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Introduction

Statements of results. We start by giving slightly imprecise versions of the main results of the present paper. For us, a log Calabi-Yau surface is a pair (Y, D), where Y is a smooth complex projective surface and D is a reduced effective normal crossing anticanonical divisor on Y . A log Calabi-Yau surface (Y, D) has maximal boundary if D is singular.

Theorem 0.1. The functions attached to the rays of the q-deformed 2-dimensional Kontsevich-Soibelman scattering diagrams are, after the change of variables q = e i ̵ h , generating series of higher genus log Gromov-Witten invariants-with maximal tangency condition and insertion of the top lambda class-of log Calabi-Yau surfaces with maximal boundary.

A precise version of Theorem 0.1 is given by Theorems 3.1 and 3.2 in Section 3.

Theorem 0.2. Higher genus log Gromov-Witten invariants-with maximal tangency condition and insertion of the top lambda class-of log Calabi-Yau surfaces with maximal boundary satisfy an Ooguri-Vafa/ open BPS integrality property.

A precise version of Theorem 0.2 is given by Theorem 8.5 in Section 8. We also formulate a new conjecture.

Conjecture 0.3. Higher genus relative Gromov-Witten invariants-with maximal tangency condition and insertion of the top lambda class-of a del Pezzo surface S relative to a smooth anticanonical divisor are related to refined counts of dimension one stable sheaves on the local Calabi-Yau 3-fold TotK S , the total space of the canonical line bundle of S.

A precise version of Conjecture 0.3 is given by Conjecture 8.16 in Section 8.6.

Context and motivations.

SYZ. The Strominger-Yau-Zaslow [START_REF] Strominger | Mirror symmetry is T -duality[END_REF] picture of mirror symmetry suggests a twostep construction of the mirror of a Calabi-Yau variety admitting a Lagrangian torus fibration: first, construct the "semi-flat" mirror by dualizing the non-singular torus fibers; second, correct the complex structure of the "semi-flat" mirror such that it extends across the locus of singular fibers. It is expected-see [START_REF] Strominger | Mirror symmetry is T -duality[END_REF] and Fukaya [START_REF] Fukaya | Multivalued Morse theory, asymptotic analysis and mirror symmetry[END_REF]-that the corrections involved in the second step are determined by some counts of holomorphic discs in the original variety with boundary on torus fibers.

KS.

In dimension two and with at most nodal singular fibers in the torus fibration, Kontsevich and Soibelman [START_REF] Kontsevich | Affine structures and non-Archimedean analytic spaces[END_REF] had the insight that algebraic self-consistency constraints on the corrections were strong enough to determine these corrections uniquely. More precisely, they reduced the problem to an algebraic computation of commutators in a group of formal families of symplectomorphisms of the 2-dimensional algebraic torus. This algebraic formalism, graphically encoded under the form of scattering diagrams, was generalized and extended to higher dimensions by Gross-Siebert [START_REF] Gross | From real affine geometry to complex geometry[END_REF] and plays an essential role in the Gross-Siebert algebraic approach to mirror symmetry.

GPS.

In [START_REF] Gross | The tropical vertex[END_REF], Gross, Pandharipande and Siebert made some progress in connecting the original enumerative expectation and the algebraic recipe of scattering diagrams. They showed that the 2-dimensional Kontsevich-Soibelman scattering diagrams indeed have an enumerative meaning: they compute some genus 0 log Gromov-Witten invariants of some log Calabi-Yau surfaces with maximal boundary, ie complements of a singular normal crossing anticanonical divisor in a smooth projective surface.

This agrees with the original expectation because these geometries admit Lagrangian torus fibrations and these genus 0 log Gromov-Witten invariants should be thought of as algebraic definitions of some counts of holomorphic discs with boundary on Lagrangian torus fibers. For some symplectic approaches, relating counts of holomorphic discs in hyperkähler manifolds of real dimension 4 and the Konstevich-Soibelman wall-crossing formula, we refer to the works of Lin [START_REF] Lin | Correspondence Theorem between Holomorphic Discs and Tropical Discs on K3 Surfaces[END_REF] and Iacovino [START_REF] Iacovino | Kontsevich-Soibelman Wall Crossing Formula and Holomorphic Disks[END_REF].

The combination of 2-dimensional scattering diagrams with their enumerative interpretation given by Gross, Pandharipande and Siebert [START_REF] Gross | The tropical vertex[END_REF] is the main tool in the Gross-Hacking-Keel [START_REF] Gross | Mirror symmetry for log Calabi-Yau surfaces I[END_REF] construction of mirrors for log Calabi-Yau surfaces with maximal boundary.

Higher genus GPS = refined KS. In [KS06, Section 11.8] (see also [START_REF] Soibelman | On non-commutative analytic spaces over non-Archimedean fields[END_REF]), Kontsevich and Soibelman remarked that the 2-dimensional scattering diagram formalism has a natural q-deformation, with the group of formal families of symplectomorphisms of the 2-dimensional algebraic torus replaced by a group a formal families of automorphisms of the 2-dimensional quantum torus, a natural non-commutative deformation of the 2dimensional algebraic torus. The enumerative meaning of this q-deformed scattering diagram was a priori unclear.

In Section 5.8 of [START_REF] Gross | The tropical vertex[END_REF], Gross, Pandharipande and Siebert remarked that the genus 0 log Gromov-Witten invariants they consider have a natural extension to higher genus, by integration of the top lambda class, and they asked if there is an interpretation of these higher genus invariants in terms of scattering diagrams.

The main result of the present paper, Theorem 0.1, is that the two previous questions, the enumerative meaning of the algebraic q-deformation and the algebraic meaning of the higher genus deformation, are answers to each other.

OV. The higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces that we are considering-with insertion of the top lambda class-should be thought of as an algebrogeometric definition of some counts of higher genus Riemann surfaces with boundary on a Lagrangian torus fiber in a Calabi-Yau 3-fold geometry, essentially the product of the log Calabi-Yau surface by a third trivial direction; see Section 2.4. For such counts of higher genus open curves in a Calabi-Yau 3-fold geometry, Ooguri-Vafa [START_REF] Ooguri | Knot invariants and topological strings[END_REF] have conjectured an open BPS integrality structure. Theorem 0.2, which is a consequence of Theorem 0.1 and of non-trivial algebraic properties of q-deformed scattering diagrams, can be viewed as a check of this BPS integrality structure.

DT. The non-trivial integrality properties of q-deformed scattering diagrams are wellknown to be related to integrality properties of refined Donaldson-Thomas (DT) invariants; see Kontsevich and Soibelman [START_REF] Kontsevich | Stability structures, motivic Donaldson-Thomas invariants and cluster transformations[END_REF]. Indeed, q-deformed scattering diagrams control the wall-crossing behavior of refined DT invariants.

The fact that the integrality structure of DT invariants coincides with the Ooguri-Vafa integrality structure of higher genus open Gromov-Witten invariants of Calabi-Yau 3folds, essentially involving the quantum dilogarithm in both cases, can be viewed as an early indication that something like Theorem 0.1 should be true.

As consequence of Theorem 0.1, we obtain explicit relations between refined DT invariants of some quivers and higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces -see Section 8.5-generalizing the unrefined/genus 0 relation of [START_REF] Gross | Quivers, curves, and the tropical vertex[END_REF], [START_REF] Reineke | Refined GW/Kronecker correspondence[END_REF].

CV. In fact, Cecotti and Vafa [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF] have given a physical derivation of the wall-crossing formula in DT theory going through the higher genus open Gromov-Witten theory of some Calabi-Yau 3-fold. We will explain in Section 9 that Theorem 0.1 and 0.2 are indeed fully compatible with the Cecotti-Vafa argument. In particular, Theorem 0.1 can be viewed as a highly non-trivial mathematical check of the connection predicted by Witten [START_REF] Witten | Chern-Simons gauge theory as a string theory[END_REF] between higher genus open A-model and quantum Chern-Simons theory.

del Pezzo. Theorem 0.1 and 0.2 are about log Calabi-Yau surfaces with maximal boundary, ie with a singular normal crossing anticanonical divisor. Similar questions can be asked for log Calabi-Yau surfaces with respect to a smooth anticanonical divisor. Conjecture 0.3 gives a non-trivial correspondence in such a case, suggested by the similarities between refined DT theory and open higher genus Gromov-Witten invariants discussed above.

Applications. In a way parallel to how [START_REF] Gross | The tropical vertex[END_REF] is used by Gross-Hacking-Keel [START_REF] Gross | Mirror symmetry for log Calabi-Yau surfaces I[END_REF] to construct Poisson varieties as mirrors of log Calabi-Yau surfaces with maximal boundary, we will use Theorem 0.1 in a coming work [START_REF] Bousseau | Quantum mirrors of log Calabi-Yau surfaces and higher genus curves counting[END_REF] to construct deformation quantizations of these Poisson varieties.

Comments on the proof of Theorem 0.1. The curve counting invariants appearing in Theorem 0.1 are log Gromov-Witten invariants, as defined by Gross and Siebert [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF], and Abramovich and Chen [START_REF] Chen | Stable logarithmic maps to Deligne-Faltings pairs I[END_REF], [START_REF] Abramovich | Stable logarithmic maps to Deligne-Faltings pairs II[END_REF]. The proof of Theorem 0.1 relies on recently developed general properties of log Gromov-Witten invariants, such as the decomposition formula of Abramovich, Chen, Gross and Siebert [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF].

The main tool of [START_REF] Gross | The tropical vertex[END_REF] is a reduction to a tropical setting using the correspondence theorem of Mikhalkin [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF] and between counts of curves in complex toric surfaces and counts of tropical curves in R 2 . Similarly, the main tool of the present paper is a reduction to a tropical setting using a correspondence theorem previously proved by the author [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] between generating series of higher genus curves in toric surfaces and Block-Göttsche q-deformed tropical invariants.

Given that the relation between q-deformed tropical invariants and q-deformed scattering diagrams has already been worked out by Filippini and Stoppa [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF], Theorem 0.1 should really be viewed as a combination of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] and [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF]. The new results required for the proof of Theorem 0.1 are: the check that the degeneration step used in [START_REF] Gross | The tropical vertex[END_REF] to go from a log Calabi-Yau setting to a toric setting extends to the higher genus case and the check that the correspondence proved in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] has exactly the correct form to be used as input in [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF]. To make this paper more self-contained, we will in fact review the content of [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF].

The most technical part is the higher genus version of the degeneration step. As the general version of the degeneration formula in log Gromov-Witten theory is not yet known, we combine the general decomposition formula of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF] with some situation specific vanishing statements, which, as in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF], reduce the gluing operations to some torically transverse locus where they are under control, thanks to, for example Kim, Lho and Ruddat [START_REF] Kim | The degeneration formula for stable log maps[END_REF].

Comments on the proof of Theorem 0.2. The proof of Theorem 0.2 is a combination of Theorem 0.1 and of the non-trivial integrality results about q-deformed scattering diagrams proved by Kontsevich and Soibelman in Section 6 of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF]. In fact, to get the most general form of Theorem 0.2, the results contained in [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF] do not seem to be enough. We use an induction argument on scattering diagrams, parallel to the one used by Gross, Hacking, Keel and Kontsevich [GHKK18, Appendix C3], to reduce the most general case to a case which can be treated by [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF].

A small technical point is to keep track of signs, because of the difference between quantum tori and twisted quantum tori; see Section 8.3 on the quadratic refinement for details.

Plan of the paper. In Section 1, we review the notion of 2-dimensional scattering diagrams, both classical and quantum, with an emphasis on the symplectic/Hamiltonian aspects. In Section 2, we introduce a class of log Calabi-Yau surfaces and their log Gromov-Witten invariants.

In Section 3, we state our main result, Theorem 3.1, a precise version of Theorem 0.1, relating 2-dimensional quantum scattering diagrams and generating series of higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces. We also state a generalization of Theorem 3.1, Theorem 3.2, phrased in terms of orbifold log Gromov-Witten invariants.

Sections 4, 5, 6 and 7 are dedicated to the proof of Theorems 3.1 and 3.2. The general structure of the proof is parallel to [START_REF] Gross | The tropical vertex[END_REF]. In Section 4, we introduce higher genus log Gromov-Witten invariants of toric surfaces. In Section 5, the most technical part of this paper, we prove a degeneration formula relating log Gromov-Witten invariants of log Calabi-Yau surfaces defined in Section 2 and appearing in Theorem 3.1, with log Gromov-Witten invariants of toric surfaces defined in Section 4.2. In Section 6, following Filippini-Stoppa [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF], we review the connection between quantum scattering diagrams and refined counts of tropical curves. We finish the proof of Theorem 3.1 in Section 7, combining the results of Sections 5 and 6 with the correspondence theorem proved in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] between refined counts of tropical curves and log Gromov-Witten invariants of toric surfaces. The orbifold Gromov-Witten computation needed to finish the proof of Theorem 3.2 is done in Section 7.2.

In Section 8.1, we formulate a BPS integrality conjecture for higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces. In Section 8.2, we state Theorem 8.5, precise form of Theorem 0.2. The proof of Theorem 8.5 takes Sections 8.3, 8.4. In Section 8.5, Theorem 8.13 gives an explicit connection with refined DT invariants of quivers. Finally, in Section 8.6, we state Conjecture 8.16, precise version of Conjecture 0.3.

In Section 9, we explain how Theorem 0.1 can be viewed as a mathematical check of the physics work of Cecotti and Vafa [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF] and how Theorem 0.2 is compatible with the Ooguri-Vafa integrality conjecture [START_REF] Ooguri | Knot invariants and topological strings[END_REF]. rather its application [START_REF] Bousseau | Quantum mirrors of log Calabi-Yau surfaces and higher genus curves counting[END_REF]) has been presented. I thank Luca Battistella and Michel van Garrel for corrections and comments on a first draft of this paper. I thank the referee for useful corrections and suggestions. 

Scattering

In this Section, we first fix our notation for the basic objects considered in this paper: tori, quantum tori and automorphisms of formal families of them. We then introduce scattering diagrams, both classical and quantum, following [START_REF] Kontsevich | Affine structures and non-Archimedean analytic spaces[END_REF], [START_REF] Gross | From real affine geometry to complex geometry[END_REF], [START_REF] Gross | The tropical vertex[END_REF] and [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF].

1.1. Torus. We fix T a 2-dimensional complex algebraic torus. Let M ∶= Hom(T, C * ) be the 2-dimensional lattice of characters of T . Characters form a linear basis of the algebra of functions on T ,

Γ(O T ) = ⊕ m∈M Cz m ,
with the product given by z m ⋅ z m ′ = z m+m ′ . In other words, the algebra of functions on T is the algebra of the lattice

M : Γ(O T ) = C[M ].
We fix

⟨-, -⟩∶ ⋀ 2 M ∼
→ Z an orientation of M , ie an integral unimodular skew-symmetric bilinear form on M . This defines a Poisson bracket on Γ(O T ), given by

{z m , z m ′ } = ⟨m, m ′ ⟩z m+m ′ ,
and a corresponding algebraic symplectic form Ω on T . If we choose a basis (m 1 , m 2 ) of M such that ⟨m 1 , m 2 ⟩ = 1, then, writing z 1 ∶= z m 1 and z 2 ∶= z m 2 , we have identifications

T = (C * ) 2 , M = Z 2 , Γ(O T ) = C[z ± 1 , z ± 2 ] and Ω = dz 1 z 1 ∧ dz 2 z 2 .
1.2. Quantum torus. Given the symplectic torus (T, Ω), or equivalently the Poisson algebra (Γ(O T ), {-, -}), it is natural to look for a "quantization". The quantum torus T q is the non-commutative "space" whose algebra of functions is the non-commutative

C[q ± 1 2 ]-algebra Γ(O T q )
, with linear basis indexed by the lattice M ,

Γ(O T q ) = ⊕ m∈M C[q ± 1 2 ]ẑ m ,
and with product defined by

ẑm ⋅ ẑm ′ = q 1 2 ⟨m,m ′ ⟩ ẑm+m ′ .
The quantum torus T q is a quantization of the torus T in the sense that writing q = e i ̵ h and taking the limit ̵ h → 0, q → 1, the linear term in ̵ h of the commutator [ẑ m , ẑm ′ ] is determined by the Poisson bracket {z m , z m ′ }. Indeed, we have

[ẑ m , ẑm ′ ] = (q 1 2 ⟨m,m ′ ⟩ -q -1 2 ⟨m,m ′ ⟩ )ẑ m+m ′ , and so lim ̵ h→0 1 i ̵ h [ẑ m , ẑm ′ ] = ⟨m, m ′ ⟩ẑ m+m ′ .
We denote by T ̵ h the non-commutative "space" whose algebra of functions is the

C(( ̵ h))- algebra Γ(O T ̵ h ) ∶= Γ(O T ̵ h ) ⊗ C[q ± 1 2 ] C(( ̵ h)).
1.3. Automorphisms of formal families of tori. Let R be a complete local C-algebra and let m R be the maximal ideal of R. By definition of completeness, we have

R = lim ← R m R .
We denote S ∶= Spf R the corresponding formal scheme and s 0 the closed point of S defined by m R . Let T S be the trivial family of 2-dimensional complex algebraic tori parametrized by S, ie T S ∶= S × T . The corresponding algebra of functions is given by 

Γ(O T S ) = lim ← (R m R ⊗ Γ(O T )) = lim ← (R m R ⊗ C[M ]) .
Γ(O T ̵ h S ) = lim ← (R m R ⊗ Γ(O T ̵ h )) .
The family T S of tori has a natural Poisson structure, whose symplectic leaves are the torus fibers, and whose Poisson center is R. Explicitly, we have

{H m z m , H m ′ z m ′ } = H m H m ′ {z m , z m ′ } , for every H m , H m ′ ∈ R and m, m ′ ∈ M . The family T ̵ h S of non-commutative tori is a quantization of the Poisson variety T S . Let H = m∈M H m z m
be a function on T S whose restriction to the fiber over the closed point s 0 ∈ S vanishes, ie such that H = 0 mod m R . Then {H, -} defines a derivation of the algebra of functions on T S and so a vector field on T S , the Hamiltonian vector field defined by H, whose restriction to the fiber over the closed point s 0 ∈ S vanishes.

The time one flow of this vector field defines an automorphism

Φ H ∶= exp ({H, -})
of T S , whose restriction to the fiber over the closed point s 0 ∈ S is the identity. Note that Φ H is well-defined because of the assumptions that H = 0 mod m R and R is a complete local algebra, ie exp makes sense formally.

Let V R be the subset of automorphisms of T S which are of the form Φ H for H as above. By the Baker-Campbell-Hausdorff formula, V R is a subgroup of the group of automorphisms of T S . In [START_REF] Gross | The tropical vertex[END_REF], V R is called the tropical vertex group.

Let Ĥ = m∈M Ĥm ẑm be a function on T ̵ h S whose restriction to the fiber over the closed point s 0 ∈ S vanishes, ie such that Ĥ = 0 mod m R . Conjugation by exp Ĥ defines an automorphism

Φ Ĥ ∶= Ad exp Ĥ = exp Ĥ (-) exp -Ĥ of T ̵ h
S whose restriction to the fiber over the closed point s 0 ∈ S is the identity. Note that Φ Ĥ is well-defined because of the assumption that Ĥ = 0 mod m R and R is a compete local algebra, ie everything makes sense formally. Let V̵ h R be the subset of automorphisms of T ̵ h S which are of the form Φ Ĥ for Ĥ as above. By the Baker-Campbell-Hausdorff formula, V̵ h R is a subgroup from the group of automorphisms of T ̵ h S . We call V̵ h R the quantum tropical vertex group. This group is much bigger that the "quantum tropical vertex group" of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF]. We will meet the group of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF] in Section 8, under the name "BPS quantum tropical vertex group".

If the limit

H ∶= lim ̵ h→0 (i ̵ h Ĥ)
exists, then, replacing ẑm by z m , H can be naturally viewed as a function on T S and is the classical limit of Ĥ. It is easy to check that Φ H is the classical limit of Φ Ĥ .

1.4. Scattering diagrams. In this section, we work in the 2-dimensional real plane M R ∶= M ⊗ Z R. A ray is a half-line d in M R of rational slope with initial point the origin 0 ∈ M R , and we denote m d ∈ M -{0} its primitive integral direction, pointing away from the origin. 

H d ∈ lim ← (R m R ⊗ C[z md ]) , or H d ∈ lim ← (R m R ⊗ C[z -md ]) ,
and such that H d = 0 mod m R , and for every ⩾ 1, only finitely many rays d have

H d ≠ 0 mod m R . A ray (d, H d ) such that H d ∈ lim ← (R m R ⊗ C[z md ]) ,
is called outgoing and a ray (d, H d ) such that 

H d ∈ lim ← (R m R ⊗ C[z -md
H d ∈ lim ← (R m R ⊗ C[z m(Hd) ]) ,
We will always consider scattering diagrams up to the following simplifying operations: 

H d = H d 1 +H d 2 . Note that, because {H d 1 , H d 2 } = 0, we have that Φ Hd = Φ Hd 1 Φ Hd 2 = Φ Hd 2 Φ Hd 1 .
Let D be a scattering diagram. The singular locus of D is the union of the set of initial points of rays and of the set of non-trivial intersection points of rays. Let γ∶ [0, 1] → M R be a smooth path. We say that γ is admissible if γ does not intersect the singular locus of D, if the endpoints of γ are not on rays of D, and if γ intersects transversely all the rays of D.

Let γ be an admissible smooth path in M R . Let ⩾ 1 be a positive integer. By definition, D contains only finitely many rays

(d, H d ) with H d ≠ 0 mod m R . We denote 0 < t 1 ⩽ ⋅ ⋅ ⋅ ⩽ t s < 1 the times of intersection of γ with rays (d 1 , H d 1 ), . . . , (d s , H ds ) of D such that H dr ≠ 0 mod m R .
For every 1 ⩽ r ⩽ s, we define r ∈ {±1} to be the sign of ⟨m(H d i ), γ ′ (t r )⟩. We then define θ γ,D, ∶= Φ s Hd s ⋯Φ 1 Hd 1

.

Taking the limit → +∞, we define

θ γ,D ∶= lim →+∞ θ γ,D, . Definition 1.2. A scattering diagram D over R is consistent if, for every closed admis- sible smooth path γ∶ [0, 1] → M R , we have θ γ,D = id .
The following result is due to Kontsevich and Soibelman [KS06, Theorem 6] (see also [GPS10, Theorem 1.4]). Proof. It is enough to show that for every nonnegative integer , it is possible to add outgoing rays to D to get a scattering diagram D consistent at the order , ie such that θ γ,D = id mod m +1 R . The construction is done by induction on , starting with D 0 = D. Let us assume we have constructed D -1 , consistent at the order -1. Let p be a point in the singular locus of D -1 and let γ be a small anticlockwise closed loop around p. As D -1 is consistent at the order -1, we can write θ γ,D -1 = Φ H for some H with H = 0 mod m R . There are finitely many primitive m j ∈ M -{0} such that we can write

H = j H j mod m +1 R with H j ∈ m R R ⊗ C[z m j ].
We construct D by adding to D -1 the outgoing rays (p + R ⩾0 m j , Φ -H j ).

Adding hats everywhere, we obtain the definition of a quantum scattering diagram D, with functions Ĥd ∈ lim

← (R m R ⊗ C(( ̵ h))[ẑ md ]) ,
for outgoing rays and Ĥd ∈ lim

← (R m R ⊗ C(( ̵ h))[ẑ -md ]) ,
for ingoing rays, the notion of consistent quantum scattering diagram, and the fact that every quantum scattering diagram D can be canonically completed by adding only outgoing rays to form a consistent quantum scattering diagram S( D). We will often call Ĥd the Hamiltonian attached to the ray d.

A general notion of scattering diagram, as in Section 2 of [START_REF] Kontsevich | Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry[END_REF], takes as input a lattice M and an M -graded Lie algebra g. What we call a (classical) scattering diagram is the special case where M is the lattice of characters of a 2-dimensional symplectic torus T and where g = (Γ(O T S ), {-, -}). What we call a quantum scattering diagram is the special case where M is the lattice of characters of a 2-dimensional symplectic torus T and where g

= (Γ(O T ̵ h S ), [-, -]).
In our definition of a scattering diagram, we attach to each ray d a function Hd) , such that H d = 0 mod m R , which can be interpreted as Hamiltonian generating an automorphism Φ Hd = exp ({H d , -}) . In [START_REF] Gross | The tropical vertex[END_REF], [START_REF] Gross | From real affine geometry to complex geometry[END_REF] or [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF], the terminology is slightly different. To a ray d, they attach a function Hd) , such that f d = 1 mod m R , and, to a path γ(t) intersecting transversely d at time t 0 , an automorphism

H d = ⩾0 H z m(
f d = ⩾0 c z m(
θ fd,γ ∶ z m ↦ z m f ⟨nd,m⟩ d
, where n d is the primitive generator of d such that ⟨n d , γ ′ (t 0 )⟩ > 0. These two choices are equivalent. Indeed, if is the sign of ⟨m(H d ), γ ′ (t 0 )⟩, we have Hd) .

Φ Hd = θ fd,γ if H d and f d are related by log f d = ⩾0 H z m(
The formalism of [START_REF] Gross | From real affine geometry to complex geometry[END_REF] is more general because it treats the Calabi-Yau case and not just a holomorphic symplectic case. In the present paper, focused on a holomorphic symplectic situation, using the Hamiltonians H d rather than the functions f d makes the quantization step transparent. The quantum version of the functions f d will be studied and used in [START_REF] Bousseau | Quantum mirrors of log Calabi-Yau surfaces and higher genus curves counting[END_REF].

2. Gromov-Witten theory of log Calabi-Yau surfaces

Our main result, Theorem 3.1, is an enumerative interpretation of a class of quantum scattering diagrams, as introduced in Section 1, in terms of higher genus log Gromov-Witten invariants of a class of log Calabi-Yau surfaces. In Section 2.1 we review the definition of these log Calabi-Yau surfaces, following [START_REF] Gross | The tropical vertex[END_REF]. We define the relevant higher genus log Gromov-Witten invariants in Sections 2.2 and 2.3. We give a 3-dimensional interpretation of these invariants in Section 2.4. Finally, we give a generalization of these invariants to a certain orbifold context in Section 2.5.

2.1. Log Calabi-Yau surfaces. We fix m = (m 1 , . . . , m n ) an n-tuple of primitive nonzero vectors of M = Z 2 . The fan in R 2 with rays -R ⩾0 m 1 , . . . , -R ⩾0 m n defines a toric surface Y m . Let D m 1 , . . . , D mn be the corresponding toric divisors. If m 1 , . . . , m n do not span M , ie if Y m is non-compact, we add some extra rays to the fan to make it span M and we still denote Y m the corresponding compact toric surfaces. The choice of the added rays will be irrelevant for us because of the log birational invariance result in logarithmic Gromov-Witten theory proved in [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF]. We denote by ∂Y m the toric boundary divisor of Y m .

For every 1 ⩽ j ⩽ n, we blow-up Y m at a point x j on the toric divisor D m j and not on any other toric divisor. We also assume that all the points x j are distinct. By deformation invariance of log Gromov-Witten invariants, the precise choice of x j will be irrelevant for us. Note that it is possible to have R ⩾0 m j = R ⩾0 m j ′ , and so D m j = D m j ′ , for j ≠ j ′ , and that in this case we blow-up several distinct points on the same toric divisor. We denote by Y m the resulting projective surface and ν∶ Y m → Y m the blow-up morphism. Let E j ∶= ν -1 (x j ) be the exceptional divisor over x j . We denote by ∂Y m the strict transform of the toric boundary divisor. The divisor ∂Y m is an anticanonical cycle of rational curves and so the pair (Y m , ∂Y m ) is an example of a log Calabi-Yau surface with maximal boundary. 2.2. Curve classes. We want to consider curves in Y m meeting ∂Y m in a unique point. We first explain how to parametrize the relevant curve classes in terms of their intersection numbers p j with the exceptional divisors E j .

Let p ∶= (p 1 , . . . , p n ) ∈ P ∶= N n . We assume that ∑ n j=1 p j m j ≠ 0 and so we can uniquely write n j=1 p j m j = p m p , for some m p ∈ M primitive and some p ∈ N.

We explain now how to define a curve class β p ∈ H 2 (Y m , Z). In short, β p is the class of a curve in Y m having for every 1 ⩽ j ⩽ n intersection number p j with the exceptional divisor E j , and exactly one intersection point with the anticanonical cycle ∂Y m . More precisely, the vector m p ∈ M belongs to some cone of the fan of Y m and we write the corresponding decomposition

m p = a L p m L p + a R p m R p ,
where m L p , m R p ∈ M are primitive generators of rays of the fan of Y m and where a L p , a R p ∈ N. Note that there is only one term in this decomposition if the ray R ⩾0 m p coincides with one of the rays of the fan of Y m . Let D L p and D R p be the toric divisors corresponding to the rays R ⩾0 m L p and R ⩾0 m R p . Let β ∈ H 2 (Y m , Z) be determined by the following intersection numbers with the toric divisors:

• The intersection numbers with those D m j for 1 ⩽ j ⩽ n which are distinct from

D L p and D R p : β ⋅ D m j = j ′ ,Dm j ′ =Dm j p j ′ .
• The intersection number with D L p :

β ⋅ D L p = p a L p + j,Dm j =D L p p j .
• The intersection number with D R p :

β ⋅ D R p = p a R p + j,Dm j =D R p p j .
• The intersection number with every toric divisor D different from D m j for every 1 ⩽ j ⩽ n, and from D L p and D R p :

β ⋅ D = 0 . Such class β ∈ H 2 (Y m , Z)
exists and is unique by standard toric geometry because of the relation ∑ n j=1 p j m j = p m p . Finally, we define

β p ∶= ν * β - n j=1 p j E j ∈ H 2 (Y m , Z) .
By construction, we have The space of such stable maps is not proper in general: a limit of stable maps intersecting ∂Y m in a unique point does not necessarily intersect ∂Y m in a unique point. For example, a component of the limit curve could map entirely inside ∂Y m . A nice compactification of this space is obtained by considering stable log maps. The idea is to allow maps with components possibly mapping entirely inside ∂Y m , but to also remember some additional information under the form of log structures, which give a way to make sense of tangency conditions for points on such components mapping entirely inside ∂Y m . The theory of stable log maps has been developed by Gross and Siebert [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF], and Abramovich and Chen [START_REF] Chen | Stable logarithmic maps to Deligne-Faltings pairs I[END_REF], [START_REF] Abramovich | Stable logarithmic maps to Deligne-Faltings pairs II[END_REF]. By stable log maps, we always mean basic stable log maps in the sense of [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF]. We refer to Kato [START_REF] Kato | Logarithmic structures of Fontaine-Illusie[END_REF] for elementary notions of log geometry. We consider the divisorial log structure on Y m defined by the divisor ∂Y m and use it to view Y m as a smooth log scheme.

β p ⋅ E j = p j , for every 1 ⩽ j ⩽ n, β p ⋅ D L p = p a L p and β p ⋅ D R p = p a R p , and 
β p ⋅ D = 0 ,
Let M g,p (Y m ∂Y m ) be the moduli space of genus g stable log maps to Y m , of class β p , with contact order along ∂Y m given by p m p . According to the main results of [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF], this is a proper Deligne-Mumford stack coming with a g-dimensional virtual fundamental class

[M g,p (Y m ∂Y m )] virt .
If π∶ C → M g,p (Y m ∂Y m ) is the universal curve, of relative dualizing sheaf ω π , then the Hodge bundle E ∶= π * ω π is a rank g vector bundle over M g,p (Y m ∂Y m ). Its Chern classes are classically called the lambda classes [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF] and denoted by λ j ∶= c j (E) for 0 ⩽ j ⩽ g. Finally, we define the genus g log Gromov-Witten invariants N Ym g,p ∈ Q of Y m which will be of interest for us by

N Ym g,p ∶= [M g,p(Ym ∂Ym)] virt (-1) g λ g .
Note that the top lambda class λ g has exactly the right degree to cut down the virtual dimension from g to 0, so that N Ym g,p is not obviously zero. The fact that the top lambda class should be the natural insertion to consider for some higher genus version of [START_REF] Gross | The tropical vertex[END_REF] was already suggested in Section 5.8 of [START_REF] Gross | The tropical vertex[END_REF]. From our point of view, higher genus invariants with the top lambda class inserted are the correct objects because it is to them that the correspondence tropical theorem of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] applies. In Section 9, we will explain how our main result Theorem 3.1 fits into an expected story for higher genus open holomorphic curves in Calabi-Yau 3-folds. This is probably the most conceptual understanding of the role of the invariants N Ym g,β : they are really higher genus invariants of the log Calabi-Yau 3-fold Y m × P 1 , and the top lambda class is simply a measure of the difference between surface and 3-fold obstruction theories. This will be made precise in the following Section 2.4, whose analogue for K3 surfaces is well-known, see Lemma 7 of [START_REF] Maulik | Curves on K3 surfaces and modular forms[END_REF].

2.4. 3-dimensional interpretation of the invariants N Ym g,p . In this Section, we rewrite the log Gromov-Witten invariants N Ym g,p of the log Calabi-Yau surface Y m in terms of 3dimensional geometries, first Y m × C and then Y m × P 1 .

We endow the 3-fold Y m × C with the smooth log structure given by the divisorial log structure along the divisor

∂Y m × C. Let M g,p (Y m × C ∂Y m × C)
be the moduli space of genus g stable log maps to Y m , of class β p , with contact order along ∂Y m × C given by p m p . This is a Deligne-Mumford stack coming with a 1-dimensional virtual fundamental class

[M g,p (Y m ∂Y m )] virt . Because C is not compact, M g,p (Y m × C ∂Y m × C)
is not compact and so one cannot simply integrate over the virtual class. Using the standard action of C * on C, fixing 0 ∈ C, we obtain an action of C * on M g,p (Y m × C ∂Y m × C), with its perfect obstruction theory, whose fixed point locus is the space of stable log maps mapping to Y m × {0}, ie M g,p (Y m ∂Y m ), with its natural perfect obstruction theory. Given the virtual localization formula [START_REF] Graber | Localization of virtual classes[END_REF], it is natural to define equivariant log Gromov-Witten invariants

N Ym×C g,p ∶= [M g,p(Ym ∂Ym)] virt 1 e(Nor virt ) ∈ Q(t) ,
where Nor virt is the equivariant virtual normal bundle of

M g,p (Y m ∂Y m ) in M g,p (Y m × C ∂Y m × C), e(Nor virt
) is its equivariant Euler class, and t is the generator of the C *equivariant cohomology of a point.

Lemma 2.1.

N Ym×C g,p = 1 t N Ym g,p .
Proof. Because the 3-dimensional geometry Y m ×C, including the log/tangency conditions, is obtained from the 2-dimensional geometry Y m by a trivial product with a trivial factor C, with C * scaling this trivial factor, the virtual normal at a stable log map

f ∶ C → Y m is H 0 (C, f * O) -H 1 (C, f * O) = t -E ∨ ⊗ t so 1 e(Nor virt ) = 1 t g i=0 (-1) i λ i t g-i ,
and

N Ym×C g,p = [M g,p(Ym,∂Ym)] virt (-1) g λ g t = 1 t N Ym g,p .
The proof of Lemma 2.1 is identical to the proof of Lemma 7 in [START_REF] Maulik | Curves on K3 surfaces and modular forms[END_REF] up to a small point: in [START_REF] Maulik | Curves on K3 surfaces and modular forms[END_REF], counts of expected dimensions work because of the use of a reduced Gromov-Witten theory of K3 surfaces, whereas for us, counts of expected dimensions work because of the use of log Gromov-Witten theory.

We consider now the 3-fold Z m ∶= Y m × P 1 with the smooth log structure given by the divisorial log structure along the divisor

∂Z m ∶= (∂Y m × P 1 ) ∪ (Y m × {0}) ∪ (Y m × {∞}) .
The divisor ∂Z m is anticanonical, containing zero-dimensional strata, and so the pair (Z m , ∂Z m ) is an example of log Calabi-Yau 3-fold with maximal boundary. Let M g,p (Z m ∂Z m ) be the moduli space of genus g stable log maps to Z m , of class β p , with contact order along ∂Z m given by p m p . This is a proper Deligne-Mumford stack coming with a 1-dimensional virtual fundamental class [M g,p (Z m ∂Z m )] virt . Composing the evaluation map at the contact point with ∂Z m and the projection ∂Z m → P 1 , we obtain a map ρ∶ M g,p (Z m ∂Z m ) → P 1 and we define log Gromov-Witten invariants

N Zm g,p ∶= [M g,p(Zm ∂Zm)] virt ρ * (pt) ,
where pt ∈ A 1 (P 1 ) is the class of a point.

Lemma 2.2. We have N Zm g,p = N Ym g,p . Proof. We use virtual localization [START_REF] Graber | Localization of virtual classes[END_REF] with respect to the action of C * on the P 1 -factor with weight t at 0 and weight -t at ∞. We choose pt 0 as equivariant lift of pt ∈ A 1 (P 1 ). Because of the insertion of pt 0 = t, only the fixed point 0 ∈ P 1 , and not ∞ ∈ P 1 , contributes to the localization formula, and so we obtain

N Zm g,p = tN Ym×C g,p ,
and hence the result by Lemma 2.1.

2.5. Orbifold Gromov-Witten theory. We give an orbifold generalization of Sections 2.1, 2.2, 2.3, which will be necessary to state Theorem 3.2 in Section 7.2. As in Section 2.1, we fix m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors of M = Z 2 and this defines a toric surface Y m , with toric divisors D m j for 1 ⩽ j ⩽ n. For every r = (r 1 , . . . , r n ) an n-tuple of positive integers, we define a projective surface Y m,r by blowing-up a subscheme of length r j in general position on the toric divisor D m j , for every 1 ⩽ j ⩽ n. For r = (1, . . . , 1), we simply have Y m,r = Y m , which was defined in Section 2.1.

Let ν∶ Y m,r → Y m be the blow-up morphism. If r j ⩾ 2, then Y m,r has an A r j -1 -singularity on the exceptional divisor E j ∶= ν -1 (x j ). We will consider Y m,r as a Deligne-Mumford stack by taking the natural structure of smooth Deligne-Mumford stack on a A r j -1 singularity. The exceptional divisor E j is then a stacky projective line P 1 [r j , 1], with a single Z r j stacky point 0 ∈ P 1 [r j , 1]. The normal bundle to E j in Y m,r is the orbifold line bundle O P 1 [r j ,1] (-[0] (Z r j )) of degree -1 r j , and in particular we have E 2 j = -1 r j .

Denote by P r the set of (p 1 , . . . , p n ) ∈ P = N n such that r j divides p j , for every 1 ⩽ j ⩽ n. Exactly as in Section 2.2, we define for every p ∈ P r a curve class β p ∈ H 2 (Y m,r , Z). The only difference is that now we have

β p ⋅ E j = p j r j .
We denote by ∂Y m,r the strict transform of the toric boundary divisor ∂Y m of Y m , and we endow Y m with the divisorial log structure define by ∂Y m . So we view Y m,r as a smooth Deligne-Mumford log stack. Because the non-trivial stacky structure is disjoint from the divisor ∂Y m,r supporting the non-trivial log structure, there is no difficulty in combining orbifold Gromov-Witten theory, [START_REF] Abramovich | Gromov-Witten theory of Deligne-Mumford stacks[END_REF], [START_REF] Chen | Orbifold Gromov-Witten theory[END_REF], with log Gromov-Witten theory, [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF], [START_REF] Chen | Stable logarithmic maps to Deligne-Faltings pairs I[END_REF], [START_REF] Abramovich | Stable logarithmic maps to Deligne-Faltings pairs II[END_REF], to get a moduli space M g,p (Y m,r ∂Y m,r ) of genus g stable log maps to Y m,r , of class β p , with contact order along ∂Y m,r given by p m p . It is a proper Deligne-Mumford stack coming with a g-dimensional virtual fundamental class

[M g,p (Y m,r ∂Y m,r )] virt .
We finally define genus g orbifold log Gromov-Witten invariants

N Ym,r g,p ∈ Q of Y m,r by N Ym,r g,p ∶= [M g,p(Ym,r ∂Ym,r)] virt (-1) g λ g .

Main results

In Section 3.1, we state the main result of the present paper, Theorem 3.1, precise form of Theorem 0.1 mentioned in the Introduction. In Section 3.2, we give elementary examples illustrating Theorem 3.1. In Section 3.3, we state Theorem 3.2, a generalization of Theorem 3.1 including orbifold geometries. Finally, we give in Section 3.4 some brief comments about the level of generality of Theorems 3.1 and 3.2.

3.1. Statement. Using the notations of Section 1, we define a family of consistent quantum scattering diagrams. Our main result, Theorem 3.1, is that the Hamiltonians attached to the rays of these quantum scattering diagrams are generating series of the higher genus log Gromov-Witten invariants defined in Section 2.

We fix m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors of M . We denote P ∶= N n and we take

R ∶= C[[P ]] = C[[t 1 , . . . , t n ]] as complete local C-algebra. Let Dm be the quantum scattering diagram over R consisting of incoming rays (d j , Ĥd j ) for 1 ⩽ j ⩽ n, where d j = -R ⩾0 m j , and Ĥd j = -i ⩾1 1 (-1) -1 2 sin ̵ h 2 t j ẑ m j = ⩾1 1 (-1) -1 q 2 -q -2 t j ẑ m j ,
where q = e i ̵ h . Let S( Dm ) be the corresponding consistent quantum scattering diagram given by Proposition 1.3, obtained by adding outgoing rays to Dm . We can assume that, for every m ∈ M -{0} primitive, S( Dm ) contains a unique outgoing ray of support R ⩾0 m.

For every m ∈ M -{0} primitive, let P m be the subset of p = (p 1 , . . . , p n ) ∈ P = N n such that ∑ n j=1 p j m j is positively collinear with m:

n j=1 p j m j = p m for some p ∈ N.
Recall that in Section 2, for every m = (m 1 , . . . , m n ), we introduced a log Calabi-Yau surface Y m and for every p = (p 1 , . . . , p n ) ∈ P = N n , we defined a certain genus g log Gromov-Witten N Ym g,p of Y m . 

Ĥm = - i ̵ h p∈Pm g⩾0 N Ym g,p ̵ h 2g n j=1 t p j j ẑ pm .
In the classical limit ̵ h → 0, Theorem 3.1 reduces to the main result (Theorem 5.4) of [START_REF] Gross | The tropical vertex[END_REF], expressing the classical scattering diagram S(D m ) in terms of the genus zero log Gromov-Witten invariants N Ym 0,p . In [START_REF] Gross | The tropical vertex[END_REF], the genus 0 invariants are defined as relative Gromov-Witten invariants of some open geometry. The fact that they coincide with genus 0 log Gromov-Witten invariants follows from arguments of the type of those used in Section 5 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF].

The proof of Theorem 3.1 takes Sections 4, 5 6, and 7. In Section 2.3, we define higher genus log Gromov-Witten invariants N Y m g,w of toric surfaces Y m . In Section 5, we prove a degeneration formula expressing the log Gromov-Witten invariants N Ym g,p of the log Calabi-Yau surface Y m in terms of log Gromov-Witten invariants N Y m g,w of the toric surface Y m . In Section 6, we review, following [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF], the relation between quantum scattering diagrams and Block-Göttsche q-deformed tropical curve count. In Section 7, we conclude the proof by using the main result of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] relating q-deformed tropical curve count and higher genus log Gromov-Witten invariants of toric surfaces.

The consistency of the quantum scattering diagram S( Dm ) translates into the fact that the product, ordered according to the phase of the rays, of the elements Φ Ĥj and Φ Ĥm of the quantum tropical vertex group V̵ h R is equal to the identity. Therefore, one can paraphrase Theorem 3.1 by saying that the log Gromov-Witten invariants N Ym g,p produce relations in the quantum tropical vertex group V̵ h R , or conversely that relations in V̵ h R give constraints on the log Gromov-Witten invariants N Ym g,p . The automorphism Φ Ĥj attached to the incoming rays d j of the quantum scattering diagram S( Dm ) are conjugation by e Ĥd j , ie by

exp ⩾1 1 (-1) -1 q 2 -q -2 t j ẑ m j ,
which can be written as Ψ q (-t j ẑm j ) where

Ψ q (x) ∶= exp - ⩾1 1 x q 2 -q -2 = k⩾0 1 1 -q k+ 1 2 x ,
is the quantum dilogarithm. We warn that various conventions are used for the quantum dilogarithm throughout the literature. We refer for example to [START_REF] Zagier | The dilogarithm function[END_REF] for a nice review of the many aspects of the dilogarithm, including its quantum version.

As the incoming rays of S( Dm ) are expressed in terms of quantum dilogarithms, it is natural to ask if the outgoing rays, which by Theorem 3.1 are generating series of higher genus log Gromov-Witten invariants, can be naturally expressed in terms of quantum dilogarithms. This question is related to the multicover/BPS structure of higher genus log Gromov-Witten theory and is fully answered by Theorem 0.2 in Section 8.

Examples.

In this Section, we give some elementary examples illustrating Theorem 3.1.

3.2.1.

Trivial scattering: propagation of a ray. We take n = 1 and m = (m 1 ) with

m 1 = (1, 0) ∈ M = Z 2 . In this case, R = C[[t 1 ]],
and the quantum scattering diagram Dm contains a unique incoming ray:

d 1 = -R ⩾0 (1, 0) = R ⩾0 (-1, 0) equipped with Ĥd 1 = -i ⩾1 1 (-1) -1 2 sin ̵ h 2 t 1 ẑ( ,0) .
Then the consistent scattering diagram S( Dm ) is obtained by simply propagating the incoming ray, ie by adding the outgoing ray R ⩾0 (1, 0) equipped with

Ĥ(1,0) = -i ⩾1 1 (-1) -1 2 sin ̵ h 2 t 1 ẑ( ,0) .
We start with a fan consisting of the ray R ⩾0 (-1, 0). To get a proper toric surface, we add to the fan the rays R ⩾0 (1, 0), R ⩾0 (0, 1) and R ⩾0 (0, -1). The corresponding toric surface Y m is simply

P 1 × P 1 . We obtain Y m by blowing-up a point on {0} × C * , eg {0} × {1}.
Denote by E the exceptional divisor and F the strict transform of P 1 × {1}. We have

E 2 = F 2 = -1 and E ⋅ F = 1. For ∈ P = N, we have β = [F ]. So, according to Theorem 3.1, one should have, for every ⩾ 1, g⩾0 N Ym g, ̵ h 2g-1 = 1 (-1) -1 2 sin ̵ h 2 .
As F is rigid, contributions to N g, only come from to 1 multicoverings of F and the computation of N g, can be reduced to a computation in relative Gromov-Witten theory of P 1 . Using Theorem 5.1 of [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF], one can check that the above formula is indeed correct. We refer for more details to Lemma 5.9 which plays a crucial role in the proof of Theorem 3.1.

3.2.2.

Simple scattering of two rays. We take n = 2 and m

= (m 1 , m 2 ) with m 1 = (1, 0) ∈ M = Z 2 and m 2 = (0, 1) ∈ M = Z 2 . In this case, R = C[[t 1 , t 2 ]],
and the quantum scattering diagram Dm contains two incoming rays d 1 = R ⩾0 (-1, 0) and d 2 = R ⩾0 (0, -1), respectively equipped with

Ĥd 1 = -i ⩾1 1 (-1) -1 2 sin ̵ h 2 t 1 ẑ( ,0) , and Ĥd 2 = -i ⩾1 1 (-1) -1 2 sin ̵ h 2 t 2 ẑ(0, ) .
Then, because of the Faddeev-Kashaev [START_REF] Faddeev | Quantum dilogarithm[END_REF] pentagon identity

Ψ q (z (1,0) )Ψ q (z (0,1) ) = Ψ q (z (0,1) )Ψ q (z (1,1) )Ψ q (z (1,0) )
satisfied by the quantum dilogarithm Ψ q , the consistent scattering diagram S( Dm ) is obtained by propagation of the two incoming rays in outgoing rays, as in 3.2.1, and by addition of a third outgoing ray R ⩾0 (1, 1) equipped with

Ĥ(1,1) = -i ⩾1 1 (-1) -1 2 sin ̵ h 2 t 1 t 2 ẑ( , ) .
We start with the fan consisting of the rays R ⩾0 (-1, 0) and R ⩾0 (0, -1). To get a proper toric surface, we can for example add to the fan the ray R ⩾0 (1, 1). The corresponding toric surface Y m is simply P 2 , with its toric divisors D 1 , D 2 , D 3 . We obtain Y m by blowing a point p 1 on D 1 and a point p 2 on D 2 , both away from the torus fixed points. We denote by E 1 and E 2 the corresponding exceptional divisors and F the strict transform of the unique line in P 2 passing through p 1 and p 2 . We have

E 2 1 = E 2 2 = F 2 = -1 and E 1 ⋅ F = E 2 ⋅ F = 1. For ∈ N and ( , ) ∈ P = N 2 , we have β ( , ) = [F ]. So according to Theorem 3.1, one should have, for every ⩾ 1, g⩾0 N Ym g,( , ) ̵ h 2g-1 = 1 (-1) -1 2 sin ̵ h 2 .
As F is rigid, contributions to N g,( , ) only come from to 1 multicoverings of F and the computation of N g,( , ) reduces to a computation identical to the one used for N g, in 3.2.1.

More complicated scatterings. Already at the classical level of [GPS10]

, general scattering diagrams can be very complicated. A fortiori, general quantum scattering diagrams are extremely complicated. Direct computation of the higher genus log Gromov-Witten invariants N Ym g,p is a difficult problem in general. In particular, unlike what happens in 3.2.1 and 3.2.2, linear systems defined by β p and the tangency condition contain in general curves of positive genus, and so genus g > 0 stable log maps appearing in the moduli space defining N Ym g,p do not factor through genus 0 curves in general. As consistent scattering diagrams can be algorithmically computed, one can view Theorem 3.1 as an answer to the problem of effectively computing the higher genus log Gromov-Witten invariants N Ym g,p .

3.3. Orbifold generalization. As in Section 5.5 and 5.6 of [START_REF] Gross | The tropical vertex[END_REF] for the classical case, we can give an enumerative interpretation of quantum scattering diagrams more general than those considered in Theorem 3.1 if we allow ourselves to work with orbifold Gromov-Witten invariants.

We fix m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors of M = Z 2 and r = (r 1 , . . . , r n ) an n-tuple of positive integers. We denote P ∶= N n and we take R ∶= C[[P ]] ∶= C[[t 1 , . . . , t n ]] as complete local C-algebra. Let P r be the set of p = (p 1 , . . . , p n ) ∈ P such that r j divides p j for every 1 ⩽ j ⩽ n. Let Dm,r be the quantum scattering diagram over R consisting of incoming rays (d j , Ĥd j ), 1 ⩽ j ⩽ n, where

d j = -R ⩾0 m j , and Ĥd j = -i ⩾1 1 (-1) -1 2 sin r j ̵ h 2 t r j j ẑr j m j = ⩾1 1 (-1) -1 q r j 2 -q -r j 2 t r j j ẑr j m j ,
where q = e i ̵ h . Let S( Dm,r ) be the corresponding consistent quantum scattering diagram given by Proposition 1.3, obtained by adding outgoing rays to Dm,r . For every m ∈ M -{0}, let P r,m be the subset of p = (p 1 , . . . , p n ) ∈ P r such that ∑ n j=1 p j m j is positively collinear with m:

n j=1 p j m j = p m for some p ∈ N.
Recall that in Section 2.5, for every m = (m 1 , . . . , m n ) and r = (r 1 , . . . , r n ), we introduced an orbifold log Calabi-Yau surface Y m,r and for every p = (p 1 , . . . , p n ) ∈ P r , we defined a certain genus g orbifold log Gromov-Witten N Ym,r g,p of Y m,r . Theorem 3.2. For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M , every r = (r 1 , . . . , r n ) an n-tuple of positive integers and every m ∈ M -{0} primitive, the Hamiltonian Ĥm attached to the outgoing ray R ⩾0 m in the consistent quantum scattering diagram S( Dm,r ) is given by

Ĥm = - i ̵ h p∈Pr,m g⩾0 N Ym,r g,p ̵ h 2g n j=1 t p j j ẑ pm .
For r = (1, . . . , 1), Theorem 3.2 reduces to Theorem 3.1. In the classical limit ̵ h → 0, Theorem 3.1 reduces to Theorem 5.6 of [START_REF] Gross | The tropical vertex[END_REF]. The proof of Theorem 3.2 is entirely parallel to the proof of its special case Theorem 3.1. The key point is that orbifold and logarithmic questions never interact in a non-trivial way. The only major needed modification is an orbifold version of the multicovering formula of Lemma 5.9. This is done in Lemma 7.2, Section 7.2. In the classical limit ̵ h → 0, Theorem 5.6 of [START_REF] Gross | The tropical vertex[END_REF], classical limit of our Theorem 3.2, is enough to give an enumerative interpretation of the resulting consistent scattering diagram in such generality. Indeed, the genus 0 orbifold Gromov-Witten story takes as input classical Hamiltonians

H r = ⩾1 (-1) -1 r 2 t r z r = 1 r (tz) r + O((tz) r+1 ) ,
for all r ⩾ 0, which form a basis of C[(tz)]. In particular, at every finite order in m R , every classical scattering diagram consisting of n incoming rays meeting at 0 ∈ R 2 coincides with a classical scattering diagram whose consistent completion has an enumerative interpretation in terms of genus 0 orbifold Gromov-Witten invariants. In the quantum case, things are more complicated due to the extra dependence in ̵ h. More precisely, Theorem 3.2 only covers a particular class of Hamiltonians Ĥd j whose form is dictated by the multicovering structure of higher genus orbifold Gromov-Witten theory.

Gromov-Witten theory of toric surfaces

For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M = Z 2 , we defined in Section 2.1 a log Calabi-Yau surface Y m obtained as the blow-up of some toric surface Y m , and we introduced in Section 2.3 a collection of log Gromov-Witten invariants N Ym g,p of Y m . In the present Section, we define log Gromov-Witten invariants N Y m g,w of the toric surface Y m . In Section 5, we will compare the invariants N Ym g,p of Y m and N Y m g,w of Y m .

4.1. Curve classes on toric surfaces. Recall from Section 2.1 that Y m is a proper toric surface whose fan contains the rays -R ⩾0 m j for every 1 ⩽ j ⩽ n. We denote by ∂Y m the toric boundary divisor of Y m . We will consider curves in Y m meeting ∂Y m in a number of prescribed points with prescribed tangency conditions and at one unprescribed point with prescribed tangency condition. In this Section, we explain how to parametrize the relevant curve classes in terms of the prescribed tangency conditions w j at the prescribed points.

Let s be a positive integer and let w = (w 1 , . . . , w s ) be an s-tuple of non-zero vectors in M such that for every 1 ⩽ r ⩽ s, there exists 1 ⩽ j ⩽ n such that -R ⩾0 w r = -R ⩾0 m j . In particular, the ray -R ⩾0 w r belongs to the fan of Y m and we denote by D wr the corresponding toric divisor of Y m . Note that we can have D wr = D w r ′ even if r ≠ r ′ . We denote by w r ∈ N the divisibility of w r ∈ M = Z 2 , ie the largest positive integer k such that one can write w r = kv with v ∈ M . One should think about w r as defining a toric divisor D wr and an intersection number w r with D wr for a curve in Y m .

We assume that ∑ s r=1 w r ≠ 0 and so we can uniquely write s r=1 w r = w m w , with m w ∈ M primitive and w ∈ N.

We explain now how to define a curve class β w ∈ H 2 (Y m , Z). In short, β w is the class of a curve in Y m having for every 1 ⩽ r ⩽ s, an intersection point of intersection number w r with D wr , and exactly one other intersection point with the toric boundary ∂Y m .

More precisely, the vector m w ∈ M belongs to some cone of the fan of Y m and we write the corresponding decomposition 

m w = a L w m L w + a R w m R w , where m L w , m R w ∈ M are
β w ⋅ D wr = r ′ ,Dw r ′ =Dw r w r ′ ,
• The intersection number with D L w :

β w ⋅ D L w = w a L w + r,Dw r =D L w w r .
• The intersection number with D R w :

β w ⋅ D R w = w a R w + r,Dw r =D R w w r .
• The intersection number with every toric divisor D different from D wr for every 1 ⩽ r ⩽ s, and from D L w and D R w : Z). We would like to consider genus g stable maps f ∶ C → Y m of class β w , intersecting ∂Y m in s + 1 points, s of them being on the divisors D wr with contact order w r for 1 ⩽ r ⩽ s, and the last one having contact number w a L w with the divisor D L w and contact order w a R w with the divisor D R w . We also would like to fix the position of the s intersection numbers with the divisors D wr . It is easy to check that the expected dimension of this enumerative problem is g. As in Section 2.3, we will cut down the virtual dimension from g to zero by integration of the top lambda class.

β w ⋅ D = 0 . Such class β w ∈ H 2 (Y m , Z)
As in Section 2.3, to get proper moduli spaces, we work with stable log maps. We consider the divisorial log structure on Y m defined by the toric divisor ∂Y m and use it to view Y m as a smooth log scheme. Let M g,w (Y m , ∂Y m ) be the moduli space of genus g stable log maps to Y m , of class β w , with s + 1 tangency conditions along ∂Y m defined by the s + 1 vectors -w 1 , . . . , -w s , w m w in M . It is a proper Deligne-Mumford stack coming with a (g + s)-dimensional virtual fundamental class

[M g,w (Y m , ∂Y m )] virt .
For every 1 ⩽ r ⩽ s, we have an evaluation map

ev r ∶ M g,w (Y m , ∂Y m ) → D wr . If π∶ C → M g,w (Y m , ∂Y m ) is the universal curve, of relative dualizing sheaf ω π , then the Hodge bundle E ∶= π * ω π is a rank g vector bundle over M g,w (Y m , ∂Y m ), of top Chern class λ g ∶= c g (E).
We define log Gromov-Witten invariants

N Y m g,w ∈ Q by N Y m g,w ∶= [M g,w (Y m,∂Y m)] virt (-1) g λ g s r=1 ev * r (pt r ) ,
where pt r ∈ A 1 (D wr ) is the class of a point on D wr . This is a rigorous definition of the enumerative problem sketched at the beginning of this Section.

5. Degeneration from log Calabi-Yau to toric 5.1. Degeneration formula: statement. We fix m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M = Z 2 . In Section 2.1, we defined a log Calabi-Yau surface Y m obtained as blow-up of some toric surface Y m . In Section 2.3, we introduced a collection of log Gromov-Witten invariants N Ym g,p of Y m , indexed by n-tuples p = (p 1 , . . . , p n ) ∈ P = N n . In Section 4.2, we defined log Gromov-Witten invariants N Y m g,w of the toric surface Y m indexed by s-tuples w = (w 1 , . . . , w s ) ∈ M s . The main result of this section, Proposition 5.1, is an explicit formula expressing the invariants N Ym g,p in terms of the invariants N Y m g,w . We first need to introduce some notations to relate the indices p = (p 1 , . . . , p n ) in the invariants N Ym g,p and the indices w = (w 1 , . . . , w s ) in the invariants N Y m g,w . The way it goes is imposed by the degeneration formula in Gromov-Witten theory and hopefully will become conceptually clear in Section 5.6.

We fix p = (p 1 , . . . , p n ) ∈ P = N n . We call k a partition of p, and we write k ⊢ p, if k is an n-tuple (k 1 , . . . , k n ), with k j a partition of p j for every 1 ⩽ j ⩽ n. We encode a partition k j of p j as a sequence k j = (k ,j ) ⩾1 of nonnegative integers, all zero except finitely many of them, such that ⩾1 k ,j = p j .

Given a partition k of p, we define

s(k) ∶= n j=1 ⩾1 k ,j .
We now define, given a partition k of p, a s(k)-tuple

w(k) = (w 1 (k), . . . , w s(k) (k))
of non-zero vectors in M = Z 2 , by the following formula:

w r (k) ∶= m j if 1 + j j ′ =1 -1 ′ =1 k ′ ,j ′ ⩽ r ⩽ k ,j + j j ′ =1 -1 ′ =1 k ′ ,j ′ .
In particular, for every 1 ⩽ j ⩽ n and ⩾ 1, the s(k)-tuple w(k) contains k ,j copies of the vector m j ∈ M . Note that because m j is primitive in M , we have = w r (k) , where w r (k) is the divisibility of w r in M . Remark also that

s(k) r=1 w r (k) = n j=1 ⩾1 k ,j m j = n j=1 p j m j = p m p ,
and so, comparing notations of Sections 2.2 and 4.1, w(k) = p and m w(k) = m p .

Using the above notations, we can now state Proposition 5.1.

Proposition 5.1. For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M = Z 2 , and every p = (p 1 , . . . , p n ) ∈ P = N n , the log Gromov-Witten invariants N Ym g,p of the log Calabi-Yau surface Y m are expressed in terms of the log Gromov-Witten invariants N Y m g,w of the toric surface Y m by the following formula:

g⩾0 N Ym g,p ̵ h 2g-1 = k⊢p g⩾0 N Y m g,w(k) ̵ h 2g-1+s(k) n j=1 ⩾1 1 k ,j ! k ,j ⎛ ⎝ (-1) -1 1 2 sin ̵ h 2 ⎞ ⎠ k ,j
, where the first sum is over all partitions k of p.

The proof of Proposition 5.1 takes the remainder of Section 5. We consider the degeneration from Y m to Y m introduced in Section 5.3 of [GPS10] and we apply a higher genus version of the argument of [START_REF] Gross | The tropical vertex[END_REF]. Because the general degeneration formula in log Gromov-Witten theory is not yet available, we give a proof of the needed degeneration formula following the general strategy used in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF], which uses specific vanishing properties of the top lambda class. We assume for simplicity that m p is distinct from all -m j . It is easy to adapt the argument in this special case. 5.2. Degeneration set-up. We first review the construction of the degeneration considered in Section 5.3 of [START_REF] Gross | The tropical vertex[END_REF].

We fix m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M = Z 2 . Recall from Section 2.1 that Y m is a proper toric surface whose fan contains the rays -R ⩾0 m j for 1 ⩽ j ⩽ n and that we denote by D m j the corresponding toric divisors. For every 1 ⩽ j ⩽ n, we also choose a point x j in general position on the toric divisor D m j . Let Y m × C → C be the trivial family over C and let {x j } × C be the sections determined by the points x j . Up to doing some toric blow-ups, which do not change the log Gromov-Witten invariants that we are considering by [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF], we can assume that the divisors D m j are disjoint.

The degeneration of Y m to the normal cone of

D m 1 ∪ ⋅ ⋅ ⋅ ∪ D mn , Y m ∶ Y m → C , is obtained by blowing-up the loci D m 1 , . . . , D mn over 0 ∈ C in Y m × C.
The special fiber is given by

-1 Y m (0) = Y m ∪ n ⋃ j=1 P j ,
where, denoting by N Dm j Y m the normal line bundle to D m j in Y m , P j is the projective bundle over D m j obtained by projectivization of the rank two vector bundle

O Dm j ⊕ N Dm j Y m over D m j . The embeddings O Dm j ↪ O Dm j ⊕ N Dm j Y m and N Dm j Y m ↪ O Dm j ⊕ N Dm j Y m
induce two sections of P j → D m j that we denote respectively by D m j ,∞ and D m j ,0 . In -1 Y m (0), the divisor D m j in Y m is glued to the divisor D m j ,0 in P j . The strict transform of the section

{x j } × C of Y m × C is a section S j of Y m , whose intersection with -1 Y m (0) is a point x j,∞ ∈ D m j ,∞ .
For every 1 ⩽ j ⩽ n, we blow-up the section S j in Y m and we obtain a family

Ym ∶ Y m → C , whose fibers away from zero are isomorphic to the surface Y m , and whose special fiber is given by

Y m,0 ∶= -1 Ym (0) = Y m ∪ n ⋃ j=1 Pj ,
where Pj is the blow-up of P j at all the points x j ′ ,∞ such that P j ′ = P j . We denote by E j ′ the corresponding exceptional divisor in Pj and C j ′ the strict transform in Pj of the unique P 1 -fiber of P j → D m j containing x j ′ ,∞ . We have E j ′ ⋅ C j ′ = 1 in Pj . We still denote by D m j ,0 and D m j ,∞ the strict transforms of D m j ,0 and D m j ,∞ . We denote by ∂ Pj the "boundary" of Pj , which is the union of D m j ,0 , D m j ,∞ , and of the strict transforms of the two P 1 -fibers of P j → D m j over the two intersection points of D m j with the remaining part of ∂Y m .

We would like to obtain Proposition 5.1 by application of a degeneration formula in log Gromov-Witten theory to the family Ym ∶ Y m → C , to relate the invariants N Ym g,p of the general fiber Y m to the invariants N Y m g,w of Y m which appears as component of the special fiber Y m,0 . In [START_REF] Gross | The tropical vertex[END_REF], Gross, Pandharipande and Siebert work with an ad hoc definition of the genus 0 invariants as relative Gromov-Witten invariants of some open geometry and they only need to apply the usual degeneration formula in relative Gromov-Witten theory. In our present setting, with log Gromov-Witten invariants in arbitrary genus, we cannot follow exactly the same path.

Because the general degeneration formula in log Gromov-Witten theory is not yet available, we follow the strategy used in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]. We first apply the decomposition formula of Abramovich, Chen, Gross and Siebert [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF]. We then use the vanishing property of the top lambda class to restrict the terms appearing in the decomposition formula and to prove a gluing formula by working only with torically transverse stable log maps. We review the decomposition formula of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF] in Section 5.3. In Section 5.4, we derive constraints on the terms contributing to the decomposition formula. In Section 5.5, we prove a gluing formula computing each of these terms. We end the classification of the terms contributing to the decomposition formula in Section 5.6. We conclude the proof of Proposition 5.1 in Section 5.7.

Statement of the decomposition formula.

We consider Y m as a smooth log scheme for the divisorial log structure defined by the union of the "vertical" divisor Y m,0 with the strict transform of the "horizontal" divisor ∂Y m × C. Viewing C as a smooth log scheme for the divisorial log structure defined by the divisor {0} ⊂ C, we obtain that Ym is a log smooth morphism. Restricting to the special fiber gives a structure of log scheme on Y m,0 and a log smooth morphism

Y m,0 ∶ Y m,0 → pt N ,
where the standard log point pt N is obtained by restriction to {0} ⊂ C of the divisorial log structure on C.

Let M g,p (Y m,0 ) be the moduli space of genus g stable log maps to Y m,0 ∶ Y m,0 → pt N , of class β p , with a marked point of contact order p m p . This is a proper Deligne-Mumford stack coming with a g-dimensional virtual fundamental class

[M g,p (Y m,0 )] virt .
By deformation invariance of the virtual fundamental class on moduli spaces of stable log maps in log smooth families, we have

N Ym g,p = [M g,p(Ym,0)] virt (-1) g λ g .
The decomposition formula of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF] gives a decomposition of [M g,p (Y m,0 )] virt indexed by tropical curves mapping to the tropicalization of Y m,0 . These tropical curves encode the intersection patterns of irreducible components of stable log maps mapping to the special fiber of the degeneration. We refer to Appendix B of [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF] and Section 2 of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF] for the general notion of tropicalization of a log scheme. We denote by Σ(X) the tropicalization of a log scheme X. The tropicalization of a log scheme is a cone complex, ie an abstract gluing of cones.

We start by describing the tropicalization Σ(Y m,0 ) of Y m,0 . Tropicalizing the log morphism Y m,0 ∶ Y m,0 → pt N , we obtain a morphism of cone complexes

Σ( Y m,0 )∶ Σ(Y m,0 ) → Σ(pt N ) .
We have Σ(pt N ) = R ⩾0 and Σ(Y m,0 ) is naturally identified with the cone over the fiber Σ( Y m,0 ) -1 (1) at 1 ∈ R ⩾0 . It is thus enough to describe the polyhedral complex

Y trop m,0 ∶= Σ( Y m,0 ) -1 (1) .
The polyhedral complex Y trop m,0 has one vertex v 0 dual to Y m and vertices v j dual to Pj for all 1 ⩽ j ⩽ n. For every 1 ⩽ j ⩽ n, there is an edge e j,0 of integral length 1, connecting v 0 and v j , dual to D m j ,0 , and an unbounded edge e j,∞ attached to v j , dual to D m j ,∞ .

The best way to understand Y trop m,0 probably is to think about it as a modification of the tropicalization of Y m . As Y m is simply a toric surface, its tropicalization Σ(Y m ) can be naturally identified with R 2 endowed with the fan decomposition. In particular, Σ(Y m ) has one vertex v 0 = 0 ∈ R 2 and unbounded edges -R ⩾0 m j , attached to v 0 and dual to the toric boundary divisors D m j . To go from Σ(Y m ) to Y trop m,0 , one adds a vertex v j on each primitive integral point of -R ⩾0 m j , which has the effect of splitting -R ⩾0 v j into a bounded edge e j,0 and an unbounded edge e j,∞ . One still has to cut along e j,∞ and to insert there two two-dimensional cones dual to the two "corners" of ∂ Pj which are on D m j ,∞ . In particular, for every 1 ⩽ j ⩽ n, the vertex v j is 4-valent and looks locally like the fan of the Hirzebruch surface P j . In general, there is no global linear embedding of We refer to Definition 2.5.3 of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF] for the general definition of parametrized tropical curve h∶ Γ → Y trop m,0 . It is a natural generalization of the notion of parametrized tropical curve in R 2 that we will use and review in Section 6.1. In particular, Γ is a finite graph, with bounded and unbounded edges mapped by h to Y trop m,0 in an affine linear way and vertices V of Σ are decorated by some genus g(V ). The total genus g of the parametrized tropical curve is defined by g Γ +∑ V g(V ), where g Γ is the genus of the graph Γ.

Y trop m,0 in R 2 .
Some distinction between Y trop m,0 and R 2 , related to the fact that the components Pj of Y m,0 are non-toric, is that the usual form of the balancing condition for a tropical curve in R 2 is not necessarily valid at vertices of Γ mapping to a vertex v j of Y trop m,0 for some 1 ⩽ j ⩽ n. For vertices of Γ mapping away from the vertices v 1 , . . . , v n of Y trop m,0 , the usual balancing condition applies.

Following Definition 4.2.1 of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF], a decorated parametrized tropical curve is a parametrized tropical curve h∶ Γ → Y trop m,0 where each vertex V has a further decoration by a curve class β(V ) in the stratum of Y m,0 dual to the stratum of Y trop m,0 where this vertex is mapped. The curve class β(V ) is assumed to be numerically compatible with the tangency conditions imposed by the edges incident to V . In short, a decorated parametrized tropical curve to Y trop m,0 encodes all the necessary combinatorial information to be a fiber of the tropicalization of a stable log maps to Y m,0 .

The decomposition formula of [ACGS17a] involves decorated parametrized tropical curves which are rigid in their combinatorial type. This is easy to understand intuitively: the decomposition formula is supposed to describe how the moduli space of stable log maps breaks into pieces under degeneration. If the moduli space of tropical curves were the tropicalization, and so the dual intersection complex, of the moduli space of stable log maps, components of the moduli space of stable log maps should be in bijection with the zero dimensional strata of the moduli space of tropical curves, ie with rigid tropical curves. According to the decomposition formula of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF], this intuitive picture is correct at the virtual level.

The tropical curves relevant to the study of M g,p (Y m,0 ) are genus g decorated parametrized tropical curves Γ → Y trop m,0 of type p, ie with only one unbounded edge, of weight p and of direction m p , and with total curve class β p . According to Section 4.4 of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF], for every such h∶ Γ → Y trop m,0 , we have the notion of stable log map marked by h, and a moduli space M h g,p (Y m,0 ) of stable log maps marked by h, which is a proper Deligne-Mumford stack equipped with a virtual fundamental class [M h g,p (Y m,0 )] virt . Forgetting the marking by h gives a morphism

i h ∶ M h g,p (Y m,0 ) → M h g,p (Y m,0
) . We can finally state the decomposition formula, Theorem 4.8.1 of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF]:

[M g,p (Y m,0 )] virt = h n h Aut(h) (i h ) * [M h g,p (Y m,0 )] virt ,
where the sum is over rigid genus g decorated parametrized tropical curves h∶ Γ → Y trop m,0 of type p, n h is the smallest positive integer such that after scaling by n h , h gets integral vertices and integral lengths, and Aut(h) is the order of the automorphism group of h.

Constraints on rigid tropical curves.

In order to extract some explicit information from the decomposition formula, the first step is to identify the rigid decorated parametrized tropical curves h∶ Γ → Y trop m,0 of type p. This is in general a difficult question. But because we are only interested in numerical invariants obtained by integration of the top lambda class λ g , and not in the full virtual class, the situation is much simpler by the following vanishing result.

Lemma 5.2. Let h∶ Γ → Y trop m,0 be a rigid genus g decorated parametrized tropical curve of type p with Γ of positive genus. Then we have

[M h g,p (Y m,0 )] virt (-1) g λ g = 0 . Proof. If f ∶ C → Y trop m,0 is a stable log map in M h g,p (Y m,0
), then, by definition of the marking by h, the dual intersection complex of C retracts onto Γ and in particular, has genus bigger than the genus of Γ, which is positive by hypothesis. It follows that C contains a cycle of irreducible components. It is then a general property of λ g that it vanishes on families of curves containing cycles of irreducible components (eg see Lemma 8 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]).

For every h∶ Γ → Y trop m,0 a rigid genus g decorated parametrized tropical curve of type p, we define

N h g,p ∶= [M h g,p (Y m,0 )] virt (-1) g λ g .
Proposition 5.3. We have

N Ym g,p = h n h Aut(h) N h g,p ,
where the sum is over rigid genus g decorated parametrized tropical curves h∶ Γ → Y trop m,0 of type p with Γ of genus 0.

Proof. This follows from integrating (-1) g λ g over the decomposition formula of [START_REF] Abramovich | Decomposition of degenerate Gromov-Witten invariants[END_REF], reviewed at the end of Section 5.3. By Lemma 5.2, rigid tropical curves h∶ Γ → Y trop m,0 with Γ of positive genus do not contribute.

Proposition 5.4. Let h∶ Γ → Y trop m,0 be a rigid genus g decorated parametrized tropical curve of type p, with Γ of genus 0 and N h g,p ≠ 0. Then, • for every vertex V of Γ, we have h(V ) = v j for some 0 ⩽ j ⩽ n, • every bounded edge E of Γ connects a vertex V 0 with h(V 0 ) = v 0 and a vertex V + with h(V + ) = v j for some 1 ⩽ j ⩽ n. In particular, the image h(E) is the bounded edge e j,0 of Y trop m,0 . • for every vertex V of Γ such that h(V ) = v j for some 1 ⩽ j ⩽ n, there exists a unique index j(V ) such that 1 ⩽ j(V ) ⩽ n and the curve class β(V ) is a positive multiple of the curve class [C j(V ) ]. In particular, we have h(V ) = v j(V ) .

The proof of Proposition 5.4 takes the remainder of Section 5.4. The argument is similar to the one used in the proof of Proposition 11 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF], itself a tropical version of the properness argument given in Proposition 4.2 of [START_REF] Gross | The tropical vertex[END_REF]. By iterative application of the balancing condition, we will argue that the source Γ of a rigid decorated parametrized tropical curve h∶ Γ → Y trop m,0 violating the conclusions of Proposition 5.4 necessarily contains a cycle and so has positive genus. We refer to Proposition 1.15 of [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF] for the general form of the balancing condition in log Gromov-Witten theory.

Let h∶ Γ → Y trop m,0 be a rigid genus g parametrized tropical curve of type p. As h is rigid, there is no edge of Γ contracted by h. The fact that h has type p implies that h has only one unbounded edge and this unbounded edge has weight p and direction m p .

Lemma 5.5. If there exists a vertex V of Γ such that h(V ) ∉ {v 0 , v 1 , . . . , v n }, then Γ has positive genus.

Proof. We first assume h(V ) is contained in the interior of one of the two-dimensional cones C of Y trop m,0 . Because h(V ) is away from the vertices v j , the situation is locally toric and the balancing condition has to be satisfied at h(V ). If h(V ) ∉ R ⩾0 m p , there is no unbounded edge of Γ incident to V , and so by balancing, not all edges attached to h(V ) can point towards the vertex of C, ie at least one of those edges points towards a boundary ray of C. If h(V ) ∈ R ⩾0 m p , we can get the same conclusion: if all edges passing through h(V ) were parallel to R ⩾0 m p , this would contradict the rigidity of h because one could move h(V ) along R ⩾0 m p .

Next, we follow the proof of Proposition 11 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]. Fixing a cyclic orientation on the collection of cones and rays of Y trop m,0 , we can assume that this edge points towards the left (from the point of view of the vertex of the cone, looking inside the cone) ray of C. If this edge ends on some vertex still contained in the interior of C, then the balancing condition still applies and so there is still an edge attached to this vertex pointing towards the left ray of C. Because Γ has finitely many vertices, iterating this construction finitely many times, we construct a path starting from h(V ) and ending at some vertex h(V ′ ) on the left boundary ray of C. Let C ′ be the two-dimensional cone of Y trop m,0 incident to C near h(V ′ ). Then we claim that by the balancing condition, there exists an edge attached to h(V ′ ) pointing towards the left ray of C ′ . Indeed, the only case for which the balancing condition is not a priori satisfied is if h(V ′ ) = v j for some j. But at v j , the non-toric nature of Pj only modifies the balancing condition in the direction parallel to e j,0 and e j,∞ : if there is an incoming edge with non-zero transversal direction, then there is still an outgoing edge with non-zero transversal direction. Indeed, Pj is obtained from the Hirzebruch surface P j → D m j by blowing-up points on the divisors D m j ,∞ : this does not affect the fact that the general fibers of Pj → D m j are still linearly equivalent.

Iterating this construction, we obtain a path in Γ whose image by h in Y trop m,0 is a path which intersects successive rays in the anticlockwise order. Because Γ has finitely many edges, this path has to close eventually and so Γ contains a non-trivial cycle, ie Γ has positive genus.

It remains to treat the case where h(V ) is in the interior of a one dimensional ray of Y trop m,0 . If all the edges attached to h(V ) were parallel to the ray, this would contradict the rigidity of h because one could move h(V ) along the ray. So at least one of the edges attached to h(V ) is not parallel to the ray and by balancing, we can assume that there is an edge attached to h(V ) pointing towards the 2-dimensional cone of Y trop m,0 left to the ray. We can then apply the iterative argument described above.

We continue the proof of Proposition 5.4. We are assuming that Γ has genus 0. By Lemma 5.5, every vertex V of Γ maps to one of the vertices v 0 , v 1 , . . . , v n of Γ. If there were an edge connecting a vertex mapped to v j with a vertex mapped to v j ′ , 1 ⩽ j, j ′ ⩽ n with j ≠ j ′ , then we could apply the iterative argument used in the proof of Lemma 5.5, and this would contradict the assumption that Γ has genus 0. It follows that every bounded edge in Γ incident to some vertex mapped to v j for some 1 ⩽ j ⩽ n is also incident to some vertex mapped to v 0 .

Let V be a vertex of Γ such that h(V ) = v j for some 1 ⩽ j ⩽ n. As we are assuming that m p ≠ -m j for every j, the unique unbounded edge of Γ is not incident to V , and so all edges incident to V are also incident to a vertex mapped to v 0 . The only curve classes numerically compatible with these tangency conditions are positive multiples of the classes [C j ]. Therefore, there exists a unique 1 ⩽ j(V ) ⩽ n such that β(V ) is a positive multiple of [C j(V ) ]. This concludes the proof of Proposition 5.4. 5.5. Gluing formula. According to Proposition 5.3, the computation of the log Gromov-Witten invariants N Ym g,p is reduced to the computation of the invariants

N h g,p ∶= [M h g,p (Y m,0 )] virt (-1) g λ g ,
where h∶ Γ → Y trop m,0 is a rigid genus g decorated parametrized tropical curve of type p with Γ of genus 0, and where M h g,p (Y m,0 ) is a moduli space of stable log maps to Y m,0 marked by h, ie whose tropicalization is equipped with a retraction to h.

According to Proposition 5.4, the image by h of the bounded edges of Γ is contained in the 1-dimensional part of the polyhedral decomposition of Y trop m,0 . Therefore, cutting the bounded edges, we obtained well-defined numerical data to define moduli spaces M V of stable log maps attached to the vertices V of Γ. More precisely, we define the moduli spaces M V as follows.

For V a vertex such that h(V ) = v 0 , M V is the moduli space of genus g(V ) and class β(V ) stable log maps to Y m with tangency conditions along ∂Y m defined by the weighted edges of Γ attached to V . As Y m is toric, the class β(V ) is uniquely determined by the numerical compatibility with the tangency conditions along ∂Y m .

Let V be a vertex such that h(V ) ≠ v 0 . By Proposition 5.4, there exists a unique 1 ⩽ j(V ) ⩽ n such that h(V ) = v j(V ) and β(V ) is a positive multiple of [C j(V ) ]. We endow Pj(V ) with the divisorial log structure defined by ∂ Pj(V ) Then, M V is the moduli space of genus g(V ) class β(V ) stable log maps to Pj(V ) with contact orders along ∂ Pj defined by the weighted edges of Γ attached to V . As such an edge always connects V with a vertex mapped to v 0 , these contact orders are only non-trivial along the divisor D m j(V ) ,0 . The positive integer (V ) such that β(V ) = (V )[C j(V ) ] is necessarily equal to the sum of weights of edges incident to V by numerical compatibility of β(V ) with the tangency conditions.

For every bounded edge E of Γ, we define j(E) ∶= j(V ), where V is the unique vertex of Γ incident to E such that h(V ) ≠ v 0 , and we set D E ∶= D m j(E) . We denote by w(E) the weight of E.

By general log Gromov-Witten theory [START_REF] Gross | Logarithmic Gromov-Witten invariants[END_REF], each moduli space M V comes with a virtual fundamental class [M V ] virt . For V a vertex with h(V ) = v 0 , we define

N V ∶= [M V ] virt (-1) g(V ) λ g(V ) V ∈E ev * E (pt E ) ,
where the product is over the bounded edges E incident to V , ev E is the evaluation map at the corresponding contact point with the divisor D E , and pt E ∈ A 1 (D E ) is the class of a point on D E . For a vertex V with h(V ) ≠ v 0 , we define

N V ∶= [M V ] virt (-1) g(V ) λ g(V ) .
Proposition 5.6. For every h∶ Γ → Y trop m,0 a rigid genus g decorated parametrized tropical curve of type p with Γ of genus 0 and N h g,p ≠ 0, we have

N h g,p = ∏ E w(E) lcm{w(E)} E V N V ,
where the index E runs over bounded edges of Γ and the index V over vertices of Γ.

The proof of Proposition 5.6 takes the remainder of Section 5.5. The moduli space M h g,p (Y m,0 ) parametrizes stable log maps marked by h, and so in general contains stable log maps whose tropicalization is not h but only retracts onto h. Such stable log maps might interact in a complicated way with the log structure of Y m,0 and their general cutting and gluing properties have not been worked out yet.

We go around this issue by following the strategy used in Section 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]. On an open locus of torically transverse stable maps, the above mentioned problems do not arise and the difficulty of the gluing problem is of the same level as the usual degeneration formula in relative Gromov-Witten theory. The log version of this gluing problem has been recently treated in full detail by Kim, Lho and Ruddat [START_REF] Kim | The degeneration formula for stable log maps[END_REF]. On the complement of the nice locus of torically transverse stable log maps, a combinatorial argument described in Proposition 11 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] implies that one of the relevant curves will always contain a non-trivial cycle of components. By standard vanishing properties of the lambda class, it follows that we can ignore this bad locus if we only care about numerical invariants obtained by integration of a top lambda class, which is our case.

We give now an outline of the proof, referring to [START_REF] Kim | The degeneration formula for stable log maps[END_REF] and Section 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] for some of the steps. We have an evaluation morphism ev∶

V M V → E D 2 E ,
where the left product is over the vertices of Γ and where the right product is over the bounded edges of Γ. Let δ∶

E D E → E D 2 E
be the diagonal morphism. Using the morphisms ev and δ, we define the fiber product

M ∶= V M V × ∏ E D 2 E E D E .
We define a cycle class [M] virt on M by

[M] virt ∶= δ ! V [M V ] virt ,
where δ ! is the refined Gysin morphism (see Section 6.2 of [START_REF] Fulton | Intersection theory[END_REF]) defined by δ.

The following Lemma will play for us the same role played by Lemma 16 in Section 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF].

Lemma 5.7. Let C Y m,0 W pt N , f π Y m,0 g be a point of M h g,p (Y m,0 ). Let Σ(C) Σ(Y m,0 ) Σ(W ) Σ(pt N ) . Σ(f ) Σ(π) Σ( Y m,0 ) Σ(g)
be its tropicalization. For every b ∈ Σ(g) -1 (1), let

Σ(f ) b ∶ Σ(C) b → Σ( Y m,0 ) -1 (1) = Y trop m,0
be the fiber of Σ(f ) over b. For every bounded edge E of Γ, let E Σ(f ) b be the edge of Σ(f ) b marked by E. Then, we have

h(E Σ(f ) b ) ⊂ h(E) = e j(E),0 .
Proof. This follows from the fact that C j is the unique curve in Pj of class [C j ].

Given a stable log map f ∶ C → Y m,0 marked by h, we have nodes of C in correspondence with the bounded edges of Γ. Cutting C along these nodes, we obtain a morphism cut∶ M h g,p (Y m ∂Y m ) → M . By Lemma 5.7, each cut is locally identical to the corresponding cut in a degeneration along a smooth divisor and so we can refer to Section 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] or Section 5 of [START_REF] Kim | The degeneration formula for stable log maps[END_REF] for a precise definition of the cut morphism dealing with log structures.

We say that a stable log map f ∶ C → Y m is torically transverse if its image does not contain any of the torus fixed points of Y m , ie if its image does not pass through the "corners" of the toric boundary divisor ∂Y m , ie if its tropicalization has no vertex mapping in the interior of one of the two-dimensional cones of the fan of Y m .

For every vertex V of Γ such that h(V ) = v 0 , let M 0 V be the open substack of M V consisting of torically transverse stable log maps. We define

M 0 ∶= ⎛ ⎝ {V ∶h(V )=v 0 } M 0 V × {V ∶h(V )≠v 0 } M V ⎞ ⎠ × ∏ E D 2 E E D E , M h,0 g,p (Y m ∂Y m ) ∶= cut -1 (M 0
) , and we denote by cut 0 ∶ M h,0 g,p (Y m ∂Y m ) → M 0 the corresponding restriction of the cut morphism.

Lemma 5.8. The morphism

cut 0 ∶ M h,0 g,p (Y m ∂Y m ) → M 0 is étale of degree ∏ E w(E) lcm{w(E)} E ,
where the index E runs over bounded edges of Γ and w(E) is the weight of E.

Proof. Because of the restriction to the torically transverse locus, the gluing question is locally isomorphic to the corresponding gluing question in a degeneration along a smooth divisor, and so the result follows from formula (6.13) and Lemma 9.2 of [START_REF] Kim | The degeneration formula for stable log maps[END_REF]. In the corresponding argument in Section 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF], the denominator of the formula did not appear because the relevant tropical curves had edges all of integral length.

Restricted to the torically transverse locus, the comparison of obstruction theories on M h g,p (Y m ∂Y m ) and M reduces to the same question studied in Section 9 of [START_REF] Kim | The degeneration formula for stable log maps[END_REF] for a degeneration along a smooth divisor. In particular, combining Lemma 5.8 with formula 9.14 of [START_REF] Kim | The degeneration formula for stable log maps[END_REF], we obtain that the cycle classes

(cut) * ([M h g,p (Y m ∂Y m )] virt )
and

∏ E w(E) lcm{w(E)} E [M] virt
have the same restriction to the open substack M 0 of M. By [Ful98, Proposition 1.8], it follows that their difference is rationally equivalent to a cycle supported on the closed substack

Z ∶= M -M 0 .
At a point of Z, the corresponding stable log map f ∶ C → Y m to Y m is not torically transverse. Using Lemma 5.7, we can apply Proposition 11 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] to get that C contains a non-trivial cycle of components. As λ g = 0 for a family of curves containing a non-trivial cycle of components (see eg Lemma 8 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]), we deduce as in Section 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] that

N h g,p = ∏ E w(E) lcm{w(E)} E [M] virt (-1) g λ g ,
and using the gluing properties of lambda classes (see eg Lemma 9 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]) that

[M] virt (-1) g λ g = V N V .
For this last step, in order to compute [M] virt , we had to insert the class 1×pt E +pt E ×1 of the diagonal D E ↪ D 2 E . Each bounded edge E in Γ connects a vertex V 0 with h(V 0 ) = v 0 and a vertex V + with h(V + ) ≠ v 0 . A stable log map in M V+ is a cover of the curve C j(V+) , which intersects the divisor D E in a specific point. Therefore, the only term in the class of the diagonal leading to a possibly non-vanishing contribution is the one with the insertion of pt E on M V 0 and the insertion of 1 on M V+ , which is exactly the way we defined the invariants N V . This concludes the proof of Proposition 5.6.

We remark that the most general form of the gluing formula in log Gromov-Witten theory, work in progress of Abramovich, Chen, Gross and Siebert, requires the use of punctured Gromov-Witten invariants; see [START_REF] Abramovich | Punctured logarithmic curves[END_REF]. We do not see punctured invariants in our gluing formula because the only contributing rigid tropical curves are contained in the 1-dimensional part of the polyhedral decomposition of Y trop m,0 .

5.6. Classification of contributing rigid tropical curves.

Lemma 5.9. Let h∶ Γ → Y trop m,0 be a rigid genus g decorated parametrized tropical curve of type p with Γ of genus 0 and N h g,p ≠ 0. Let V be a vertex of

Γ such that h(V ) ≠ v 0 , so that β(V ) = (V )[C j(V ) ]. Let n V be the number of bounded edges of Γ incident to V . If n V > 1, then we have N V = 0. If n V = 1, then N V is the coefficient of ̵ h 2g(V )-1 in (-1) (V )-1 (V ) 1 2 sin (V ) ̵ h 2 .
Proof. As the curve C j(V ) ≃ P 1 is rigid in Pj(V ) , with normal bundle O P 1 (-1), every stable log map defining a point of M V factors through C j(V ) . Therefore, the moduli space M V coincides with the moduli space M V (P 1 ∞) of genus g(V ) degree (V ) stable log maps to P 1 , relative to ∞ ∈ P 1 with n V contact points above ∞ and contact orders given by the weights of the n V bounded edges incident to V . However, the surface obstruction theory on M V defining the class [M V ] virt differs from the curve obstruction theory on M V (P 1 ∞) defining the class [M V (P 1 ∞)] virt . Denoting by π∶ C → M V (P 1 ∞) the universal source log curve and by f ∶ C → P 1 the universal log map, the two obstruction theories differ by

R 1 π * f * N C j(V ) Pj(V ) = R 1 π * f * O P 1 (-1) ,
and so

N V = [M V (P 1 ∞)] virt e R 1 π * f * (O P 1 ⊕ O P 1 (-1)) ,
where e(-) is the Euler class. The virtual dimension of

[M V (P 1 ∞)] virt is 2g(V ) -2 + (V ) + n V ,
whereas the complex degree of the integrand is

2g(V ) -1 + (V ) .
Therefore, we have N V = 0 for n V ≠ 1. To compute N V for n V = 1, we remark that log Gromov-Witten invariants of (P 1 , ∞) coincide with relative Gromov-Witten invariants of (P 1 , ∞) by the general log/relative comparison theorem of [START_REF] Abramovich | Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations[END_REF] for a smooth divisor.

The corresponding relative Gromov-Witten invariants of (P 1 , ∞) have been computed by Bryan and Pandharipande in [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF]; see the proof of Theorem 5.1 in [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF].

Let h∶ Γ → Y trop m,0 be a rigid genus g decorated parametrized tropical curve of type p with Γ of genus 0 and N h g,p ≠ 0. By Proposition 5.4, every vertex V of Γ is mapped by h to some v j for some 0 ⩽ j ⩽ n, and every bounded edge E of Γ connects a vertex V 0 with h(V 0 ) = v 0 and a vertex V + with h(V + ) = v j for some 1 ⩽ j ⩽ n. Furthermore, the combination of Proposition 5.6 and Lemma 5.9 shows that every vertex V of Γ with h(V ) ≠ v 0 is incident to a single bounded edge. As Γ is connected, this implies that there is a unique vertex V 0 in Γ with h(V 0 ) = v 0 . In other words, h∶ Γ → Y trop m,0 is one of the rigid genus g decorated parametrized tropical curves h k,⃗ g ∶ Γ k,⃗ g → Y trop m,0 defined as follows. Recall that we defined in Section 5.1 what a partition of p is and that we associated to such partition k of p a positive integer s(k) and a s(k)-tuple (w 1 (k), . . . , w s(k) (k)) of nonzero vectors in M = Z 2 . In particular, each w r (k) can be naturally written w r (k) = m j for some ⩾ 0 and some 1 ⩽ j ⩽ n. For every partition k of p and for every ⃗ g = (g 0 , g 1 , . . . , g s(k) ), an (s(k) + 1)-tuple of nonnegative integers such that ⃗ g ∶= g 0 + ∑ s(k) r=1 g r = g, we define a rigid genus g decorated parametrized tropical curve h k,⃗ g ∶ Γ k,⃗ g → Y trop m,0 .

Let Γ k,⃗ g be the genus 0 graph consisting of vertices V 0 , V 1 , . . . , V s(k) , for every 1 ⩽ r ⩽ s(k) bounded edges E r connecting V 0 to V r , and an unbounded edge E p attached to V 0 . We define a structure of tropical curve on Γ k,⃗ g by assigning:

• Genera to the vertices. We assign g 0 to V 0 , and g r to V r , for all 1 ⩽ r ⩽ s(k).

• Lengths to the bounded edges. We assign the length

(E r ) ∶= 1 w r (k) =
1 to the bounded edge E r , for all 1 ⩽ r ⩽ s(k). Finally, we define a decorated parametrized tropical curve

h k,⃗ g ∶ Γ k,⃗ g → Y trop m,0
by the following data:

• We define h k,⃗ g (V 0 ) ∶= v 0 , and, writing w r (k) = m j , h k,⃗ g (V r ) ∶= v j , for all 1 ⩽ r ⩽ s(k). • Edge markings of bounded edges. We define v V 0 ,Er ∶= w r for all 1 ⩽ r ⩽ s(k). In particular, the bounded edge E r has weight w r (k) = . This is a valid choice because

h(V r ) -h(V 0 ) = m j = 1 m j = (E r )v V 0 ,Er .
This uniquely specifies an affine linear map h k,⃗ g Er . • Edge marking of the unbounded edge. We define v V 0 ,Ep ∶= p m p . In particular, the unbounded edge E p has weight p . This uniquely specifies an affine linear map h k,⃗ g Ep . • Decoration of vertices by curve classes. We decorate V 0 with the curve class V 2

β w(k) ∈ H 2 (Y m , Z). Writing w r (k) = m j , we decorate the vertex V r with the curve class [C j ] ∈ H 2 ( Pj , Z). Figure: picture of Γ k,⃗ g .
E 2 V 0 E 1 V 1 V 3 E 3 E p
We summarize our classification of contributing rigid tropical curves by the following Proposition.

Proposition 5.10. Every rigid genus g decorated parametrized tropical curve h∶ Γ → Y trop m,0 of type p with Γ of genus zero and N h g,p ≠ 0, is of the form h k,⃗ g for some partition k of p and some (s(k) + 1)-tuple ⃗ g = (g 0 , g 1 , . . . , g s(k) ) of nonnegative integers such that ⃗ g = g.

In the remainder of Section 5.6, we compute for h = h k,⃗ g the numerical factors n h and Aut(h) entering in the decomposition formula of Proposition 5.3. We fix k a partition of p and ⃗ g such that ⃗ g = g and we consider the decorated parametrized tropical curve h∶ Γ k,⃗ g → Y trop m,0 . Lemma 5.11. We have

n h k,⃗ g = lcm{ w r (k) , 1 ⩽ r ⩽ s(k)} .
Proof. Recall that n h k,⃗ g is the smallest positive integer such that after scaling by n k k,⃗ g , h k,⃗ g gets integral vertices and integral lengths. By definition of h k,⃗ g , vertices of h k,⃗ g are already mapped to integral points of Y trop m,0 . On the other hand, bounded edges E r of Γ k,⃗ g have fractional lengths 1 w r (k) . It follows that n k,⃗ g is the least common multiple of the positive integers w r (k) , 1 ⩽ r ⩽ s(k). Lemma 5.12. The order of the automorphism group of the decorated parametrized tropical curve h k,⃗ g ∶ Γ k,⃗ g → Y trop m,0 is given by

Aut(h k,⃗ g ) = n j=1 ⩾1 a⩾0 k ,j,a ! .
Proof. For every 1 ⩽ j ⩽ n, ⩾ 1 and a ⩾ 0, there are k ,j,a of the vertices V r having the same curve class decoration [C j ], the same genus a, and the attached edges have the same weight m j , so permutations of these k ,j,a vertices define automorphisms of the decorated tropical curve h k,⃗ g . Any other permutation of the vertices of Σ k permutes vertices having different curve class decorations and/or different genus, and so cannot be an automorphism of the decorated tropical curve.

5.7.

End of the proof of the degeneration formula. In this Section, we end the proof of Proposition 5.1. By Proposition 5.3, we have

N Ym g,p = h n h Aut(h) N h g,p ,
where the sum is over rigid genus g decorated parametrized tropical curves h∶ Γ → Y trop m,0 of type p with Γ of genus 0. By Proposition 5.10, such tropical curves h with N h g,p are necessarily of the form h k,⃗ g for some k partition of p and ⃗ g = (g 0 , g 1 , . . . , g s(k) ) some (s(k) + 1)-tuple of nonnegative integers such that ⃗ g = g. For h = h k,⃗ g , the factors n h and Aut(h) are computed by Lemmas 5.11 and 5.12. On the other hand, N h k,⃗ g g,p can be computed using the gluing formula of Proposition 5.6 and Lemma 5.9. After simplification, we obtain the formula of Proposition 5.1.

Scattering and tropical curves

In this Section, we review the connection established in [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF] between quantum scattering diagrams and refined tropical curve counting.

6.1. Refined tropical curve counting. In this Section, we review the definition of the refined tropical curve counts used in [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF]. The relevant tropical curves are identical to those considered in [START_REF] Gross | The tropical vertex[END_REF]. The only difference is that they are counted with the Block-Göttsche refined multiplicity [START_REF] Block | Refined curve counting with tropical geometry[END_REF], q-deformation of the usual Mikhalkin multiplicity [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF].

We first recall the definition of a parametrized tropical curve to R 2 by simply repeating the presentation we gave in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]. For us, a graph Γ has a finite set V (Γ) of vertices, a finite set E f (Γ) of bounded edges connecting pairs of vertices and a finite set E ∞ (Γ) of legs attached to vertices that we view as unbounded edges. By edge, we refer to a bounded or unbounded edge. We will always consider connected graphs.

A parametrized tropical curve h∶ Γ → R 2 is the following data:

• A nonnegative integer g(V ) for each vertex V , called the genus of V .

• A labeling of the elements of the set E ∞ (Γ).

• A vector v V,E ∈ Z 2 for every vertex V and E an edge incident to

V . If v V,E is not zero, the divisibility v V,E of v V,E in Z 2
is called the weight of E and is denoted by w(E). We require that v V,E ≠ 0 if E is unbounded and that for every vertex V , the following balancing condition is satisfied:

E v V,E = 0 ,
where the sum is over the edges E incident to V . If E is an unbounded edge, we write v E for v V,E , where V is the unique vertex to which E is attached. • A nonnegative real number (E) for every bounded edge of E, called the length of E.

• A proper map h∶ Γ → R 2 such that
-If E is a bounded edge connecting the vertices V 1 and V 2 , then h maps E affine linearly on the line segment connecting h(V 1 ) and h(V 2 ), and

h(V 2 ) -h(V 1 ) = (E)v V 1 ,E .
-If E is an unbounded edge of vertex V , then h maps E affine linearly to the ray h(V

) + R ⩾0 v V,E .
The genus g h of a parametrized tropical curve h∶ Γ → R 2 is defined by

g h ∶= g Γ + V ∈V (Γ) g(V ) ,
where g Γ is the genus of the graph Γ. Let w = (w 1 , . . . , w s ) be a s-tuple of non-zero vectors in M . We fix x = (x 1 , . . . , x s ) and element of (R 2 ) s . We say that a parametrized tropical curve h∶ Γ → R 2 is of type (w, x) if Γ has exactly s + 1 unbounded edges, labeled E 0 , E 1 , . . . , E s , such that

• v E 0 = ∑ s r=1 w r , • v Er = -w r for every 1 ⩽ r ⩽ s,
• E r asymptotically coincides with the half-line -R ⩾0 w r + x r for every 1 ⩽ r ⩽ s. Let T w,x be the set of genus 0 parametrized tropical curves h∶ Γ → R 2 of type (w, x) without contracted edges. If x ∈ (R 2 ) s is general enough (in some appropriate open dense subset), then it follows from [START_REF] Mikhalkin | Enumerative tropical algebraic geometry in R 2[END_REF] or [NS06] that T w,x is a finite set, and that if (h∶ Γ → R 2 ) ∈ T w,x , then Γ is trivalent and h is an immersion (distinct vertices have distinct images and two distinct edges have at most one point in common in their images).

For h∶ Γ → R 2 a parametrized tropical curve in R 2 and V a trivalent vertex with incident edges E 1 , E 2 and E 3 , the multiplicity of V is the integer defined by

m(V ) ∶= det(v V,E 1 , v V,E 2 ) .
Thanks to the balancing condition

v V,E 1 + v V,E 2 + v V,E 3 = 0 , this definition is symmetric in E 1 , E 2 , E 3 . The Block-Göttsche [BG16] multiplicity of V is a Laurent polynomial in a formal variable q 1 2 : [m V ] q ∶= q m(V ) 2 -q -m(V ) 2 q 1 2 -q -1 2 = q -m(V )-1 2 (1 + q + ⋅ ⋅ ⋅ + q m(V )-1 2 ) ∈ N[q ± 1 2 ] .
For h∶ Γ → R 2 a parametrized tropical curve with Γ trivalent, the refined multiplicity of h is defined by

m h (q 1 2 ) ∶= V ∈V (Γ) [m(V )] q ,
where the product is over the vertices of Γ.

If x ∈ (R 2 ) s is in general position, we count the elements of T w,x with refined multiplicities and we obtain a refined count of tropical curves:

N trop w,x (q 1 2 ) ∶= h∶Γ→R 2 m h (q 1 2 ) ∈ N[q ± 1 2 ] .
According to Itenberg-Mikhalkin [START_REF] Itenberg | On Block-Göttsche multiplicities for planar tropical curves[END_REF], N trop w,x (q 1 2 ) does not depend on x if x is general. This also follows from the correspondence theorem of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF]. Therefore, we simply denote by N trop w (q 1 2 ) the corresponding invariant.

6.2. Elementary quantum scattering. Let m 1 and m 2 be two non-zero vectors in M = Z 2 . Let D be the quantum scattering diagram over an Artinian ring R consisting of two incoming rays -R ⩾0 m 1 and -R ⩾0 m 2 equipped with the Hamiltonians

Ĥ1 = f 1 q 1 2 -q -1 2 ẑm 1 , and 
Ĥ2 = f 2 q 1 2 -q -1 2 ẑm 2 ,
where 

f 1 , f 2 ∈ R satisfy f 2 1 = f 2 2 = 0. Let S( D)
• (R ⩾0 m 1 , Ĥ1 ) • (R ⩾0 m 2 , Ĥ2 ) • (R ⩾0 (m 1 + m 2 ), Ĥ12 ), where Ĥ12 ∶= [⟨m 1 , m 2 ⟩] q f 1 f 2 q 1 2 -q -1 2 ẑm 1 +m 2 ,
and and so Φ-1

[⟨m 1 , m 2 ⟩] q ∶= q ⟨m 1 ,m 2 ⟩ 2 -q -⟨m 1 ,m 2 ⟩ 2 q 1 2 -q -1 2 . Proof. Using [ẑ m 1 , ẑm 2 ] = q ⟨m 1 ,m 2 ⟩ 2 -q -⟨m 1 ,m 2 ⟩ 2 ẑm 1 +m 2 , we compute that [ Ĥ1 , Ĥ2 ] = [⟨m 1 , m 2 ⟩] q f 1 f 2 q 1 2 -q -1 2 ẑm 1 +m 2 . As f 2 1 = f 2 2 = 0,
Ĥ2 Φ Ĥ1 Φ Ĥ2 Φ-1 Ĥ1 = Φ[ Ĥ1 , Ĥ2 ] ,
hence the result 6.3. Quantum scattering from refined tropical curve counting. In this section, we review the result of Filippini and Stoppa [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF] expressing the Hamiltonians attached to the rays of the consistent quantum scattering diagram S( Dm ), defined in Section 3.1, in tropical terms. We use the notations introduced at the beginning of Section 5.1.

Proposition 6.2. For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M and for every m ∈ M -{0}, the Hamiltonian Ĥm attached to the outgoing ray R ⩾0 m in the consistent quantum scattering diagram S( Dm ) is given by

Ĥm = p∈Pm k⊢p N trop w(k) (q 1 2 ) ⎛ ⎝ n j=1 ⩾1 1 k ,j ! (-1) -1 q 1 2 -q -1 2 q 2 -q -2 k ,j ⎞ ⎠ n j=1 t p j j ẑ pm q 1 2 -q -1 2 ,
where q = e i ̵ h , and the innermost sum is over all partitions k of p.

Proof. This follows from the main result, Corollary 4.9, of [START_REF] Filippini | Block-Göttsche invariants from wall-crossing[END_REF], which is a q-deformed version of the proof of Theorem 2.8 of [START_REF] Gross | The tropical vertex[END_REF]. A higher dimensional generalization of this argument has been given by Mandel in [START_REF] Mandel | Scattering diagrams, theta functions, and refined tropical curve counts[END_REF]. For completeness and because we organize the combinatorics in a slightly different way, we provide a proof. By definition, S( Dm ) is the consistent quantum scattering diagram obtained from the quantum scattering diagram Dm consisting of incoming rays (d j , Ĥd j ), 1 ⩽ j ⩽ n, where

d j = -R ⩾0 m j , and Ĥd j = ⩾1 1 (-1) -1 q 2 -q -2 t l j ẑ m j .
Let us work over the ring

C[t 1 , . . . , t n ] (t N +1 1 , . . . , t N +1 n
). We embed this ring into

C[{u ja 1 ⩽ j ⩽ n, 1 ⩽ a ⩽ N }] ⟨{u 2 ja 1 ⩽ j ⩽ n, 1 ⩽ a ⩽ N }⟩ by t j = N a=1 u ja
for all 1 ⩽ j ⩽ n. We then have

t j = A⊂{1,...,N } A = ! a∈A u ja ,
and so

Ĥd j = N =1 A⊂{1,...,N } A = 1 (-1) -1 q 2 -q -2 ! a∈A u ja ẑ m j .
This suggests we consider the quantum scattering diagram Dsplit m consisting of incoming rays (d j A , Ĥd j A ) for 1 ⩽ ⩽ N , A ⊂ {1, . . . , N }, A = , where

d j A = -R ⩾0 m j + c j A ,
for c j A ∈ R 2 in general position, and

Ĥd j A = 1 (-1) -1 q 2 -q -2 ! a∈A u ja ẑ m j .
If we had taken all c j A to be 0, then Dsplit The local consistency at this intersection is then guaranteed by emitting a third ray according to Lemma 6.1. Further intersections of the old and newly created rays can similarly be treated by application of Lemma 6.1. Indeed, the assumption of general position of the c j A guarantees that only double intersections occur.

The asymptotic scattering diagram of S( Dsplit m ) is the scattering diagram obtained by taking all the rays of S( D) and placing their origin at 0 ∈ R 2 . By uniqueness of the consistent completion, the asymptotic scattering diagram is precisely S( Dm ). To get the Hamiltonian Ĥm attached to an outgoing ray R ⩾0 m in S( Dm ), it is then enough to collect the various contributions to the corresponding asymptotic ray of S( Dsplit m ) coming from the recursive construction of S( Dsplit m ). Let us study how the recursive construction of S( Dsplit m ) can produce a ray d asymptotic to R ⩾0 m and equipped with a function Ĥd proportional to ẑ dm , for some d ⩾ 1. Such a ray is obtained by successive applications of Lemma 6.1 starting from a subset of the initial incoming rays of Dsplit m . We focus on one particular sequence of such elementary scatterings. Such sequence naturally defines a graph Γ in R 2 . This graph starts with unbounded edges given by the initial rays taking part in the sequence of scatterings. When two of these rays meet, they scatter and produce a third ray given by Lemma 6.1. If this third ray does not contribute to further scatterings ultimately contributing to Ĥd , we do not include it in Γ and we continue Γ by propagating the two initial rays. In particular, Γ contains a 4-valent vertex given by the two initial rays crossing without non-trivial interaction.

If the third ray does contribute to further scatterings ultimately contributing to Ĥd , we include it in Γ and we do not propagate the two initial rays. In particular, Γ gets a trivalent vertex given by the two initial rays meeting and producing the third ray. Iterating this construction, we obtain one trivalent vertex for each elementary scattering ultimately giving a contribution to Ĥd . At the end of this process, the last elementary scattering produces the ray d which becomes an unbounded edge of the graph.

The graph Γ has two kinds of vertices: trivalent vertices where a non-trivial elementary scattering happens and 4-valent vertices where two rays cross without non-trivial interaction. For each 4-valent vertex, we can separate the two rays crossing, and we obtain a trivalent graph Γ and a map h∶ Γ → Γ ⊂ R 2 which is one to one except over the 4-valent vertices of Γ where it is two to one. It follows from the iterative construction that the trivalent graph Γ is a tree, ie a graph of genus 0.

The function attached to initial ray of Dsplit m is a monomial in ẑ, whose power is proportional to the direction of the ray. By Lemma 6.1, this property is preserved under elementary scattering. Each edge E of our Γ is thus equipped with a function proportional to ẑm E for some m E ∈ M = Z 2 proportional to the direction of E. Furthermore, in an elementary scattering of two edges E 1 and E 2 equipped with m E 1 and m E 2 , the produced edge E 3 is equipped with m E 1 +m E 2 by Lemma 6.1. In other words, the balancing condition is satisfied at each vertex and so we can view h∶ Γ → R 2 as a parametrized tropical curve to R 2 in the sense of Section 6.1.

For every 1 ⩽ j ⩽ n and ⩾ 1, there is a number k ,j of subsets A of {1, . . . , n}, of size , such that d j A is one of the initial rays appearing in Γ. Denote by A Γ j this set of subsets of {1, . . . , n}. Writing p j ∶= ∑ ≥1 k ,j , we have, by the balancing condition,

n j=1 p j = d m ,
and, in particular, d = p .

It follows from an iterative application of Lemma 6.1 that the contribution of Γ to Ĥd is given by

m Γ (q 1 2 ) ⎛ ⎜ ⎝ n j=1 ⩾1 (-1) -1 q 1 2 -q -1 2 q 2 -q -2 k ,j ( !) k ,j ⎛ ⎜ ⎝ A∈A Γ j a∈A u ja ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ ẑ pm q 1 2 -q -1 2 ,
where m Γ (q 1 2 ) is the refined multiplicity of the tropical curve Γ. To get the complete expression for Ĥd , we have to sum over the possible Γ. If we fix p = (p 1 , . . . , p n ) ∈ P = N n , k a partition of p and for every 1 ⩽ j ⩽ n and ⩾ 1, a set A j of k ,j disjoint subsets of {1, . . . , N } of size , we can consider the set T j A j of genus 0 tropical curves Γ having one unbounded edge of asymptotic direction R ⩾0 m and weight p m, and for every 1 ⩽ j ⩽ n, ⩾ 1 and A ∈ A j , an unbounded edge of weight m j asymptotically coinciding with d j A . By Section 6.1, this set is finite.

We already saw how a sequence of elementary scatterings contributing to Ĥd produces an element Γ ∈ T j A j . Conversely, any Γ ∈ T j A j will define a sequence of elementary scatterings appearing in the construction of S( Dsplit m ) and contributing to Ĥd . It follows that, for every m ∈ M -{0}, we have

Ĥm = p∈Pm k⊢p A j ⎛ ⎜ ⎝ Γ∈T j A j m Γ (q 1 2 ) ⎞ ⎟ ⎠ ⎛ ⎝ n j=1 ⩾1 (-1) -1 q 1 2 -q -1 2 q 2 -q -2 k ,j ( !) k ,j ⎛ ⎝ A∈A j a∈A u ja ⎞ ⎠ ⎞ ⎠ ẑ pm q 1 2 -q -1 2 ,
But by Section 6.1, we have

Γ∈T j A j m Γ (q 1 2 ) = N trop w(k) (q 1 2 ) ,
which is in particular independent of A j . So we can do the sum over A j . Given an A j , we can form

B ∶= ⋃ A∈A j A ,
a subset of {1, . . . , N } of size ∑ ⩾1 k ,j = p j . Conversely, the number of ways to write a set B of p j = ∑ ⩾1 k ,j elements as a disjoint union of subsets, k ,j of them being of size , is equal to

p j ! ∏ ⩾1 k ,j !( !) k ,j .
Replacing the sum over A j by a sum over B, we obtain

Ĥm = p∈Pm k⊢p N trop w(k) (q 1 2 ) ⎛ ⎝ n j=1 ⩾1 1 k ,j ! (-1) -1 q 1 2 -q -1 2 q 2 -q -2 k ,j ⎞ ⎠ ⎛ ⎜ ⎜ ⎜ ⎝ n j=1 B⊂{1,...,N } B =p j p j ! b∈B u jb ⎞ ⎟ ⎟ ⎟ ⎠ ẑ pm q 1 2 -q -1 2 .
Finally, using that t

p j j = B⊂{1,...,N } B =p j p j ! b∈B u jb ,
we obtain the desired formula for Ĥm .

Corollary 6.3. We have

Ĥm = p∈Pm k⊢p N trop w(k) (q 1 2 ) ⎛ ⎝ n j=1 ⩾1 1 k ,j ! (-1) -1 1 q 2 -q -2 k ,j ⎞ ⎠ (q 1 2 -q -1 2 ) s(k)-1 ẑ pm .
Proof. We simply rearrange the factors (q 1 2 -q -1 2 ) in Proposition 6.2 and use that It remains to connect the refined tropical counts N trop w (q 1 2 ) to the log Gromov-Witten invariants N Y m g,w of the toric surface Y m . This is given by Proposition 7.1, which is a special case of the main result, Theorem 6, of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF].

s(k) = n j=1 ⩾1 k ,j .
Proposition 7.1. For every m = (m 1 , . . . , m n ) n-tuple of non-zero primitive vectors in M = Z 2 , every p = (p 1 , . . . , p n ) ∈ P = N n , and every k partition of p, we have g⩾0

N Y m g,w(k) ̵ h 2g-1+s(k) = N trop w(k) (q 1 2 ) ⎛ ⎝ s(k) r=1 1 w r ⎞ ⎠ 2 sin ̵ h 2 s(k)-1 = N trop w(k) (q 1 2 ) n j=1 ⩾1 1 k ,j 2 sin ̵ h 2 s(k)-1
.

Proof. We simply explain the change in notations needed to translate from Theorem 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF].

In [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF], we fix ∆, a balanced collection of vectors in Z 2 , specifying a toric surface X ∆ and tangency conditions for a curve along the toric divisors. We also fix a subset ∆ F of ∆, for which the corresponding tangency conditions happen at prescribed positions on the toric divisors. Finally, we fix a nonnegative integer n. Theorem 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] is a correspondence theorem between log Gromov-Witten invariants of X ∆ , counting curves in X ∆ satisfying the tangency constraints imposed by ∆ and ∆ F , and passing through n points in general position, and refined counts of tropical curves in R 2 satisfying the tropical analogue of these constraints.

To get Proposition 7.1, we take ∆ = (w 1 (k), . . . , w s(k) (k), k w m w ) ,

∆ F = (w 1 (k), . . . , w s(k) (k)) ,
and n = 0. We then have X ∆ = Y m up to some toric blow ups, which do not change the relevant log Gromov-Witten invariants by [START_REF] Abramovich | Birational invariance in logarithmic Gromov-Witten theory[END_REF]. Using the notations of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF], we have ∆ = s(k) + 1, ∆ F = s(k) and g ∆ F ∆,n = 0. As the variable u keeping track of the genus in [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] is denoted ̵ h in the present paper, we see that Theorem 6 of [START_REF] Bousseau | Tropical refined curve counting from higher genera and lambda classes[END_REF] reduces to Proposition 7.1.

By comparison of the explicit formulas of Corollary 6.3, Proposition 7.1 and Proposition 5.1, and using the relation

s(k) = n j=1 ⩾1 k ,j
to collect the powers of i, we find exactly the formula given in Theorem 3.1 for the Hamiltonians of the quantum scattering diagram S( Dm ) in terms of the log Gromov-Witten invariants N Ym g,p of the log Calabi-Yau surface Y m . This ends the proof of Theorem 3.1. 7.2. End of the proof of Theorem 3.2. The proof of Theorem 3.2 follows the one of Theorem 3.1, up to minor notational changes. The only needed serious modification is an orbifold version of the multicovering formula of Lemma 5.9. This is provided by Lemma 7.2 below.

We fix positive integers r and . Let P 1 [r, 1] be the stacky projective line with a single orbifold point of isotropy group Z r at 0. Let M g, (P 1 [r, 1] ∞) be the moduli space of genus g orbifold stable maps to P 1 [r, 1], relative to ∞ ∈ P 1 [r, ∞], of degree r , with maximal tangency order r along ∞. It is a proper Deligne-Mumford stack of virtual dimension 2g -1 + , admitting a virtual fundamental class

[M g, (P 1 [r, 1] ∞)] virt ∈ A 2g-1+ (M g, (P 1 [r, 1] ∞), Q) . Let O P 1 [r,1] (-[0] (Z r
)) be the orbifold line bundle on P 1 [r, 1] of degree -1 r. Denoting π∶ C → M g, (P 1 [r, 1] ∞) the universal source curve and f ∶ C → P 1 [r, 1] the universal map, we define

N g,r ∶= [M g, (P 1 [r,1] ∞)] virt (-1) g λ g e R 1 π * f * O P 1 [r,1] (-[0] (Z r)) ,
where e(-) is the Euler class.

Lemma 7.2. For all positive integers r and , we have

g⩾0 N g,r ̵ h 2g-1 = (-1) -1 1 2 sin r ̵ h 2 .
Proof. This is a higher genus version of Proposition 5.7 of [START_REF] Gross | The tropical vertex[END_REF] and an orbifold version of Theorem 5.1 of [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF]. Very similar localization computations of higher genus orbifold Gromov-Witten invariants can be found in [START_REF] Johnson | Abelian Hurwitz-Hodge integrals[END_REF]. The main thing we need to explain is the replacement in the orbifold case for the Mumford relation c(E)c(E ∨ ) = 1 playing a key role in the proof of Theorem 5.1 of [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF]. We will simply have to twist the usual Hodge theoretic argument of [Mum83] by a local system.

We consider the action of C * on P 1 [r, 1] with tangent weights [1 r, -1] at the fixed points [0, ∞]. We choose the equivariant lifts of

O P 1 [r,1] (-[0] (Z r))
and O P 1 [r,1] having fibers over the fixed points [0, ∞] of weights [-1 r, 0] and [0, 0] respectively. For such choices, the argument given in the proof of Theorem 5.1 of [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF] shows that only one graph Γ contributes to the C * -localization formula computing N l g,r . The graph Γ consists of a genus g vertex over 0, a unique edge of degree r and a degenerate genus 0 vertex over ∞.

The contribution of Γ is computed using the virtual localization formula of [START_REF] Graber | Localization of virtual classes[END_REF]. We assume that g > 0. The case g = 0 is simpler and treated in Proposition 5.7 of [START_REF] Gross | The tropical vertex[END_REF]. The corresponding C * -fixed locus is the fiber product M g,1 (BZ r) × IBZ r BZ (rd) , where M g,1 (BZ r) is the moduli stack of 1-pointed (with a trivial stacky structure at the marked point) genus g orbifold stable maps to the classifying stack BZ r, IBZ r is the rigidified inertia stack of BZ r, and the classifying stack BZ (rd) appears as moduli space of C * -invariant Galois covers P 1 → P 1 [r, 1] of degree r . This fibered product is a cover of M g,1 (BZ r) of degree r (r ).

Let π 0 ∶ C 0 → M g,1 (BZ r) be the universal source curve over M g,1 (BZ r). The data of an orbifold stable map f 0 ∶ C 0 → BZ r is equivalent to the data of an (orbifold) Z r-local system L on C 0 . We denote by t the generator of the C * -equivariant cohomology of a point.

The computation of the inverse of the equivariant Euler class of the equivariant virtual bundle is done in Section 2.2 [START_REF] Johnson | Abelian Hurwitz-Hodge integrals[END_REF] and gives

e R 1 (π 0 ) * O C 0 ⊗ L ⊗ t r (r ) t ! 1 t r -ψ r t δ L,0 t r ,
where δ L,0 = 1 if L is the trivial Z r-local system and 0 otherwise. The vector bundle

R 1 (π 0 ) * O C 0 ⊗ L ⊗ t r
over M g,1 (BZ r) comes from the equivariant orbifold line bundle

T P 1 [r,1] (-∞) [0] (Z r)
over BZ r, restriction over [0] (Z r) of the degree 1 r orbifold line bundle

T P 1 [r,1] (-∞) over P 1 [r, 1].
The contribution of the integrand in the definition of N g,r is By Serre duality, we have

(-1) g λ g e R 1 (π 0 ) * O C 0 ⊗ L ⊗ t r ∨ - t r 1-δ R,0 (-1) -1 ( -1)! (r ) -1 t -1 . The vector bundle R 1 (π 0 ) * O C 0 ⊗ L ⊗ t
R 1 (π 0 ) * O C 0 ⊗ L ⊗ t r ∨ = (π 0 ) * ω π 0 ⊗ L ⊗ t r ∨ ,
and so

e R 1 (π 0 ) * O C 0 ⊗ L ⊗ t r ∨ = (-1) rk e (π 0 ) * ω π 0 ⊗ L ⊗ t r = (-1) rk t r rk rk j=0 r t j c j ((π 0 ) * (ω π 0 ⊗ L)) = (-1) rk t r rk c r t ((π 0 ) * (ω π 0 ⊗ L)) ,
where rk is the rank of (π 0 ) * (ω π 0 ⊗ L), a locally constant function on M g,1 (BZ r), equal to g on the component with L trivial and to g -1 on the components with L non-trivial, and where c x (E) ∶= j⩾0

x j c j (E)

is the Chern polynomial of a vector bundle E. Similarly, we have

e R 1 (π 0 ) * O C 0 ⊗ L ⊗ t r = t r rk rk j=0 r t j c j R 1 (π 0 ) * (O C 0 ⊗ L) = t r rk c r t R 1 (π 0 ) * (O C 0 ⊗ L) .
We twist now the Hodge theoretic argument of [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF] (see formulas (5.4) and (5.5)) (see also Proposition 3.2 of [START_REF] Bryan | The orbifold quantum cohomology of C 2 Z 3 and Hurwitz-Hodge integrals[END_REF]) by the local system L. The complex

ω • C 0 ∶ 0 → O C 0 d → ω π 0 → 0 , twisted by L, gives rise to an exact sequence 0 → (π 0 ) * (ω π 0 ⊗ L) → R 1 (π 0 ) * (ω • C 0 ⊗ L) → R 1 (π 0 ) * (O C 0 ⊗ L) → 0 .
By Hodge theory, we have the Gauss-Manin connection on the restriction of

R 1 (π 0 ) * (ω • C 0 ⊗ L)
to the open dense subset of M g,1 (BZ r) given by smooth curves, with regular singularities and nilpotent residue along the divisor of nodal curves. This is enough to imply

c x R 1 (π 0 ) * (ω • C 0 ⊗ L) = 1 , and so c x ((π 0 ) * (ω π 0 ⊗ L)) c x R 1 (π 0 ) * (O C 0 ⊗ L) = 1 .
Using this relation to simplify the above expressions, we obtain N g,r = r r M g,1 (BZ r) (-1) -1 (-1) g+rk +1-δ L,0 t r

2 rk -2δ L,0 +1 λ g t r -ψ .
Using that rk = g -1 + δ R,0 , this can be rewritten as

N g,r = M g,1 (BZ r) (-1) -1 t r 2g-1 λ g t r -ψ .
As the dimension of M g,1 (BZ r) is 3g -2, we have to extract the term proportional to ψ 2g-2 and we obtain

N g,r = M g,1 (BZ r) (-1) -1 2g-1 λ g ψ 2g-2 .
The integrand is now the pullback from the moduli space M g,1 of 1-pointed genus g stable maps. The forgetful map M g,1 (BZ r) → M g,n has degree r 2g-1 . Indeed, there are r 2g Z r-local systems on a smooth genus g curve, each with a Z r group of automorphisms. Therefore, we have

N g,r = (-1) -1 (r ) 2g-1 M g,1 λ g ψ 2g-2 ,
and the result then follows, as in the proof of Theorem 5.1 of [START_REF] Bryan | Curves in Calabi-Yau threefolds and topological quantum field theory[END_REF], from the Hodge integrals computations of [START_REF] Faber | Hodge integrals and Gromov-Witten theory[END_REF].

Integrality results and conjectures

In Section 8.1, we state Conjecture 8.3, a log BPS integrality conjecture. In Section 8.2, we state Theorem 8.5, precise version of Theorem 0.2 of the Introduction, establishing the validity of Conjecture 8.3 for (Y m , ∂Y m ). The proof of Theorem 0.2 takes Sections 8.3 and 8.4. In Section 8.5, we describe an explicit connection with refined Donaldson-Thomas theory of quivers. Finally, in Section 8.6, we discuss del Pezzo surfaces with a smooth anticanonical divisor and we formulate Conjecture 8.16, precise form of Conjecture 0.3 of the Introduction.

8.1. Integrality conjecture. We formulate a higher genus analogue of the log BPS integrality conjecture, Conjecture 6.2, of [START_REF] Gross | The tropical vertex[END_REF]. We start by formulating a rationality conjecture, Conjecture 8.1, before stating the integrality conjecture, Conjecture 8.3.

Let Y be a smooth projective surface and let ∂Y ⊂ Y be a reduced normal crossing effective divisor. We endow Y with the divisorial log structure defined by ∂Y and we obtain a smooth log scheme. Following Section 6.1 of [START_REF] Gross | The tropical vertex[END_REF], we say that (Y, ∂Y ) is log Calabi-Yau with respect to some non-zero class

β ∈ H 2 (Y, Z) if β ⋅ (∂Y ) = β ⋅ (-K Y ).
Two basic examples are: We fix (Y, ∂Y ) log Calabi-Yau with respect to some β ∈ H 2 (Y, Z) such that β ⋅(∂Y ) ≠ 0. Let M g,β (Y ∂Y ) be the moduli space of genus g stable log maps to Y of class β and full tangency of order β ⋅ (∂Y ) at a single unspecified point of D. It is a proper Deligne-Mumford stack coming with a g-dimensional virtual fundamental class

• For every m = (m 1 , . . . , m n ) an n-
[M g,β (Y ∂Y )] virt . We define N Y ∂Y g,β ∶= [M g,β (Y ∂Y )] virt (-1) g λ g .
If (Y, ∂Y ) is of the form (Y m , ∂Y m ) and β is of the form β p , see Section 2.2, then we have N Y ∂Y g,β = N Ym g,p , where N Ym g,p are the invariants defined in Section 2.3. We can now formulate the rationality conjecture.

Conjecture 8.1. Let (Y, ∂Y ) be a log Calabi-Yau pair with respect to some class β ∈ H 2 (Y, Z) such that β ⋅ (∂Y ) ≠ 0. Then there exists a rational function

Ω β (q 1 2 ) ∈ Q(q ± 1 2 )
such that we have the equality of power series in ̵ h,

Ω β (q 1 2 ) = (-1) β⋅(∂Y )+1 2 sin ̵ h 2 g⩾0 N Y ∂Y g,β ̵ h 2g-1 ,
after the change of variables q = e i ̵ h .

Note that such rational function Ω β (q

2 ) is unique if it exists. If the rational function Ω β (q 1 2 ) exists, then it is invariant under q 1 2 ↦ q -1 2 , because its power series expansion in ̵ h after q = e i ̵ h has real coefficients. Given the 3-dimensional interpretation of the invariants N Y,∂Y g,β given in Section 2.4, Conjecture 8.1 should follow from a log version of the MNOP conjectures, [START_REF] Maulik | Gromov-Witten theory and Donaldson-Thomas theory[END_REF], [START_REF] Maulik | Gromov-Witten theory and Donaldson-Thomas theory[END_REF], once an appropriate theory of log Donaldson-Thomas invariants is developed. If ∂Y is smooth, then Conjecture 8.1 indeed follows from the relative MNOP conjectures, see Section 3.3 of [START_REF] Maulik | Gromov-Witten theory and Donaldson-Thomas theory[END_REF].

Let (Y, ∂Y ) be a log Calabi-Yau pair with respect to some primitive class β ∈ H 2 (Y, Z) such that β ⋅ (∂Y ) ≠ 0. Let us assume that Conjecture 8.1 is true for all classes that are multiple of β. So, for every n ⩾ 1, we have a rational function Ω nβ (q 1 2 ) ∈ Q(q ± 1 2 ). We define a collection of rational functions Ω nβ (q

1 2 ) ∈ Q(q ± 1 2 ), n ⩾ 1, invariant under q 1 2 ↦ q -1 2 , by the relations Ω nβ (q 1 2 ) = n 1 q 1 2 -q -1 2 q 2 -q -2 Ω n β (q 2 ) .
Lemma 8.2. These relations have a unique solution, given by

Ω nβ (q 1 2 ) = n µ( ) q 1 2 -q -1 2 q 2 -q -2 Ω n β (q 2 ) ,
where µ is the Möbius function.

Proof. Indeed, we have

n 1 q 1 2 -q -1 2 q 2 -q -2 ⎛ ⎝ ′ n µ( ′ ) ′ q l 2 -q -l 2 q ′ 2 -q -′ 2 Ω n ′ β (q ′ 2 ) ⎞ ⎠ = n ′ n µ( ′ ) ′ q 1 2 -q -1 2 q ′ 2 -q -′ 2 Ω n ′ β (q ′ 2 ) = m n 1 m q 1 2 -q -1 2 q m 2 -q -m 2 Ω n m β (q m 2 ) ⎛ ⎝ ′ m µ( ′ ) ⎞ ⎠ = m n 1 m q 1 2 -q -1 2 q m 2 -q -m 2 Ω n m β (q m 2 )δ m,1 = Ω nβ (q 1 
2 ) ,

where we used the Möbius inversion formula ∑ ′ m µ( ′ ) = δ m,1 .

We can now formulate the integrality conjecture.

Conjecture 8.3. Let (Y, ∂Y ) be a log Calabi-Yau pair with respect to some class β ∈ H 2 (Y, Z), such that β ⋅ (∂Y ) ≠ 0, and such that the rationality Conjecture 8.1 is true for Theorem 8.5. For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M = Z 2 and p ∈ P = N n , the integrality Conjecture 8.3 is true for the log Calabi-Yau pair (Y m , ∂Y m ) with respect to the class β p ∈ H 2 (Y m , Z). In other words, there exists

Ω Ym p (q 1 2 ) ∈ Z[q ± 1 2 ] such that Ω Ym p (q 1 2 ) = p= p ′ 1 q 1 2 -q -1 2 q 2 -q -2 Ω Ym p ′ (q 2 ) .
The proof of Theorem 8.5 takes Sections 8.3 and 8.4.

8.3. Quadratic refinement. According to Theorem 3.1, generating series of the log Gromov-Witten invariants N Ym g,p are Hamiltonians attached to the rays of some quantum scattering diagram S( Dm ). Our integrality result, Theorem 8.5, will follow from a general integrality result for scattering diagrams. Our main input, the integrality result of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF], is phrased in terms of twisted quantum scattering diagrams, ie scattering diagrams valued in automorphisms of twisted quantum tori. The comparison with quiver DT invariants, done in Section 8.5, also requires us to consider twisted quantum scattering diagrams.

In the present Section, we explain how to compare the quantum scattering diagram S( Dm ) with a twisted quantum scattering diagram S( Dtw m ). This comparison requires the notion of quadratic refinement. A short and to the point discussion by Neitzke can be found in [START_REF] Neitzke | Comparing signs in wall-crossing formulas[END_REF]. Some related discussion can be found in Appendix A of [START_REF] Lin | Correspondence Theorem between Holomorphic Discs and Tropical Discs on K3 Surfaces[END_REF].

We start with P = N n = ⊕ n j=1 Ne j . For p = (p 1 , . . . , p n ) ∈ P = N n , we denote ord(p) ∶= ∑ n j=1 p j . An n-tuple m = (m 1 , . . . , m n ) of primitive non-zero vectors in M = Z 2 naturally defines an additive map r∶ P → M e j ↦ m j .

For every Z[q ± 1 2 ]-algebra A, we denote by T A P,tw the non-commutative "space" whose algebra of functions is the algebra Γ(O T A P,tw ) given by A[[P ]], power series in xp for p ∈ P , with coefficients in A, with the product defined by xp ⋅ xp ′ = (-1) ⟨r(p),r(p ′ )⟩ q 1 2 ⟨r(p),r(p ′ )⟩ xp+p ′ . The main difference with respect to the formalism of Section 1 is the twist by the extra sign (-1) ⟨r(p),r(p ′ )⟩ .

We will use A

= Z[[q ± 1 2 ]], Z((q 1 
2 )) and Q((q 1 2 )). We have obviously the inclusions

Γ O T Z[[q ±1 2 ]] P,tw ⊂ Γ O T Z((q 1 2 )) P,tw ⊂ Γ O T Q((q 1 2 )) P,tw . Every Ĥtw = p∈P Ĥtw p xp ∈ Γ O T Q((q 1 2 )) P,tw
, such that Ĥtw = 0 mod P , defines via conjugation by exp Ĥtw an automorphism Φtw Ĥtw = Ad exp Ĥtw = exp Ĥtw (-) exp -Ĥtw Proof. We prove the result by induction on N . The result is obviously true for N = 1: the only outgoing rays with P -direction p satisfying ord(p) = 1 are obtained by straight propagation of the initial rays and so satisfy the BPS integrality condition if it is the case for the initial rays.

Let N > 1 be an integer. We assume by induction that Lemma 8.10 is true for all integers strictly less than N and we want to prove it for N . As in Step III of Appendix C3 of [START_REF] Gross | Canonical bases for cluster algebras[END_REF], up to applying the perturbation trick, which consists of separating transversally and generically the initial rays with the same support and then looking at the new local scatterings, we can assume that at most two initial rays have order one.

We If only two p ′ j are non-zero, then the ray (d ′ , Ĥtw d ′ ) belongs to a twisted quantum scattering diagram with two incoming rays and so its BPS integrality follows from Proposition 9 of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF]. If more than two of the p ′ j are non-zero, then, at least one of the p j with n j ≠ 0 satisfies ord(p j ) ⩾ 2 and so ord(p ′ ) < ord(p). The BPS integrality of the ray (d ′ , Ĥtw d ′ ) then follows by the induction hypothesis.

Proposition 8.11. Let n I be a positive integer and let (p 1 , . . . , p n I ) be an n I -tuple of primitive vectors in P . Let Dtw be a twisted quantum scattering diagram over (r∶ P → M ), consisting of incoming rays (d j , Ĥtw d j ), 1 ⩽ j ⩽ n I , with d j = -R ⩾0 r(p j ) and Ĥtw

d j ∈ xp j Q((q 1 
2 ))[[x p j ]] satisfying the BPS integrality condition. Then the consistent twisted quantum scattering diagram S( Dtw ) is such that for every outgoing ray (d, Ĥtw d ), of Pdirection p ∈ P , we have that Ĥtw

d ∈ xp Q((q 1 
2 ))[[x p ]] satisfies the BPS integrality condition.

Proof. This follows immediately from Lemma 8.10.

We can now finish the proof of Theorem 8.5. By Theorem 3.1 and Lemma 8.8, it is enough to show that the outgoing rays of the twisted quantum scattering diagram S( Dtw m ) satisfy the BPS integrality condition. As the initial rays of S( Dtw m ) satisfy the BPS integrality condition, the result follows from Proposition 8.11. 8.5. Integrality and quiver DT invariants. We refer to [START_REF] Kontsevich | Stability structures, motivic Donaldson-Thomas invariants and cluster transformations[END_REF], [START_REF] Joyce | A theory of generalized Donaldson-Thomas invariants[END_REF], [START_REF] Reineke | Poisson automorphisms and quiver moduli[END_REF], [START_REF] Reineke | Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants[END_REF], [START_REF] Meinhardt | Donaldson-Thomas invariants versus intersection cohomology of quiver moduli[END_REF] for the Donaldson-Thomas (DT) theory of quivers.

For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M = Z 2 , we define a quiver Q m , with set of vertices {1, 2, . . . , n} and, for every 1 ⩽ j, k ⩽ n, ⟨m j , m k ⟩ + ∶= max(⟨m j , m k ⟩, 0) arrows from the vertex j to the vertex k. We identify P = ⊕ n j=1 Ne j with the set of dimension vectors for the quiver Q m .

Lemma 8.12. The quiver Q m is acyclic, ie does not contain any oriented cycle, if and only if the n vectors m 1 , . . . , m n are all contained in a closed half-plane of M R = R 2 .

Proof. The quiver Q m contains an arrow from the vertex i to the vertex j if and only if (m i , m j ) is an oriented basis of R 2 .

Let us assume that the quiver Q m is acyclic. Every θ = (θ j ) 1⩽j⩽n ∈ Z n defines a notion of stability for representations of Q m . For every p ∈ P , we then have a projective variety M θ-ss p , moduli space of θ-semistable representations of Q m of dimension p, containing the open smooth locus M θ-st p of θ-stable representations. Let ι∶ M θ-st p ↪ M θ-ss p be the natural inclusion. The main result of [START_REF] Meinhardt | Donaldson-Thomas invariants versus intersection cohomology of quiver moduli[END_REF] is that the Laurent polynomials

Ω Qm,θ p (q 1 2 ) ∶= (-1) dim M θ-ss p q -1 2 dim M θ-ss p dim M θ-st p j=0 dim H 2j (M θ-ss p , ι ! * Q) q j ∈ (-1) dim M θ-ss p q -1 2 dim M θ-ss p N[q]
are the refined DT invariants of Q m for the stability θ. In the above formula, ι ! * is the intermediate extension functor defined by ι and so ι ! * Q is a perverse sheaf on M θ-ss p . As Q m is acyclic, we can assume, up to relabeling m 1 , . . . , m n , that ⟨m

j , m k ⟩ ⩾ 0 if j ⩽ k. If θ 1 < θ 2 < ⋅ ⋅ ⋅ < θ n , then Ω Qm,θ e j (q 1 
2 ) = 1, for all 1 ⩽ j ⩽ n, and Ω Qm,θ p (q 1 2 ) = 0 for p ∈ P -{e 1 , . . . , e n }. We call such θ a trivial stability condition.

If θ 1 > θ 2 > ⋅ ⋅ ⋅ > θ n , we call θ a maximally non-trivial stability condition. We simply write Ω Qm p (q

1 2 ) for Ω Qm,θ p (q 1 
2 ) when θ a maximally non-trivial stability condition.

Theorem 8.13. For every m = (m 1 , . . . , m n ) such that the quiver Q m is acyclic, and for every p ∈ P = N n , we have the equality

Ω Qm p (q 1 2 ) = Ω Ym p (q 1 2 ) between the refined DT invariant Ω Qm p (q 1 
2 ) of the quiver Q m and the log BPS invariant

Ω Ym p (q 1 
2 ) of the log Calabi-Yau surface Y m .

Proof. According to Theorem 3.1 and Lemma 8.8, the log Gromov-Witten invariants of Y m are computed by the twisted quantum scattering diagram S( Dtw m ). On the other hand, the consistency of S( Dtw m ) is equivalent to the wall-crossing formula for refined DT counterclockwise ordering of the m j and m p given by their argument. By standard toric geometry, β 2 is given by twice the area of the dual polygon and so we have

β 2 = n j=1 n k=1 ⟨m j , m k ⟩ + p j p k .
It follows that Proof. As in Section 2.4, the invariants N S E g,β can be written as equivariant Gromov-Witten invariants of the 3-fold S × C relative to the divisor E × C. The rationality result then follows from the Gromov-Witten/stable pairs correspondence for the relative 3-fold geometry S × C E × C.

β 2 p = n j=1 n k=1 ⟨m j , m k ⟩ + p j p k - n j=1 p 2 j = dim M θ-ss p - 1 
This case of the Gromov-Witten/stable pairs correspondence can be proved following Section 5.3 of [START_REF] Maulik | Curves on K3 surfaces and modular forms[END_REF]. This involves considering the degeneration of S ×C to the normal cone of E ×C. Let N be the normal bundle to E in S. The degeneration formula expresses equivariant Gromov-Witten/stable pairs theories of S × C, without insertions, in terms of the relative equivariant Gromov-Witten/stable pairs theories, without insertions, of S × C E × C and P(N ⊕ O E ) × C E × C.

The 3-fold S × C is deformation equivalent to a toric 3-fold. Indeed, a del Pezzo surface is deformation equivalent to a (not necessarily del Pezzo) toric surface: if S is a blow-up of P 2 in n points, then S is deformation equivalent to a surface obtained by n successive toric blow-ups of P 2 . Therefore, the Gromov-Witten/stable pairs correspondence for S × C, without insertions, follows from Section 5.1 of [START_REF] Maulik | Curves on K3 surfaces and modular forms[END_REF].

The equivariant Gromov-Witten/stable pairs theory of P(N ⊕ O E ) × C E × C coincides with the non-equivariant Gromov-Witten theory of P(N ⊕ O E ) × E E × E. The 3-fold P(N ⊕ O E ) × E is a P 1 -bundle over E × E and we are considering curves of degree 0 over the second E factor. As E × E is holomorphic symplectic, the Gromov-Witten/stable pairs theories vanish unless the curve class has also degree 0 over the first E factor. The Gromov-Witten/stable pairs correspondence for

P(N ⊕ O E ) × E E × E ,
without insertions, thus follows from the Gromov-Witten/stable pairs correspondence, without insertions, for local curves.

It follows from Proposition 6 of [START_REF] Pandharipande | Descendent theory for stable pairs on toric 3-folds[END_REF] that the degeneration formula can be inverted to imply the Gromov-Witten/stable pairs correspondence, without insertions, for S × C E × C.

By Lemma 8.15, we have rational functions

Ω S E β (q 1 2 ) ∈ Q(q ± 1 2 ) , such that Ω S E β (q 1 2 ) = (-1) β⋅E+1 2 sin ̵ h 2 g⩾0 N S E g,β ̵ h 2g-1 ,
as power series in ̵ h, after the change of variables q = e i ̵ h . We define

Ω S E β (q 1 2 ) = β= β ′ µ( ) q 1 2 -q -1 2 q 2 -q -2 Ω β ′ (q 2 ) ∈ Q(q 1 
2 ) .

According to Conjecture 8.3, one should have Ω

S E β (q 1 
2 ) ∈ Z[q ± 1 2 ]. Let M β be the moduli space of dimension one stable sheaves on S, of class β ∈ H 2 (S, Z), and Euler characteristic 1. It is a smooth projective variety of dimension β 2 + 1. Let χ q (M β ) ∶= q -1 2 (β 2 +1)

β 2 +1 j,k=0
(-1) j+k h j,k (M β )q j ∈ Z[q ± 1 2 ] be the normalized Hirzebruch genus of M β , where h j,k are the Hodge numbers. It follows from Theorem 2 of [START_REF] Markman | Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces[END_REF], following [START_REF] Ellingsrud | Towards the Chow ring of the Hilbert scheme of P 2[END_REF] and [START_REF] Beauville | Sur la cohomologie de certains espaces de modules de fibrés vectoriels[END_REF], that h j,k (M β ) = 0 if j ≠ k. In particular, χ q (M β ) coincides with the normalized Poincaré polynomial of M β .

Conjecture 8.16. We have

Ω S E β (q 1 
2 ) = (-1) β 2 +1 (β ⋅ E)χ q (M β ) .

Note that we have β 2 = β ⋅E mod 2 by the Riemann-Roch theorem. In the limit q 1 2 → 1, Conjecture 8.16 reduces to

N S E 0,β = (-1) β⋅E-1 β= β ′ (-1) (β ′ ) 2 +1 (β ′ ⋅ E) 2 e(M β ′ ) = (-1) β⋅E-1 (β ⋅ E) β= β ′ 1 3 (-1) (β ′ ) 2 +1 e(M β ′ ) ,
which is a known result. Indeed, by an application of the degeneration formula originally due to Graber-Hassett and generalized in [START_REF] Van Garrel | Local Gromov-Witten Invariants are Log Invariants[END_REF], we have

N S E 0,β = (-1) β⋅E+1 (β ⋅ E)N X 0,β
where X is the local Calabi-Yau 3-fold given by the total space of the canonical line bundle K S of S, and N X 0,β is the genus 0, class β, Gromov-Witten invariant of X. So the previous formula is equivalent to

N X 0,β = β= β ′ 1 3 (-1) (β ′ ) 2 +1 e(M β ′ ) ,
which is exactly the Katz conjecture (Conjecture 2.3 of [Kat08]) for X. As X is deformation equivalent to a toric Calabi-Yau 3-fold, the Katz conjecture for X follows from the combination of the Gromov-Witten/stable pairs correspondence (Section 5.1 of [START_REF] Maulik | Curves on K3 surfaces and modular forms[END_REF]), the integrality result of [START_REF] Konishi | Integrality of Gopakumar-Vafa invariants of toric Calabi-Yau threefolds[END_REF] and Theorem 6.4 of [START_REF] Toda | Stability conditions and curve counting invariants on Calabi-Yau 3-folds[END_REF].

The right-hand side (-1) β 2 +1 χ q (M β ) should be thought as a refined DT invariant of X, counting dimension one sheaves. From this point of view, Conjecture 8.16 is an equality between a log BPS invariant on one side and a refined DT invariant on the other side, in a way completely parallel to Theorem 8.13. Further conceptual evidence for Conjecture 8.16 and a further refinement of Conjecture 8.16 will be presented elsewhere.

Relation with Cecotti-Vafa

In this last Section, we make no claim of mathematical results or mathematical precision. We briefly explain how the main results of this paper are related to some previous expectations in the theoretical physics literature.

In [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF], Cecotti-Vafa have given a physical derivation of the fact that the refined BPS indices of a N = 2 4d quantum field theory admitting a Seiberg-Witten curve satisfy the refined Kontsevich-Soibelman wall-crossing formula. To make a connection with Theorem 3.1, we focus on only one part of the argument, establishing the relation between open Gromov-Witten invariants and the wall-crossing formula via Chern-Simons theory. In particular, we do not discuss the application to the BPS spectrum of N = 2 4d quantum field theories, which would be related to our Section 8.5 on quiver DT invariants. 9.1. Summary of the Cecotti-Vafa argument. Let U be a non-compact hyperkähler manifold, (I, J, K) be a quaternionic triple of compatible complex structures, (ω I , ω J , ω K ) be the corresponding triple of real symplectic forms and (Ω I , Ω J , Ω K ) be the corresponding triple of holomorphic symplectic forms. In [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF], Cecotti-Vafa consider U = C 2 but the generalization to an arbitrary hyperkähler surface is clear and is considered for example in [START_REF] Cecotti | R-twisting and 4d/2d correspondences[END_REF] (in particular Appendix B).

Let Σ ⊂ U be an I-holomorphic Lagrangian subvariety of U , ie a submanifold such that Ω I Σ = 0. It is a complex subvariety for the complex structure I and a real Lagrangian for any of the real symplectic forms (cos θ)ω J + (sin θ)ω K for θ ∈ R. There is in fact a twistor sphere J ζ , where ζ ∈ P 1 , of compatible complex structures, such that I = J 0 , J = J 1 and K = J i .

Let X be the non-compact Calabi-Yau 3-fold, of underlying real manifold U × C * , equipped with a complex structure twisted in a twistorial way, ie such that the fiber over ζ ∈ C * is the complex variety (U, J ζ ). Consider S 1 ⊂ C * and L ∶= Σ × S 1 ⊂ X.

We consider counts of holomorphic maps (C, ∂C) → (X, L) from an open Riemann surface C to X with boundary ∂C mapping to L. Usually, boundary conditions for counts of open holomorphic curves are taken be Lagrangian submanifolds. In fact, L is not Lagrangian in X but only totally real. Combined with specific aspects of the twistorial geometry, it is probably enough to have well-defined open Gromov-Witten invariants. As suggested in [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF], it would be interesting to clarify this point. We restrict ourselves to open Riemann surfaces with only one boundary component. Given a class β ∈ H 2 (X, L), let N g,β ∈ Q be the "count" of holomorphic maps ϕ∶ (C, ∂C) → (X, L) with C a genus g Riemann surface with one boundary component and [ϕ(C, ∂C)] = β. We write

∂β = [∂C] ∈ H 1 (L) ,
to denote the image of β by the natural boundary map H 2 (X, L) → H 1 (L). A holomorphic map ϕ∶ (C, ∂C) → (X, L) of class β ∈ H 2 (X, L) is a J e iθ -holomorphic map to U , at a constant value e iθ ∈ S 1 , where θ is the argument of ∫ β Ω I .

According to Witten [START_REF] Witten | Chern-Simons gauge theory as a string theory[END_REF], one should encode these counts of holomorphic maps as deformations of Chern-Simons theory of gauge group U (1) on L . The field of this theory is a U (1) gauge field A and its action is

I CS (A) ∶= 1 2 L A ∧ dA .
According to Section 4.4 of [START_REF] Witten | Chern-Simons gauge theory as a string theory[END_REF], this Chern-Simons action is deformed by additional terms involving the counts of holomorphic maps: As L = Σ × S 1 , we can adopt a Hamiltonian description where S 1 plays the role of the time direction. The classical phase space of U (1) Chern-Simons theory on L = Σ × S 1 is the space of U (1) flat connections on Σ. When Σ is a torus, the classical phase space is the dual torus T . For every m ∈ H 1 (L), the holonomy around m defined a function z m on T , ie a classical observable, z m (A) ∶= e ∫m A .

I(A) = I CS (A) +
The algebra structure is given by z m z m ′ = z m+m ′ and the Poisson structure by {z m , z m ′ } = ⟨m, m ′ ⟩z m+m ′ . The algebra of quantum observables is given by the non-commutative torus, ẑm ẑm ′ = q 1 2 ⟨m,m ′ ⟩ ẑm+m ′ , where q = e i ̵ h . Writing t β = e -∫β ω , we obtain

Z = Tr H ⎛ ⎝ T β∈H 2 (X,L) Ad exp -i ∑ g⩾0 N g,β ̵ h 2g-1 t β ẑm ⎞ ⎠
, where H is the Hilbert space of quantum Chern-Simons theory and where T ∏ β is a time ordered product, with ordering according to the phase of ∫ β Ω I .

The key physical input used by Cecotti-Vafa [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF] is the continuity of the partition function Z as function of the position of L in X. It follows that the jump of the invariants N g,β under variation of L in X is controlled by the refined Kontsevich-Soibelman wallcrossing formula formulated in terms of products of automorphisms of the quantum torus. In some cases, U m admits a hyperkähler metric, such that the original complex structure of U m is the compatible complex structure J, and such that the SYZ fibration becomes Iholomorphic Lagrangian. Typical examples include 2-dimensional Hitchin moduli spaces, see [START_REF] Boalch | Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves[END_REF] for a nice review. In such cases, we can apply the Cecotti-Vafa story summarized above to U ∶= U m , with Σ a torus fiber of the SYZ fibration.

The log Gromov-Witten invariants with insertion of a top lambda class N g,β , introduced in Section 2, should be viewed as a rigorous definition of the open Gromov-Witten invariants in the twistorial geometry X, with boundary on a torus fiber Σ "near infinity". An early reference for the interpretation of some open Gromov-Witten invariants in terms of relative stable maps is [START_REF] Li | Open string instantons and relative stable morphisms[END_REF]. The intuitive picture to have in mind is that an open Riemann surface with a boundary on a torus fiber very close to the divisor at infinity can be capped off by a holomorphic disc meeting the divisor at infinity in one point. This is in part justified by the 3-dimensional interpretation of the invariants N Ym g,β given in Section 2.4 and in particular by Lemma 2.2.

Automorphisms of the quantum torus appearing in Section 9.1 coincide with the automorphisms of the quantum torus appearing in Theorem 3.1. It follows that Theorem 3.1 can be viewed as a mathematically rigorous check of the physical argument given by Cecotti-Vafa [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF], based on the continuity of Chern-Simons correlation functions and on the connection predicted by Witten [START_REF] Witten | Chern-Simons gauge theory as a string theory[END_REF] between higher genus open Gromov-Witten invariants and quantum Chern-Simons theory. 
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  be the trivial family of non-commutative 2-dimensional tori parametrized by S, ie T ̵ h S ∶= S × T ̵ h . The corresponding algebra of functions is simply given by

Proposition 1. 3 .

 3 Any scattering diagram D can be canonically completed by adding only outgoing rays to form a consistent scattering diagram S(D).

Theorem 3 . 1 .

 31 For every m = (m 1 , . . . , m n ) an n-tuple of primitive non-zero vectors in M and every m ∈ M -{0} primitive, the Hamiltonian Ĥm attached to the outgoing ray R ⩾0 m in the consistent quantum scattering diagram S( Dm ) is given by

3. 4 .

 4 More general quantum scattering diagrams. We still fix m = (m 1 , . . . , m n ) an n-tuple of primitive vectors of M = Z 2 and we continue to denote P = N n , so that R = C[[P ]] = C[[t 1 , . . . , t n ]]. One could try to further generalize Theorem 3.2 by starting with a quantum scattering diagram over R consisting of incoming rays (d j , Ĥd j ) for 1 ⩽ j ⩽ n, where d j = -R ⩾0 m j and Ĥd j = ⩾1 Ĥd j , t j ẑ m j , for arbitrary Ĥd j , ∈ C[[ ̵ h]] .

  primitive generators of rays of the fan of Y m and where a L w , a R w ∈ N. Note that there is only one term in this decomposition if the ray R ⩾0 m w coincides with one of the rays of the fan of Y m . Let D L w and D R w be the toric divisors of Y m corresponding to the rays R ⩾0 m L w and R ⩾0 m R w . Let β w ∈ H 2 (Y m , Z) be the curve class uniquely determined by the following intersection numbers with the toric divisors: • The intersection numbers with those D wr for 1 ⩽ r ⩽ s that are distinct from D L w and D R w :

  exists by standard toric geometry because of the relation ∑ s r=1 w r = w m w , and is unique. 4.2. Log Gromov-Witten invariant of toric surfaces. In the previous Section, given w = (w 1 , . . . , w s ) a s-tuple of non-zero vectors in M , we defined certain positive integers w , a L w and a R w , certain toric divisors D L w and D R w of Y m , and a curve class β w ∈ H 2 (Y m ,

-R ⩾0 m 1 0 -R ⩾0 m 2 FigureFigure

 02 Figure: tropicalization of Y m .

For 1

 1 ⩽ j ⩽ n, ⩾ 1 and a ⩾ 0, denote by k ,j,a the number of vertices of Γ k,⃗ g having genus a among the k ,j ones having curve class decoration [C j ]. Note that we have k

  be the resulting consistent quantum scattering diagram given by Proposition 1.3. The following result is Lemma 4.3 of [FS15]. Lemma 6.1. The consistent quantum scattering diagram S( D) is obtained from D by adding three outgoing rays:

  it follows that Ĥ1 and Ĥ2 commute with [ Ĥ1 , Ĥ2 ]. Using an easy case of the Baker-Campbell-Hausdorff formula, according to which e a e b = e a+b+ 1 2 [a,b] if a and b commute with [a, b], we obtain e Ĥ2 e -Ĥ1 e -Ĥ2 e Ĥ1 = e [ Ĥ1 , Ĥ2 ] ,

m

  would have been equivalent to Dm . But for c j A ∈ R 2 in general position, Dsplit m is a perturbation of Dm : each ray (d j , Ĥ∂ j ) of D m splits into various rays (d j A , Ĥd j A ) of Dsplit m . The key simplifying fact is that the consistent scattering diagram S( Dsplit m ) can be obtained from Dsplit m by a recursive procedure involving only elementary scatterings in the sense of Lemma 6.1. When two rays of Dsplit m intersect, we are in the situation of Lemma 6.1 because u 2 ja = 0.

7.

  End of the proof of Theorems 3.1 and 3.2 7.1. End of the proof of Theorem 3.1. In this Section, we finish the proof of Theorem 3.1. We have to express the Hamiltonians attached to the rays of the consistent quantum scattering diagram S( Dm ) in terms of the log Gromov-Witten invariants N Ym g,p of the log Calabi-Yau surface Y m . We know already: • Corollary 6.3, expressing the Hamiltonians attached to the rays of S( Dm ) in terms of the refined counts N trop w (q 1 2 ) of tropical curves in R 2 . • Proposition 5.1, relating the log Gromov-Witten invariants N Ym g,p of the log Calabi-Yau surface Y m to the log Gromov-Witten invariants N Y m g,w of the toric surface Y m .

r∨

  over M g,1 (BZ r) comes from the equivariant orbifold line bundle O P 1 [r,1] (-[0] (Z r)) [0] (Z r) over BZ r, restriction over [0] (Z r) of the degree -1 r orbifold line bundle O P 1 [r,1] (-[0] (Z r)) over P 1 [r, 1].

  now use the change of monoid trick, as in Steps I and IV of Appendix C3 of [GHKK18]. Write P ′ = ⊕ n I j=1 Ne ′ j and r ′ ∶ P ′ → M e ′ j ↦ r ′ (e j ) ∶= r(p j ) . Let Dtw ′ be the twisted quantum scattering diagram over (r ′ ∶ P ′ → M ) obtained by replacing xp j by xe ′ j in Ĥtw d j . Write u∶ P ′ → P e ′ j ↦ p j . Let (d, Ĥtw d ) be an outgoing ray of S( Dtw ), whose P -direction p satisfies ord(p) = N . Then (d, Ĥtw d ) is the sum of images by u of outgoing rays of S( Dtw ′ ), of P ′ -direction mapping to p by u. Let (d ′ , Ĥtw d ′ ) be such an outgoing ray of S( Dtw ′ ). Writing p ′ = ∑ n I j=1 p ′ j e ′ j , where (p ′ 1 , . . . , p ′ n ) ∈ N n I , we have ord(p ′ ) = ord ord(p j ) .

N

  g,β ̵ h 2g e -∫β ω e ∫∂β A .The partition function of the deformed theory can be written as a correlation function in Chern-Simons theoryZ = DA e i I(A) X,L) g⩾0 N g,β ̵ h 2g-1 e -∫β ω e ∫∂β A ⎞ ⎠ ⟩ CS .

9. 2 .

 2 Comparison with Theorem 3.1. Our main result, Theorem 3.1, expresses the log Gromov-Witten theory of a log Calabi-Yau surface (Y m , ∂Y m ) in terms of a 2-dimensional Kontsevich-Soibelman scattering diagram. The complement U m ∶= Y m -∂Y m is a noncompact holomorphic symplectic surface admitting a SYZ real Lagrangian torus fibration.

  Finally, Ooguri-Vafa [OV00] have given a physical derivation of an integrality result for open Gromov-Witten invariants of Calabi-Yau 3-folds, parallel to the Gopakumar-Vafa [GV98a] [GV98b] integrality for closed Gromov-Witten invariants of Calabi-Yau 3-folds. Given the heuristic interpretation of the log Gromov-Witten invariants N g,β as open Gromov-Witten invariants, this integrality coincides with the integrality of Conjecture 8.3 and Theorem 8.5.

  Given a ray (d, H d ), we denote m(H d ) ∶= m d if (d, H d ) is outgoing, and m(H d ) ∶= -m d if (d, H d ) is ingoing. In both cases, we have

]) , is called ingoing.

  • A ray (d, H d ) with H d = 0 is considered to be trivial and can be safely removed from the scattering diagram. • If two rays (d 1 , H d 1 ) and (d 2 , H d 2 ) are such that d 1 = d 2 and are both ingoing or outgoing, then they can be replaced by a single ray (d, H d ), where d = d 1 = d 2 and

  tuple of primitive non-zero vectors in M = Z 2 , the pair (Y m , ∂Y m ) defined in Section 2.1. Strictly speaking, Y m is not smooth, but log smooth. We can either make Y m smooth by toric blow-ups or allow log smooth objects in the definition of log Calabi-Yau. Then (Y m , ∂Y m ) is log Calabi-Yau with respect to every class β ∈ H 2 (Y m , Z) and so in particular with respect to the classes β p ∈ H 2 (Y m , Z) defined in Section 2.2. • If Y is a del Pezzo surface and ∂Y a smooth anticanonical divisor, then (Y, ∂Y ) is log Calabi-Yau with respect to every class β ∈ H 2 (Y, Z).

  .8.6. del Pezzo surfaces. In this Section, we study the conjectures of Section 8.1 in the case where Y is a del Pezzo surface S and ∂Y is a smooth anticanonical divisor E of Y . In particular, E is a smooth genus one curve. We formulate Conjecture 8.16, precise form of Conjecture 0.3 of the Introduction.Lemma 8.15. Let S be a del Pezzo surface, and E be a smooth anticanonical divisor of S. Then, for every β ∈ H 2 (Y, Z), the rationality Conjecture 8.1 is true for the log Calabi-Yau pair (S, E) with respect to the curve class β.
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all multiples of β, so that the rational functions Ω nβ (q 1 2 ) ∈ Q(q ± 1 2 ), are defined. Then, in fact, for every n ⩾ 1, Ω nβ (q 1 2 ) is a Laurent polynomial in q 1 2 with integer coefficients, ie

invariant under q 1 2 ↦ q -1 2 .

In Section 9, we explain why this integrality conjecture can be interpreted in some cases as a mathematically well-defined example of the general integrality for open Gromov-Witten invariants in Calabi-Yau 3-folds predicted by Ooguri-Vafa [START_REF] Ooguri | Knot invariants and topological strings[END_REF]. In particular, the log BPS invariants Ω β (q 1 2 ) should be thought as examples of Ooguri-Vafa/open BPS invariants.

In the classical limit ̵ h → 0, the integrality of Ω nβ ∶= Ω nβ (q 1 2 = 1) is equivalent to Conjecture 6.2 of [START_REF] Gross | The tropical vertex[END_REF]. If β 2 = -1, β ⋅ (∂Y ) = 1, and the class β only contains a smooth rational curve, then it follows from the proof of Lemma 5.9 that Conjecture 8.3 is true. More precisely, we have

for every n ⩾ 1, and so Ω β (q Proof. This follows from Theorem 3.1, expressing the generating series of invariants N Ym g,p as a Hamiltonian Ĥm attached to some ray of the quantum scattering diagram S( Dm ), and from Proposition 6.2, giving a formula for Ĥm whose coefficients are manifestly in

] ⩾1 and so Lemma 8.4 follows directly from Theorem 3.1. By Lemma 8.4, we have rational functions

as power series in ̵ h, after the change of variables q = e i ̵ h . Note that we used the fact that

The following result is, after Theorem 3.1, the second main result of this paper. It is a precise form of Theorem 0.2 in the Introduction.

of Γ O T Q((q 1 2 )) P,tw . Definition 8.6. A twisted quantum scattering diagram Dtw over (r∶ P → M ) is a set of rays d in M R , equipped with elements

, such that:

• There exists a primitive p ∈ P (which is necessarily unique) such that Ĥtw 

Using the automorphisms Φtw

Ĥtw , we define as in Section 1.4 the notion of consistent twisted quantum scattering diagram and one can prove that every twisted quantum scattering diagram D tw can be canonically completed by adding only outgoing rays to form a consistent twisted quantum scattering diagram S(D tw ).

The following Lemma will give us a way to go back and forth between quantum scattering diagrams and twisted quantum scattering diagrams.

Lemma 8.7. The map σ M ∶ M → {±1}, defined by σ M (0) = 1 and σ M (m) = (-1) m for m ∈ M non-zero, where m is the divisibility of m in M , is a quadratic refinement of

Proof. We fix a basis of M and we denote by m = (m x , m y ) the coordinates of some m ∈ M in this basis. We define

, m y ) is equal to (1, 0), (0, 1) or (1, 1) modulo two, and in all three cases, we obtain σ ′ M (m) = -1. Combined with the fact that σ ′ M is a quadratic refinement, this implies that, for every m ∈ M , we have σ ′ M (m) = (-1) m , ie σ ′ M = σ M . In particular, σ M is a quadratic refinement and σ ′ M is independent of the choice of basis. The uniqueness statement follows from the fact that a quadratic refinement is determined by its value on a basis of M .

Let Dtw

m be the twisted quantum scattering diagram consisting of incoming rays (d j , Ĥtw d j ), 1 ⩽ j ⩽ n, where d j = -R ⩾0 m j , and Ĥtw

, where we consider 1

Let S( Dtw m ) be the corresponding consistent twisted quantum scattering diagram obtained by adding only outgoing rays.

Define σ P ∶ P → {±1} by σ P ∶= σ M ○ r. It follows from Lemma 8.7 that σ P is a quadratic refinement and so

is an algebra isomorphism between quantum tori and twisted quantum tori. Using this isomorphism, we can construct a twisted quantum scattering diagram S( Dm ) tw from the quantum scattering diagram Dm .

The incoming rays of S( Dm ) tw are (d j , Ĥtw d j ), 1 ⩽ j ⩽ n, where d j = -R ⩾0 m j and Ĥtw

The outgoing rays of S( Dm

Lemma 8.8. We have S( Dtw m ) = S( Dm ) tw . Proof. As (∏ n j=1 t p j j )ẑ r(p) ↦ σ P (p)x p is an algebra isomorphism, the twisted quantum scattering diagram S( Dm ) tw is consistent and so the result follows from the uniqueness of the consistent completion of twisted quantum scattering diagrams. 8.4. Proof of the integrality theorem. We give below the proof of Theorem 8.5. It is a combination of the scattering arguments of Appendix C3 of [START_REF] Gross | Canonical bases for cluster algebras[END_REF] with the formalism of quantum admissible series of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF]. Because of the structure of the induction argument, we will in fact prove a more general statement than Theorem 8.5. We will prove, as Proposition 8.11, that the consistent completion of any (twisted) quantum scattering with incoming rays equipped with Hamiltonians satisfying some BPS integrality condition has outgoing rays equipped with Hamiltonians satisfying the BPS integrality condition.

We fix p ∈ P primitive. Consider Ĥtw =

⩾1

Ĥtw (q

We define Ω (q

2 )) , and

2 )) .

It follows from Lemma 8.2 that we have

Definition 8.9. We say that Ĥtw ∈ xp Q((q

The function Ĥtw satisfies the BPS integrality condition if and only if exp Ĥtw is admissible in the sense of Section 6 of [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF].

It follows from the product form of the quantum dilogarithm, as recalled in Section 3.1, that if Ĥtw satisfies the BPS integrality condition, then Φtw

Ĥtw preserves the subring

. We refer to the subgroup of automorphisms of Γ O T Z[[q 1 2 ]] P,tw generated by automorphisms of the form Φtw Ĥtw with Ĥtw satisfying the BPS integrality condition as the BPS quantum tropical vertex group; this subgroup is called the quantum tropical vertex group in [START_REF] Kontsevich | Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants[END_REF], .

We fix a choice of twisted quantum scattering diagram in each equivalence class by considering to be distinct rays with different P -directions and by merging rays with coinciding supports and with the same P -direction.

Recall that for p = (p 1 , . . . , p n ) ∈ P = N n , we denote ord(p) ∶= ∑ n j=1 p j . It is simply the total degree of the monomial in several variables ∏ n j=1 t p j j . Lemma 8.10. Let N , n and n I be a positive integers. Let r∶ P = N n → M be an additive map. Let (p 1 , . . . , p n I ) be an n I -tuple of primitive vectors in P . Let Dtw be a twisted quantum scattering diagram over (r∶ P → M ), consisting of incoming rays (d j , Ĥtw

satisfying the BPS integrality condition. Then, every outgoing ray (d, Ĥtw d ) of the consistent twisted quantum scattering diagram S( Dtw ), whose P -direction p satisfies ord(p) ⩽ N , is such that

2 ))[[x p ]] satisfies the BPS integrality condition.

invariants of Q m between the trivial and the maximally non-trivial stability conditions, [START_REF] Reineke | Poisson automorphisms and quiver moduli[END_REF].

In the limit q 1 2 → 1, if Q m is complete bipartite, then Theorem 8.13 reduces to the Gromov-Witten/Kronecker correspondence of [START_REF] Gross | Quivers, curves, and the tropical vertex[END_REF], [START_REF] Reineke | Refined GW/Kronecker correspondence[END_REF], [START_REF] Reineke | MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence[END_REF].

Theorem 8.13 can be viewed as a concrete example of equality between open BPS invariants and DT invariants of quivers. The expectation for this kind of relation goes back at least to [START_REF] Cecotti | BPS wall crossing and topological strings[END_REF], as reviewed in Section 9. Related recent stories include [START_REF] Kucharski | BPS states, knots, and quivers[END_REF], [KRSS17b], where some knot invariants, which via some string theoretic duality should be examples of open BPS invariants, are identified with some quiver DT invariants, and [START_REF] Zaslow | Wavefunctions for a Class of Branes in Threespace[END_REF], where a precise correspondence between open BPS invariants of a certain class of Lagrangian submanifolds in C 3 and some DT invariants of quivers is conjectured.

Theorem 8.13 gives a different proof of Theorem 8.5 when Q m is acyclic. When Q m is not acyclic, it is unclear a priori how to relate the log BPS invariants Ω Ym p (q

2 ) to some DT quiver theory. In the physics language, one should remove the contributions of non-trivial single-centered (pure Higgs) indices (see [START_REF] Manschot | On the Coulomb and Higgs branch formulae for multicentered black holes and quiver invariants[END_REF] and follow-ups). It is still an open question to define mathematically the corresponding operation in DT quiver theory. The fact that the integrality given by Theorem 8.5 holds even if Q m is not acyclic is probably additional evidence that it should be possible.

When Q m is acyclic, Theorem 8.13 gives a positivity result for the log BPS invariants Ω Ym p (q

2 ). It is unclear how to prove a similar positivity result if Q m is not acyclic. We finish this Section with a remark about signs. The definition of Ω Ym p (q

2 ) given in Section 8.2 includes a global sign (-1) p-1 = (-1) βp⋅(∂Ym)-1 , whereas the formula given above for Ω Qm p (q 1 2 ) includes a global sign (-1) dim M θ-ss p . Using that β p ⋅ (∂Y m ) and β 2 p have the same parity by Riemann-Roch on Y m , the following result gives a direct proof that these two signs are identical. From the intersection numbers defining β, we see that the convex polygon dual to β is obtained by successively adding the vectors p j m j and p m p , in the order given by the