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Abstract

The SARS-CoV-2 pandemic has led to an unprecedented daily use of molecular RT-PCR tests. These 
tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the 
number of amplification cycles (Ct), is debated because of strong potential biases. We analyze a 
national database of tests performed on more than 2 million individuals between January and 
November 2020. Although we find Ct values to vary depending on the testing laboratory or the assay 
used, we detect strong significant trends with patient age, number of days after symptoms onset, or the 
state of the epidemic (the temporal reproduction number) at the time of the test. These results suggest 
that Ct values can be used to improve short-term predictions for epidemic surveillance. 
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1 Introduction

Molecular testing is a key component of screening policies to control the spread of infectious diseases 
and the SARS-CoV-2 pandemic has led to an unprecedented testing rate using reverse transcription 
polymerase chain reaction (RT-PCR) assays. [1]. In clinical and public health practices, RT-PCR 
results are qualitative for viral respiratory disease diagnostics, with reports such as ‘positive’, 
‘negative’, ‘uninterpretable’, and, sometimes, ‘weakly positive’. These are based on the cycles 
threshold, also referred to as crossing point or crossing threshold (here denoted Ct), which corresponds 
to the number of PCR amplification cycles required for the fluorescent signal to rise above a positive 
threshold. In theory, the more abundant the genetic target in the sample, the fewer the amplification 
cycles required to detect it. This is why numerous studies on SARS-CoV-2 rely on Ct values to assess 
transmissibility [2] or study infection kinetics [3]. However, many practical and biological limitations 
make Ct values a poor reflector of virus load [6]. Here, we present a cross-sectional analysis of SARS-
CoV-2 RT-PCR tests performed on 2,220,212 individuals in France between January 21, 2020, and 
November 30, 2020 (Figure S2). 

Few studies analyze Ct values at a population level. One explanation for this matter of affairs is that 
these are known to suffer from several, potentially strong, biases. First, sample type and sampling 
quality directly affect the amount of genetic material available. Second, the RT-PCR assay matters. 
Even the quality of the reagents used may have a significant effect on the number of amplification 
cycles required to achieve the same level of fluorescence for the same amount of target genetic 
material. Combining data from different laboratories helps to control for these sources of variation in 
statistical analyses. Furthermore, the larger the dataset, the more we can detect small statistical trends 
even after having controlled for non-informative variables. 

2 Methods

In our analysis, we studied tests from individuals aged between 1 to 89 years old performed in France 
in 2020. There currently is no national database so datasets from the 21 partner laboratories were 
combined for this study. The context in which these tests were performed varied temporally. Until at 
least April 2020, the testing capacity was limited in the country and the majority of tests were 
performed on symptomatic individuals, especially in hospital settings. After May 2020, testing was 
more accessible and data then includes screening tests performed in the general population. This 
change in testing context coincided with a shift in terms of screening facilities with the majority of the 
tests being performed in hospital virology departments until April 2020 and in private laboratories after
that. Conversely, we do not expect this testing motivation to vary across French regions. We did not 
take into account tests for which key variables such as patient age, patient sex, laboratory geographical 
department, qualitative result, or RT-PCR assay used were unknown. Note that one test could provide 
more than one Ct value if containing probes targeting multiple viral genes. According to the national 
guidelines [4], it is recommended to focus on the most sensitive target to categorize levels of viral 
excretion. After removing the 388 biologically unrealistic Ct values that were lower than 10 or larger 
than 45, the 95% confidence interval (95CI) of the remaining values was [16.89;35.56] (Table S1). The
median and upper bound of the 95CI were unaffected by the removal of these values and the lower 
bound increased from 16.87 to 16.89.  Overall, we were left with 793,479 tests from the same number 
of individuals. These originated from both negative and positive tests but, since they all have Ct values,
the former are less represented.
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We used a linear regression model to explore how Ct values can be explained by the following 
variables: patient age and sex, the number of days since the onset of the symptoms (if known), the 
clinical sampling site (if known), the sampling facility (if known), the RT-PCR assay used, the target 
gene, the test’s qualitative result, the sampling date, the temporal reproduction number of the epidemic 
at the sampling date (denoted Rt and estimated on national hospital admission data using the EpiEstim 
method [5]), and a control variable. The latter corresponds to the last digit of the patient anonymity 
number and is expected to be independent of the Ct value. Therefore, the lowest p-value associated 
with the control variable, which we expect to be pure noise, can be used to set the significance 
threshold for the other variables. We also included in the model an interaction term between sampling 
date and Rt. For this analysis, we excluded Ct values from internal controls. Univariate analyses are 
extremely sensitive to heterogeneity in the dataset. For instance, the age distribution from patients 
sampled in aged care homes is different than that from city screening facilities, and analyzing the 
‘sampling facility’ factor alone could yield misleading results. This is why the analysis used here is 
multivariate and considers all the factors listed above simultaneously. In particular, allows us to control
for variations in the way the data was collected, e.g. the intensity or the context of the sampling.

To control for the consistency of the results for some of the factors, especially those related to the 
infection (e.g. the number of days since symptoms onset), we also performed the analyses only on the 
tests that were reported as “positive” or “weakly positive”. These are shown in Supplementary Results.

3 Results

The adjusted R-square of the  linear model was 38.8%, meaning that the factors we chose explained 
one-third of the variance in Ct values. The model residuals were normally distributed (Figure S3A).  
Care should be taken in the analysis given that the data is unbalanced, which is why we performed an 
analysis of variance (ANOVA) with type II sums of squares.  All the factors except the temporal 
reproduction number were significantly associated with Ct values using a classical 5% p-value 
criterion. Even for the control variable, the p-value was 0.013 and patients with final digits 1 and 3 had 
Ct values slightly lower (-0.19 and -0.17 cycles) than patients with a 0 final digit. Therefore, we set our 
significance thresholds to 5% of that of the control variables, i.e. 6.5 × 10-4, to analyze the main effects 
(Table 1). Detailed outputs of the linear model are shown in Table S2. 

The intercept of the linear model indicates the average Ct value for a positive test performed with the 
reference assay, and all the other factors being set to their reference value. Its magnitude (19.1 cycles) 
is in line with clinical practice. The importance of the noise in the dataset is illustrated by the strong 
effect of the testing laboratory, as well as the RT-PCR assay used (Supplementary Figure 2). 

Despite this high level of noise, we detected a strong effect of the qualitative result (Figure 1A), with Ct

differences that were even larger than that from the laboratory effect. We also found a slightly 
significant difference of -1.81 cycles between the most common type of samples (nasopharyngeal) and 
that performed on other clinical sampling sites (mostly lower respiratory tracts, but also faeces or 
saliva). This is likely because the latter tests were performed in patients with more severe symptoms. 

The effects associated with the number of days since symptoms onset was particularly strong. For the 
8.5% of the participants for whom the number of days between symptoms onset and testing dates was 
known, we found that the Ct gradually increases over the reported range with a maximum difference of 
5.73 cycles (Figure 1B). The effect was similar when removing the tests clinically considered to be 
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“negative” from the analysis (Supplementary Table S3).

The effect of sex had the same order of magnitude as that of the control variable and could, therefore, 
be treated as non-significant. Conversely, the age factor had a strong effect with a decrease of 0.541 
cycles per year (Figure 1C). 

The target gene of the RT-PCR assay used also yielded a slightly significant effect. The Ct values 
obtained when using a probe targeting the ORF1 and S regions of the virus genome were significantly 
higher than when using the N gene, which was the genomic region of reference in the model (Figure 
1D). This effect is consistent with the life-cycle of the virus. As stressed by [6], since coronaviruses are
(+)ssRNA viruses, they use the same RNA matrix for replication and transcription, both being 
amplified by diagnostic assays. Furthermore, Coronaviridae transcripts can produce subgenomic 
mRNAs that lack part of the genome [7]. As a consequence, and as shown in cell cultures [8], genes on 
the 5’ end of the genome are under-represented. This is consistent with our result where assays 
targeting the gene on the 3’ end (the N gene) tend to have lower Ct than assays targeting genes on the 
5’ end (the ORF1 and S genes). Note that an alternative explanation could be that some probes target 
more conserved areas of the SARS-CoV-2 than others [9]. 

Finally, we found that Ct values decreased with time (-0.797 cycle per day), but this effect was non-
linear (Figure 1E). This could be due to the strong variation in testing efforts in France (Figure S2A), 
but also to variations in the epidemic trend. Indeed, although the Rt (inferred from hospitalization data 
using the EpiEstim method [5]) was not found to be significant, the interaction between the sampling 
date and Rt was nearly significant (Figure 1F), suggesting that a temporal analysis could yield 
additional insights. 

The existence of a correlation between the Ct values of the tests performed in a population and Rt is 
consistent with population dynamics theory, which predicts that in an expanding population of infected 
individuals, the ‘age’ of the infections, i.e. the number of days post-infection, is skewed towards lower 
values [10]. Since Ct values have been reported to increase over the course of an infection [3], which 
we confirm with this analysis (Figure 1D), it has been suggested that these values could be used as an 
early signal to predict Rt [11]. 

To investigate this question, we focused on screening data collected in the general population from 
individuals aged from 5 to 79. We estimated the median and skewness values of the daily distribution 
of the Ct values. To correct for potential confounding factors, these were adjusted using a linear model 
(see the Supplementary Methods). We analyzed the temporal correlation between the time series with a
7-day rolling average of this median, skew, and Rt (Figure 2). For the median Ct value, we found a 
significant correlation with Rt that was maximized for a 6 to 7 days delay (Figure S4). This is 
consistent with Rt being calculated using data from ICU-admissions, which occur with a median of 14 
days after infection [12, 13], and RT-PCR screening data being obtained earlier in the infection. 

To further assess the usefulness of Ct data, we used ARIMA models to predict Rt dynamics over 7 
days. We compared models without any exogenous data, to models that also included exogenous time 
series (either median or skewness of estimated Ct values distribution, or the fraction of positive tests 
[1]). As expected, the prediction error made using only endogenous data (Rt) was low in periods where 
Rt variations were limited. Furthermore, we found that adding exogenous data improved the prediction,
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especially when strong shifts in Rt were occurring (Figure 2). Ct values (green and cyan dots) tended to 
provide a better reduction in the error of the prediction than the ratio of positive tests (purple). 

4 Discussion

This analysis of a large national database of RT-PCR tests performed in the context of a major 
epidemic confirms that population-level Ct values are noisy since even a linear model that features 91 
degrees of freedom does not explain the majority of the variance. However, owing to the law of large 
numbers, we detect several effects that are in line with biological observations and with virological 
properties. For instance, our finding that Ct values decrease as a function of the number of days after 
symptoms onset is consistent with longitudinal follow-ups [3]. Another study also reported lower Ct 
values when the test was performed in symptomatic individuals [17]. This same found that men had 
slightly lower Ct values than women, which was not significant in our analysis. Similarly, the 
difference we detect between the virus gene targeted by the RT-PCR assay used can be interpreted in 
the light of known differences in mRNA copy numbers between genes depending on their distance 
from the 3’ end [8]. Concerning the link between age and Ct values, although there are some 
mechanistic interpretations as to why virus load would increase with age [14], the evidence was mixed, 
with some studies reporting a decreasing trend [15] and others not [16, 17]. Here, using a multivariate 
approach on a large dataset allows us to unravel a strong and significant decrease of Ct values with age.

A limitation of our study is that although our dataset stands out by its size and its level of details, it is 
restricted to a single country where testing effort varies, both on a temporal and on a spatial scale 
(Figure S2). Performing similar analyses in other European countries can therefore be particularly 
informative. In the study, we also chose to analyse all the tests performed that had Ct value. This is 
debatable since high Ct values can be due to noise and this is the point of implementing cutoffs. 
However, Ct values are also known to increase of the course of an infection [3] and these high values 
could also correspond to patients detected in a late stage, which is expected to be more frequent in a 
declining epidemic [11]. To control for this potential bias, we also performed the analysis on a dataset 
without the tests with a “negative” result. Finally, this analysis was conducted at the end of the year 
2020 but since then, as in most countries, the emergence of variants has dramatically altered 
epidemiological dynamics in France [19,20] and early reports suggest that the Ct value measured could 
depend on the variant causing the infection [21,22,23,24,25]. Vaccination has also greatly changed the 
picture as indicated by Ct estimations in vaccine breakthrough infections [24,25] and should be 
included as a host factor in future analyses.

As pointed out elsewhere, care should be taken when interpreting Ct values because of technical issues 
(different assays may yield higher or lower values) and of biological issues (coronaviruses produce 
subgenomic RNAs) [6]. However, in this analysis, we do not attempt to link Ct values to viral loads but
rather analyse raw values at a population level. A promising output of this analysis is the possibility to 
use Ct values as an early signal to detect changes in epidemic behaviour, e.g. Rt values. Indeed, our 
most robust descriptors of the epidemics originate from hospital-admission data, but these have a 
significant delay with the status of the epidemic since patients are hospitalized 2 weeks after infection 
[13, 12]. The ratio of positive tests performed in the population of interest can, in theory, provide 
earlier insights but it suffers from strong sampling biases. We show that accounting for population-
based Ct values variations can improve Rt predictions on a 7-days period. This result is consistent with 
that obtained recently using data from nasopharyngeal specimens collected from staff and residents in 
four Massachusetts long-term care facilities [11]. Note that, contrarily to us, this earlier study does not 
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factor in individual data regarding patient age or symptomatic status and it does not perform a cross-
validation analysis that would control for temporal autocorrelation issues.  

Our results show that analysing a large dataset of Ct values from screening tests allows filtering out the 
important amount of noise in these values. Their inclusion in routine surveillance calls for an 
adaptation to the current state of the epidemics, especially the evolution of variants and the increase in 
vaccination coverage, but also the integration with other types of data such as mobility data [26,27,28]. 
They also call for better integration of Ct values in national and European public health policies to 
monitor epidemics caused by SARS-CoV-2 but also other human viruses, especially since these data 
raise less ethical concerns than other sources of data such as mobility data. 
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Table 1: Main factors affecting Ct values in the multivariate linear model. We only 
list factors with significant effects with a 10-3 p-value criterion. Coefficients reflect 
differences in Ct. For qualitative factors, the reference value (denoted “ref.”) is 
shown. CI: confidence interval.

Factor Value Coefficient 2.5% CI 97.5% CI 
(intercept) 19.1 12.9 25.4 
assay PerkinElmer (ref.) — — — 

Genefinder 12.1 10.3 13.9 
laboratory LAB_1 (ref.) — — — 

LAB_122 5.42 3.79 7.05 

LAB_96 -4.8 -6.71 -2.90 
result positive (ref.) — — — 

weakly positive 11.3 11.1 11.5 
negative 16.9 16.6 17.2 

days post-symptoms onset less than 4 (ref.) — — — 
4 to 7 2.76 2.66 2.86 
8 to 14 4.90 4.73 5.08 

more than 14 5.73 5.43 6.03 
sample naso-pharyngeal (ref.) — — — 

other -1.81 -2.49 -1.14 
age (per year) -0.541 -0.585 -0.497 
target gene N (ref.) — — — 

ORF1 1.03 0.949 1.12 
S 1.19 0.948 1.43 

date (per day) -0.797 -0.903 -0.691 
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Figure 1: Correlations between key factors and observed Ct variations. A) Qualitative result of the 
test, B) number of days between symptoms onset and testing, C) participant age and sex, D) genomic 
area targeted by the test, E) sampling date, and F) temporal reproduction number (Rt) at the time of the 
test. For panels A, B, and D, the violin plots indicate the distributions and the box plots show the 0.025,
0.25, 0.5, 0.75, and 0.975 quantiles. Panels C, E, and F are obtained with a ‘loess’ smoothing model 
and the gray area shows the 95% confidence interval from the underlying model. The Ct values shown 
are not the raw values but that estimated using a multiparametric linear model to correct for biases (see 
Supplementary Methods for details). 
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Figure 2: Predicting temporal reproduction number (Rt) from time series. The top four panels show
the the 7-days rolling averages of the time series of the ratio of positive tests (in purple), the median (in
green) and skewness (in cyan) of the daily Ct residual distribution, and Rt (in black). The bottom panels
show the error made by a prediction using only Rt data (red dots) and the potential improvement made 
by including exogeneous data. 
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