate outbreaks using a stochastic SIR model, with and without parasite evolution.
Consistently with existing studies, we show that the variance in the number of secondary infections
has the strongest effect on outbreak emergence probability but has little effect on the epidemic dynamic
once emergence is certain. The origin of heterogeneity also affects the probability of emergence, but
its more striking effects are about properties of epidemics that do emerge. In particular, assuming
more realistic variances in infection duration distributions lead to faster outbreaks and a higher peak
of incidence. When the parasite requires evolutionary changes to be able to spread, the impact of
heterogeneity depends on the underlying evolutionary model. If the parasite evolves within the host,
decreasing the infection duration variance decreases the probability of emergence. These results show
that using realistic distributions for infection duration is necessary to accurately capture the effect of
individual heterogeneity on epidemiological dynamics, which has implications for the monitoring and
control of infectious diseases, as well as data collection.

Introduction

The expected number of secondary cases pro-
duced by an infected individual in a naive popu-
lation is a key concept in epidemiology [1, 2], clas-
sically referred to as the basic reproduction num-
ber (denoted R0). Only infections with R0 ą 1

can cause major outbreaks. However, beyond this
mean value, super-spreading events, where an in-
dividual causes an unusually large number of sec-
ondary cases, have been shown to occur in many
epidemics [3, 4, 5, 6, 7, 8]. The more frequent these

events are, the higher the variance in the number
of secondary cases, and the higher this variance,
the lower the probability of outbreak emergence
and the higher the epidemic growth (for outbreaks
that do emerge) [4].

Many biological processes can explain the het-
erogeneity in the number of secondary cases (for
a review, see [9]). However, models that inves-
tigate the effect of such processes tend to do so
without controlling for the (overall) heterogeneity
in the number of secondary cases, and often ex-
plore one source of heterogeneity at a time. One of
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the few exceptions suggests that this is meaningful
by showing that heterogeneity in host susceptibil-
ity has a lesser impact than heterogeneity in trans-
mission rate in the probability of emergence [10].

Here, for a given distribution of the number of
secondary cases, we use a stochastic mechanistic
model to explore whether heterogeneity in trans-
mission rates or recovery rates have different ef-
fects on an epidemic spread. Theoretically, as-
suming a more homogeneous distribution of in-
fectious period duration increases the variability
of population dynamics in the long term, there-
fore increasing the probability of outbreak extinc-
tion [11], but also increasing epidemic growth as
well as epidemic peak size [12].

Even if initially maladapted (i.e. R0 ă 1), be-
fore fading out a parasite can evolve into a well-
adapted strain that can cause a major outbreak, a
phenomenon called evolutionary emergence [13,
14]. Since, whenR0 ă 1, the final epidemic size in-
creases with increasing heterogeneity in transmis-
sion rate [15], this can affect the risk of evolution-
ary emergence.

To study the effect of the source of individual
heterogeneity, it is crucial to maintain a constant
distribution of secondary cases (Z ) otherwise the
specific effect of the studied source of heterogene-
ity cannot be distinguished from the more general
effect of the variation in Z , which is known to be
strong [4].

Following earlier studies [4, 15, 16], we assume
that the distribution of the number of secondary
infections Z is Negative-Binomial, with mean R0

and dispersion parameter k. The smaller k, the
more dispersed Z . While in a classical SIR model,
k “ 1, superspreading events tend to increase the
heterogeneity of this distribution. For example, in
the case of the 2003 SARS outbreak in Singapore,
the dispersion was estimated to be k “ 0.16 [4],
and most recent data for Covid-19 estimate k to be
around 0.3 [17].

We model individual transmission rate and in-
fection duration using gamma distributions, de-

noted respectively B and Γ. For a given distribu-
tion Z , we vary the coefficient of variation (CV)
of the transmission rate (CVB) and the CV of in-
fection duration (CVΓ) to compare heterogeneity
originating from differences in infectious period
duration and from transmission rate. Transmis-
sion rate can be seen biologically as the product
of individual contact rate, and infectiousness.

We simulate outbreaks, without and with evolu-
tion, and measure key summary statistics to ana-
lyze the impact of different sources of heterogene-
ity on emerging outbreaks properties. We show
that although the shape of the distribution of the
number of secondary infections (Z ) is the main
driver of the frequency of emergence, the source
of this heterogeneity affects the risk of emergence,
the properties of emerging epidemics, and even
some aspects of evolutionary emergence.

Emergence risk

In our model the dispersion of the number of sec-
ondary cases k is entirely determined by the co-
efficients of variation in transmission rate (CVB)
and in infection duration (CVΓ). This is shown in
Figure 1A and further explained in the Methods.
Data to infer distributions of number of secondary
infections and of infection durations are easier to
collect than that to inter distributions of transmis-
sion rates. This means that practically it is more
straightforward to estimate the values of k and
CVΓ, which then impose a value forCVB . We illus-
trate the feasibility of such inferences by indicating
the parameter value for several well-studied out-
breaks in Figure 1A. This also shows that the pa-
rameters ranges studied here are biologically real-
istic.

Figure 1B shows the proportion of outbreaks
that emerge when R0 “ 1.5. Emergence is as-
sumed to occur if the outbreak final size is greater
than the classical herd immunity threshold, i. e.
1 ´ 1

R0
[1]. The probability of emergence appears

to be mainly governed by the individual repro-
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Figure 1 – Relationship between k, CVB , CVΓ and the
risk of outbreak emergence. A) Numerical estimation
of the secondary cases heterogeneity (k) as a function
of CVβ and CVγ . Names in white show the range of
values estimated using maximum likelihood methods
from outbreak data. If k remains constant, increasing
CVΓ always decreases CVB . B) Frequency of emer-
gence of an outbreak starting from one infection as a
function of model heterogeneity. The value of CVB
is determined by that of CVΓ and k. Each dot repre-
sents the frequency of emergence out of 20,000 runs.
To illustrate the variability which can be expected from
the computation, each frequency estimation is repeated
5 times, and the bold triangle represents the median
value. Note that when k ą 1 it is mathematically im-
possible to have CVΓ “ 1.

duction number dispersion k. However, for epi-
demics with many superspreading events (low k

values), the frequency of emergence also increases
with more homogeneous infection duration distri-
butions (higher CVΓ values). This effect is ampli-
fied for lower R0 values (Fig. S3).

In the next section, we analyze the properties of
the outbreaks that do emerge.

Dynamic of emerging outbreaks

Growth rates

We first study the initial phase of emerging out-
breaks, when the number of events is low. Since
the law of large numbers does not yet apply,
variations in prevalence are strongly affected by
stochasticity (Fig. S2). We quantify the early

Figure 2 – Properties of emerging outbreaks. A) Time
until prevalence reaches 70 infected hosts. B) Doubling
time during the exponential phase (i.e. going from a
prevalence of 250 to 500 infections). Top and bottom
dotted lines indicate the expected doubling time for a
memoryless model with R0 “ 1.5 or R0 “ 2, respec-
tively. C) Prevalence peak size. D) Cumulative num-
ber of infections. Values are expressed as % of the total
population. Each dot in the background represents one
simulation. Boxplots and whiskers indicate the 97.5, 75,
50, 25 and 2.5% quantiles.

growth during this stochastic phase by measur-
ing the time until the prevalence reaches 70 in-
fected individuals, which is an appropriate out-
break threshold according to existing models [18].
As expected [4], we find that decreasing k leads to
faster epidemic growth. For a given k, we further
find that increasing the heterogeneity in infection
duration (i.e. decreasing that in transmission rate)
also increases epidemic growth (Fig. 2A).

We then study the deterministic exponential
growth phase, which follows the stochastic phase
and ends when the depletion of susceptible host
population cannot be ignored anymore [18] (
Fig. S2). Fig. 2B shows that, contrarily to the begin-
ning of the outbreak, the growth during this expo-
nential phase is mostly impacted by CVΓ and the
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effect of k is extremely limited. When assuming an
exponential distribution for the infection duration
(i.e. CVΓ “ 1), CVB and, therefore, k have little ef-
fect: the doubling time remains in the order of 1.4
days, which is expected withR0 “ 1.5. Decreasing
CVΓ leads to a strong decrease in doubling time.
Therefore, ignoring the distribution of the infec-
tion duration, e.g. by implicitly assuming an ex-
ponential distribution, can lead to over-estimating
R0 by up to 33%.

Epidemic peak size and final size

The prevalence peak value is highly affected by the
heterogeneity in the infection duration: its median
increases from 6% to 12% of the population when
the CVΓ decreases from 1 to 0.2 (Fig. 2C). k has lit-
tle effect on the mean epidemic peak size, but we
do find a correlation between the variance in peak
size and that of Z .

Finally, none of our heterogeneity metrics seem
to affect the median final epidemic size, which is
always close to 58% of the population (Fig. 2 D),
corresponding to the expected value for R0 “ 1.5

according to classical theory [19]. As for the other
metrics, the variance in the total epidemic size de-
creases with k.

Evolutionary emergence

Until now, we assumed that R0 ą 1. However,
even if R0 ă 1, parasites can cause major out-
breaks in a population if they acquire adaptive
mutations. We now assume that the introduced
‘resident’ strain has a Rr

0 ă 1 and, therefore, will
go extinct unless it evolves into a phenotypically
different ‘mutant’ strain with Rm

0 ą 1. We also as-
sume that the mutant strain arises either by taking
over a host infected by the resident strain or dur-
ing a transmission event.

We first consider the frequency of having at least
one mutation in a simulation because this does not
depend on the origin of the mutant (replacement

Figure 3 – Individual heterogeneity and evolutionary
emergence. A) Frequency of mutation (the origin of the
mutation can be ignored), B) Frequency of emergence
with scenario when mutations occur during transmis-
sion, and C) when mutations occur within the host.

in the host or via transmission event). In figure 3A,
we show that this frequency follows the same pat-
tern as the frequency of (non-evolutionary) emer-
gence (increasing CVΓ decreases the probability of
emergence, Fig. 1B). This makes sense since mu-
tants cannot emerge if outbreaks go rapidly ex-
tinct.

However, the way the mutant emerges does af-
fect the role of heterogeneity on the probability
of outbreak (evolutionary) emergence. The fre-
quency of emergence is similar in the two scenar-
ios when CVΓ “ 1, but it diverges when the het-
erogeneity in infectious duration increases. When
the mutation occurs during a transmission event
(Fig. 3B), the probability of emergence is directly
correlated to the frequency of mutation. Con-
versely, when the mutation occurs within the host,
decreasing the heterogeneity of the infection leads
to a decrease in the frequency of emergence, re-
gardless of the individual secondary cases hetero-
geneity (Fig. 3C).
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Discussion

Individual heterogeneity is known to shape in-
fectious disease outbreaks [4], but few modelling
studies take into consideration its origins and,
among those that do, they do not control for the
(overall) heterogeneity of Z , the distribution of
the number of secondary cases caused by an in-
fected individual. In this study, we investigate the
specific impact of heterogeneity from two biolog-
ical sources: the infection duration, and the indi-
vidual transmission rate.

Ordinary differential equations (ODE) that are
classically used to model epidemics make the
mathematically convenient assumption that the
probability of occurrence of an event does not de-
pend on the history of individuals i.e. that they are
memoryless. While this may be true for transmis-
sion events, assuming a constant infection rate, it
is biologically unrealistic for recovery because the
daily probability to recover depends on the num-
ber of days since infection [20, 21]. When assum-
ing a high, but biologically realistic [11, 7] het-
erogeneity in the number of secondary cases (low
k), we find that increased heterogeneity in the in-
fection duration is associated with decreased fre-
quencies of outbreak emergence. Our interpreta-
tion is that in this scenario, the effect of stochas-
tic processes is increased, and emergence is driven
by rare superspreading events. Since decreasing
the infection duration heterogeneity also decreases
the stochastic phase duration (Fig.2A), this can in-
crease the probability of emergence.

In branching process models, increasing the het-
erogeneity in transmission rates leads to a faster
increase in cases per generation among the out-
breaks that do emerge [4]. We show that this effect
does not translate into an increased growth rate af-
ter the epidemic evades the stochastic phase and
its dynamic becomes deterministic. We are able
to detect this effect because, contrarily to earlier
studies, we use a framework that allows us to sim-
ulate the entire course of an epidemic. Note that

recent developments of branching process theory
in epidemiology can incorporate the depletion of
susceptible hosts [22]. Being able to compare,
among the epidemics that emerge, key character-
istics such as the final cumulative incidence, and
the peak incidence size allows us to show, for in-
stance, that even if the early growth rate is high,
once the exponential growth phase is reached, su-
perspreading events play a limited role in the epi-
demic growth.

Contrarily to superspreading events (parameter
k), we show that the heterogeneity in infectious
period duration plays an important role in the de-
terministic phase of the disease, by increasing the
growth rate and, more strikingly, the prevalence
peak size. While previous studies already reported
a similar effect on both metrics [23, 24], our study
further shows that this phenomenon is intrinsi-
cally related to the infectious period duration, and
not to the secondary cases heterogeneity (which
was not kept constant in these previous studies).
These observations can be explained in the follow-
ing way. When the infectious period is homoge-
neous, the mean generation interval (that is the
time between the infection of the ‘infector’ and
that of the ‘infectee’) is half that of the mean infec-
tious period. The more heterogeneous the infec-
tious period duration, the more some individuals
have a short infectious period and never transmit.
As a consequence, the transmission is biased in fa-
vor of individuals with longer infectious periods,
which increases the mean of the generation inter-
val. This also increases the doubling time and flat-
tens the epidemic curve compared to an epidemic
with a more homogeneous infectious period dura-
tion.

Finally, we show that infectious period duration
heterogeneity can affect evolutionary emergence
depending on the process that generates the mu-
tant infection [14]. The impact of the mutational
pathway and evolutionary scenario have been al-
ready pointed out by several studies [25, 10]. First,
logically, we find no difference between the two
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mutation scenarios if the process is memoryless -
that is the duration of the infections is assumed to
be exponentially-distributed (CVΓ “ 1). This fur-
ther underlines the importance of questioning this
biologically-unrealistic assumption [12, 11, 24].
However, when using more realistic infection du-
ration distributions, we find that: i) When the mu-
tation appears during transmission, we observe a
similar trend as when the parasite emerges with-
out evolution, which makes sense since mutant
spread directly relates to the number of transmis-
sion events. ii) Conversely, when the mutation ap-
pears within a host during the infection, infection
duration heterogeneity increases the frequency of
emergence. We explain this by the fact that when
the mutation appears within the host, if the infec-
tious period is longer, it will have more chances to
transmit new infections, which increases the prob-
ability that the mutation ignites the epidemic. This
process overcomes the trends observed when con-
sidering only the emergence of the mutation (and
not its spread).

Our effort to maintain a simple and tractable
model of outbreak emergence naturally leads to
several limitations. In particular, there is an identi-
fiability issue regarding the biological origin of the
transmission rate heterogeneity, which could come
from variations in transmission rate or in host sus-
ceptibility. Addressing this issue would require
to introduce multiple host types in the model, but
also to make additional assumptions regarding the
correlation between infectivity and susceptibility.
It could also be interesting to enrich the model
by considering a latent period during which ex-
posed hosts are not yet infectious. This has been
shown to affect R0 estimates but in a determin-
istic model that did not take into account super-
spreading events [23]. More generally, our results
suggest that investigating other sources that may
contribute to the heterogeneity of the number of
secondary infections can uncover potential biases.

We assumed that the population does not have
any spatial structure, which is more realistic for

directly-transmitted diseases, such as SARS or
measles, than for sexually-transmitted infections
for which contact networks impose strong con-
straints [15]. Furthermore, in the context of emer-
gence, at the beginning of an epidemic, it has been
shown that the spatial structure does not affect the
outbreak metrics (especially R0 and the control ef-
fort [26]). However, it is known that heterogene-
ity in host susceptibility decreases the final epi-
demic size, i.e. the total proportion of the popula-
tion infected throughout the epidemic [27, 28]. We
also do not include host demography and limit our
analysis to a single epidemic wave.

Finally, this analysis relies on numerical results.
This enables us to explore the role of stochasticity,
which is particularly important to consider in the
context of outbreak emergence from a mathemat-
ical modeling [29] and a statistical inference [30]
point of view. However, it limits our analysis to
the area of punctual parameters that we selected
as being biologically relevant.

A limitation of the estimations of CVΓ and CVB

from real epidemics is that we could only find joint
distributions of secondary cases and serial inter-
val in a measles outbreak. For the others, we used
independent distributions for the other outbreaks.
However, although this assumption does increase
the confidence interval, we do not expect it to bias
our results because any potential correlation is ex-
pected to be low. Indeed, we do not expect this
correlation to be really high. For instance, where it
is measurable, in the measles outbreak, the Spear-
man correlation coefficient between serial interval
and secondary cases generated by the infector is
0.20.

These theoretical results have implications for
outbreak monitoring. In particular, we show that
making simplifying but biologically-unrealistic as-
sumptions about the distributios of infection du-
ration can lead to underestimate the risk of emer-
gence, the epidemic doubling time, and the preva-
lence peak size. Given the risk of saturation of
healthcare systems, accurately anticipating these
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values is a major issue. This stresses the impor-
tance of collecting detailed data biological data to
better inform epidemiological models.

Methods

Model without evolution

We implement a non-Markovian version of the classi-
cal Susceptible-Infected-Recovered (SIR) epidemiolog-
ical model [19, 31], which means that not all rates are
held constant throughout an infection. We assume that
the host population is of fixed size N and that epi-
demics are initiated by a single infectious individual.
At time t, each individual is characterized by its cur-
rent state (susceptible, infectious, or removed), and, if
infected, the time at which it will recover as well as its
infectious rate.

There are two sources of heterogeneity in the model:
i) Transmission rate. We take into account individ-

ual heterogeneity either in contact rate or in infectiv-
ity by drawing the per capita transmission rate βi for
each individual i from a Gamma distribution, denoted
B. For mathematical convenience, and without fur-
ther qualitative impact, we set the mean of B such that
ErBsS0 « ErBsN “ 1, with S0 the initial number of
susceptible individuals. The standard deviation of B

is imposed by the choice of the coefficient of variation
(CVB) which is further detailed below.

ii) Infection duration. We assume that individuals re-
main in the I compartment for a time drawn randomly
from a Gamma distribution, noted Γ. By construction,
the expectation of Γ is R0 in our model and we vary its
coefficient of variation between 0.2 and 1, which deter-
mines its shape, which equals to 1{CV 2

Γ .

Coefficients of variation and Z dispersion

Heterogeneities in transmission rate and infection du-
ration determine the distribution of the number of sec-
ondary infections (Z ). Little is known about the bio-
logical range of CVB , whereas contact-tracing studies
can provide some insights into the ranges of values of
k andCVΓ. Therefore, we use fixed values of k andCVΓ

and compute the required value of CVB .
More specifically, we look for the value of CVB that

results in the smallest Kolmogorov-Smirnov distance
between the Negative Binomial distribution with mean

R0 and dispersion parameter k and the computed dis-
tribution of the secondary cases determined by CVB
and CVΓ, simulated by repeating 106 times the follow-
ing procedure:

• We draw the transmission rate βi following the B

distribution.
• Let γi be the infection duration of this individ-

ual. Since transmission events are assumed to
be memoryless and independent, the number of
secondary cases follows an homogeneous pure-
birth/Poisson process, the rate of which is pro-
portional to the infection duration γi, i.e. ζi „

PoissonpβiNγiq. Since γi is drawn from a Gamma
distribution with shape κ and mean R0, the over-
all process follows a Negative Binomial distribu-
tion with mean βiR0 and size κ. We can draw the
number of secondary cases of this individual fol-
lowing this distribution.

Evolutionary emergence model

We introduce an additional class of individuals by dis-
tinguishing between Ir and Im, which refer to individ-
uals infected by the initial resident (resp. new mutant)
parasite strain. The reproduction numbers of these
strains are denoted Rr0 and Rm0 . We start with one in-
fected individual of class Ir. Parasites can mutate dur-
ing a transmission event, or within a host, at a given
rate µ. The mutation increases their mean transmis-
sion rate, without altering CVB (therefore also increas-
ing the standard deviation of B). We assume that the
infectious period is not impacted by the mutation. Par-
asites within a host are assumed to be clonal: in the
case of within-host mutation, we assume that the mu-
tant instantaneously takes over the host. The mutant
transmission rate is multiplied by Rm

0

Rr
0

.

Frequency of emergence

We use the total epidemic size to determine if an out-
break has emerged or not. Emergence is assumed to
occur when the total epidemic size is greater than the
herd immunity threshold, i.e. 1 ´ 1

R0
[1]. This implies

any cross-reactive strain with the same R0, would not
be able to create an outbreak in the population. In the
case of evolutionary emergence, we only consider the
emergence of the mutant strain, with Rm0
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Numerical simulations

We simulate epidemics using Gillespie’s next reaction
method [32] to generate non-Markovian distributions.
In this simple algorithm, two events can occur: infec-
tion, or recovery. We chose them as follows:

1. Initialize (i.e. set S, I “ 1, t “ 0)
2. For each new infection, draw βi and γi.
3. Compute the force of infection (i.e. S.

řI
i“1 βi), and

draw the time to the next infection assuming an expo-
nential distribution.

4. Look for the event with the closest time of occurrence,
and update the compartments (S, I).

5. Update the time t to the time of the new event.
6. Go to step 2.

In the evolutionary emergence scenario with muta-
tion during transmission, the model is similar but there
are two forces of infection, one for each class of infected
host (Ir, Im), and two additional events: infection by
the mutant strain (assuming an exponential distribu-
tion with rate

řIr
i“1 βiµ `

řIm
j“1 βj), and recovery of an

individual in the Im class.

In the scenario with mutation within the host,
we distinguish the event of infection by the mutant
strain (assuming an exponential distribution with rate
řIm
j“1 βj) from the within host mutation of a resident

strain into a mutant strain (assuming an exponential
distribution with rate Ir ˚ µ).

The model was developed for this study and imple-
mented in Java 11.0.7. We use parallel computation to
decrease computing time. The code will be made avail-
able upon publication.

We monitor the following metrics:

• The time until prevalence reaches 30, 50, 100, 250,
500, and 1,000 infected hosts. This enables us to
estimate the growth rate during the exponential
phase.

• The prevalence peak size and outbreak final size.
In the case of evolutionary emergence, we distin-
guish the resident final size from the mutant one.

• When the pathogen can mutate into a more
adapted form, we register the time when the mu-
tation occurs, the number of infected hosts by the
resident at this time, and the cumulative number
of infected hosts by resident at this time.

Simulation outputs were analyzed with R 3.6.3.

Parameters estimation for known outbreaks

In order to estimate CVB and CVΓ from observed out-
breaks, we looked for epidemiological data in the litera-
ture where both serial interval and secondary cases are
available from the same outbreak. Ideally, since those
two distributions are not independent, we looked for
joint distributions. However this was only possible for
Measles [33]. Most of the time, the inline data gath-
ering those two information together are not available,
and we needed to assume independence of the two dis-
tributions for Ebola [34, 35], pneumonic plague [36],
Smallpox [37, 38] and SARS outbreaks [4, 39] (see the
Table S1 for further details about the data and parame-
ters sources).

In order to get biologically relevant parameters, we
infer parameters from a model with a latent period. Its
distribution is retrieved from independent sources in
the literature [40, 41, 35, 42]. We consider that this bio-
logical property does not change between different out-
break contexts. We also use independent estimates of
R0 [39, 33, 35]. Therefore, we restrict our estimation to
three free parameters: the mean infection period, CVB
and CVΓ.

Assuming the pool of susceptible hosts remained
constant during the outbreak, we simulate 5.106 sec-
ondary cases and serial interval for a given mean Γ,
CVB and CVΓ, in order to obtain their distribution.
From that, we can compute the likelihood of the ob-
served data, jointly when possible, or independently
otherwise. The maximum likelihood parameters were
then obtained using a grid search optimization.

Code and data availability

The different scripts are available on a github reposi-
tory:
https://gitlab.in2p3.fr/ete/

heterogeneity-outbreak.
The simulation results (necessary to run the code) are

available on demand.
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