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The SARS-CoV-2 pandemic has led to an unprecedented daily use of molecular RT-
PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of
the test result intensity, i.e. the number of amplification cycles (Ct), is debated because
of strong potential biases. We analyze a national database of tests performed on more
than 2 million individuals between January and November 2020. Although we find
Ct values to vary depending on the testing laboratory or the assay used, we detect
strong significant trends with patient age, number of days after symptoms onset, or
the state of the epidemic (the temporal reproduction number) at the time of the test.
These results suggest that Ct values can be used to improve short-term predictions for
epidemic surveillance.
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Molecular testing is a key component of screening policies to control the spread of infectious diseases
and the SARS-CoV-2 pandemic has led to an unprecedented testing rate using reverse transcription poly-
merase chain reaction (RT-PCR) assays. (1). In clinical and public health practices, RT-PCR results are
qualitative for viral respiratory disease diagnostics, with reports such as ‘positive’, ‘negative’, ‘uninter-
pretable’, and, sometimes, ‘weakly positive’. These are based on the cycles threshold, also referred to as
crossing point or crossing threshold (here denoted Ct), which corresponds to the number of PCR ampli-
fication cycles required for the fluorescent signal to rise above a positive threshold. In theory, the more
abundant the genetic target in the sample, the fewer the amplification cycles required to detect it. This is
why numerous studies on SARS-CoV-2 rely on Ct values to assess transmissibility (2) or study infection
kinetics (3). Here, we present a cross-sectional analysis of SARS-CoV-2 RT-PCR tests performed on
2,220,212 individuals in France between January 21, 2020, and November 30, 2020 (Figure 1).
Few studies analyze Ct values at a population level. One explanation for this matter of affairs is that
these are known to suffer from several, potentially strong, biases. First, sample type and sampling quality
directly affect the amount of genetic material available. Second, the RT-PCR assay matters. Even the
quality of the reagents used may have a significant effect on the number of amplification cycles required
to achieve the same level of fluorescence for the same amount of target genetic material. Combining
data from different laboratories helps to control for these sources of variation in statistical analyses.
Furthermore, the larger the dataset, the more we can detect small statistical trends even after having
controlled for non-informative variables.
In our analysis, we studied tests from individuals aged between 1 to 89 years old. We did not take into
account tests for which key variables such as patient age, patient sex, laboratory geographical department,
qualitative result, or RT-PCR assay used were unknown. Note that one test could provide more than one
Ct value if containing probes targeting multiple viral genes. According to the national guidelines (4),
it is recommended to focus on the most sensitive target to categorize levels of viral excretion. After
removing the biologically unrealistic Ct values that were lower than 10 or larger than 45, the 95%
confidence interval (95CI) of the remaining values was [16.89; 35.56] (Table S1). These correspond to
793, 479 tests from the same number of individuals.
We used a linear regression model to explore how Ct values can be explained by the following variables:
patient age and sex, the number of days since the onset of the symptoms (if known), the clinical sampling
site (if known), the sampling facility (if known), the RT-PCR assay used, the target gene, the test’s qual-
itative result, the sampling date, the temporal reproduction number of the epidemic at the sampling date
(denoted Rt and estimated using the EpiEstim method (5)), and a control variable. The latter corresponds
to the last digit of the patient anonymity number and is expected to be independent of the Ct value. We
also included in the model an interaction term between sampling date and Rt. For this analysis, we
excluded Ct values from internal controls. Univariate analyses are extremely sensitive to heterogeneity
in the dataset. For instance, the age distribution from patients sampled in aged care homes is different
than that from city screening facilities, and analyzing the ‘sampling facility’ factor alone could yield
misleading result. This is why the analysis used here is multivariate and considers all the factors listed
above simultaneously.
Overall, the linear model explained 38.8% of the variance in Ct values, and the residuals were normally
distributed (Figure S2A). All the factors except the temporal reproduction number were significantly
associated with Ct values using a classical 5% p-value criterion in an analysis of variance (ANOVA)
with type II sums of squares. Even for the control variable, the p-value was 0.013 and patients with final
digits 1 and 3 had Ct values slightly lower (-0.19 and -0.17 cycles) than patients with a 0 final digit. We
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therefore set our significance thresholds to 5% of that of the control variables, i.e. 6.5× 10−4 to analyze
main effects (Table 1).
The intercept of the linear model indicates the average Ct value for a positive test performed with the
reference assay, and all the other factors being set to their reference value. Its magnitude (19.1 cycles) is
in line with clinical practice. The importance of the noise in the dataset is illustrated by the strong effect
of the testing laboratory, as well as the RT-PCR assay used (Supplementary Figure S1).
Despite this high level of noise, we detected a strong effect of the qualitative result (Figure 2A), with
Ct differences that were even larger than that from the laboratory effect. We also found a slightly sig-
nificant difference of -1.81 cycles between the most common type of samples (nasopharyngeal) and that
performed on other clinical sampling sites (mostly lower respiratory tracts, but also feces or saliva). This
is likely because the latter tests were performed in patients with more severe symptoms.
The effects associated with the number of days since symptoms onset was particularly strong. For the
8.5% of the participants for whom the number of days between symptoms onset and testing dates was
known, we found that the Ct gradually increases over the reported range with a maximum difference of
5.73 cycles (Figure 2B).
The effect of sex had the same order of magnitude as that of the control variable and could, therefore, be
treated as non-significant. Conversely, the age factor had a strong effect with a decrease of 0.541 cycles
per year (Figure 2C).
The target gene of the RT-PCR assay used also yielded a slightly significant effect. The Ct values
obtained when using a probe targeting the ORF1 and S regions of the virus genome were significantly
higher than when using the N gene, which was the genomic region of reference in the model (Figure
2D). This effect is consistent with the life-cycle of the virus. As stressed by (6), since coronaviruses are
(+)ssRNA viruses, they use the same RNA matrix for replication and transcription, both being amplified
by diagnostic assays. Furthermore, Coronaviridae transcripts can produce subgenomic mRNAs that lack
part of the genome (7). As a consequence, and as shown in cell cultures (8), genes on the 5’ end of the
genome are under-represented. This is consistent with our result where assays targeting the gene on the
3’ end (the N gene) tend to have lower Ct than assays targeting genes on the 5’ end (the ORF1 and S
genes). Note that an alternative explanation could be that some probes target more conserved areas of
the SARS-CoV-2 than others (9).
Finally, we found that Ct values decreased with time (-0.797 cycle per day), but this effect was non-linear
(Figure 2E). This could be due to the strong variation in testing efforts in France (Figure 1A), but also
to variations in the epidemic trend. Indeed, although the Rt (inferred from hospitalization data using the
EpiEstim method (5)) was not found to be significant, the interaction between the sampling date and Rt

was nearly significant (Figure 2F), suggesting that a temporal analysis could yield additional insights.
The existence of a correlation between the Ct values of the tests performed in a population and Rt is
consistent with population dynamics theory, which predicts that in an expanding population of infected
individuals, the ‘age’ of the infections, i.e. the number of days post-infection, is skewed towards lower
values (10). Since Ct values have been reported to increase over the course of an infection (3), which we
confirm with this analysis (Figure 2D), it has suggested that these values could be used as an early signal
to predict Rt (11).
To investigate this question, we focused on screening data collected in the general population from
individuals aged from 5 to 79. We estimated the median and skewness values of the daily distribution
of the Ct values. To correct for potential confounding factors, these were adjusted using a linear model
(see the Supplementary Methods). We analyzed the temporal correlation between the time series with
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a 7-day rolling average of this median, skew, and Rt (Figure 3). For the median Ct value, we found a
significant correlation with Rt that was maximized for a 6 to 7 days delay (Figure S2). This is consistent
with Rt being calculated using data from ICU-admissions, which occur with a median of 14 days after
infection (12, 13), and RT-PCR screening data being obtained earlier in the infection.
To further assess the usefulness of Ct data, we used ARIMA models to predict Rt dynamics over 7
days. We compared models without any exogenous data, to models that also included exogenous time
series (either median or skewness of estimated Ct values distribution, or the fraction of positive tests (1)).
As expected, the prediction error made using only endogenous data (Rt) was low in periods where Rt

variations were limited. Furthermore, we found that adding exogenous data improved the prediction,
especially when strong shifts in Rt were occurring (Figure 3). Ct values (green and cyan dots) tended to
provide a better reduction in the error of the prediction than the ratio of positive tests (purple).
This analysis of a large national database of RT-PCR tests performed in the context of a major epidemic
confirms that population-level Ct values are noisy since even a linear model that features 91 degrees of
freedom does not explain the majority of the variance. However, owing to the law of large numbers, we
detect several effects that are in line with biological observations and with virological properties. For
instance, our finding that Ct values decrease as a function of the number of days after symptoms onset
is consistent with longitudinal follow-ups (3). Similarly, the difference we detect between the virus gene
targeted by the RT-PCR assay used can be interpreted in the light of known differences in mRNA copy
numbers between genes depending on their distance from the 3’ end (8). Concerning the link between age
and Ct values, although there are some mechanistic interpretations as to why virus load would increase
with age (14), the evidence was mixed, with some studies reporting a decreasing trend (15) and others
not (16, 17). Here, using a multivariate approach on a large dataset allows us to unravel a strong and
significant decrease of Ct values with age.
A limitation our study is that although our dataset stands out by its size and its level of details, it is
restricted to a single country where testing effort varies, both on a temporal and on a spatial scale (Figure
1). Performing similar analyses for other populations can therefore be particularly informative.
A promising output of this analysis is the possibility to use Ct values as an early signal to detect changes
in epidemic behavior, e.g. Rt values. Indeed, our most robust descriptors of the epidemics originate from
hospital-admission data, but these have a significant delay with the status of the epidemic since patients
are hospitalized 2 weeks after infection (12,13). The ratio of positive tests performed in the population of
interest can, in theory, provide earlier insights but it suffers from strong sampling biases. We show that
accounting for population-based Ct values variations can improve Rt predictions on a 7-days period.
This corroborates earlier hypotheses (11) but also reveals the importance of analyzing a large-enough
dataset to filter out the important amount of noise in these values. Overall, these results call for better
integration of Ct values in national public health policies to monitor epidemics caused by SARS-CoV-2
but also other human viruses, especially since these data raise less ethical concerns than other sources of
data such as mobility data.
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Table 1: Main factors affecting Ct values. We only list factors with significant effects with a 10−3

p-value criterion. Coefficients reflect differences in Ct. For qualitative factors, the reference value is
shown.

Factor Value Coefficient 2.5% CI 97.5% CI
(intercept) 19.1 12.9 25.4
assay PerkinElmer (ref.) — — —

Genefinder 12.1 10.3 13.9

laboratory LAB_1 (ref.) — — —
LAB_122 5.42 3.79 7.05
LAB_96 −4.8 −6.71 −2.90

result positive (ref.) — — —
weakly positive 11.3 11.1 11.5
negative 16.9 16.6 17.2

days post-symptoms onset less than 4 (ref.) — — —
4 to 7 2.76 2.66 2.86
8 to 14 4.90 4.73 5.08
more than 14 5.73 5.43 6.03

sample naso-pharyngeal (ref.) — — —
other −1.81 −2.49 −1.14

age (per year) −0.541 −0.585 −0.497

target gene N (ref.) — — —
ORF1 1.03 0.949 1.12
S 1.19 0.948 1.43

date (per day) −0.797 −0.903 −0.691
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S5 Supplementary Methods

S5.1 Initial data filtering

The French Society for Microbiology (SFM) send a query to collect anonymous RT-PCR test results data
from 19 public and 2 private laboratories. The response files were curated manually and merged using
R. Test values without any Ct values (negative tests) were removed.
This led to an initial global data set from 2, 220, 212 individuals. Removing non-numerical Ct values
(usually a qualitative description of a negative result) decreased this number by 30% from 10, 668, 371
to 7, 516, 936 Ct values (note that most tests are usually associated with more than a single value since it
can have multiple targets). We then removed all the Ct values equal to zero, which left us with 1, 969, 043
values.
Finally, we performed some extra filtering to remove aberrant Ct values (greater than 100), test with
missing values for sampling French department, qualitative result, or RT-PCR test used. This left us with
1, 299, 447 values originating from 824, 446 individuals. Further details are available in Table S1.
For each individual, we retained only the earliest sample therefore analyzing 1, 129, 437 Ct values.

S5.2 Database properties
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Table S1: Description of the dataset variables. For real numbers, we show the median and the 95%
confidence interval. For categorical variables, we either indicate the number of factors or the number of
occurrences n for each factor.

Variable Description Details Values

department French administrative department where
the sampling was performed categorical 97 departments

id_lab laboratory associated with the sampling categorical 128 labs

control_variable a control variable created using the last
digit of the patient anonymity number categorical 10 values

id_patient participant anonymity number categorical 825, 446 ids

date sampling date date min = 01/21/2020
max = 30/11/2020

sampling_facility type of facility where the sampling was
performed

city screening n = 1, 008, 307
aged care home n = 3, 822

hospital n = 72, 682
prison n = 45

missing n = 44, 570

sample_type clinical localization sampled nasopharyngeal n = 1, 086, 004
other n = 35, 660

assay_PCR the description of the RT-PCR assay used categorical 13 assays

target_gene SARS-CoV-2 genomic area corresponding
to the Ct value

N n = 199, 256
E n = 55, 717
S n = 9, 953

ORF1 n = 227, 192
N & ORF1 n = 1, 196

internal control n = 636, 123

Ct
amplification cycles required to reach the
signal (0 values are removed) real 28.10 [18.30; 37.37]

Rt
temporal reproduction number (see
Supplementary methods for details) real 1.15 [0.76; 1.41]

result qualitative result of the test
positive n = 524, 065
negative n = 585, 293

weak positive n = 20, 079
age participant age (in years) integer 48 [25; 83]

sex patient sex female n = 637, 212
male n = 492, 225

symptoms number of days between symptoms onset
and testing

less than 4 n = 107, 417
4 to 7 n = 22, 308
8 to 12 n = 6, 070

more than 12 n = 1, 945
missing n = 991, 697
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S5.3 Temporal reproduction number (Rt)

The temporal reproduction number (denoted Rt) was computed on the COVID-19 hospital admission
incidence time series established by the national public health agency (Santé Publique France) and acces-
sible at this website. Because of strong daily variations (especially on week-ends), we first transformed
the time series using a 7-days rolling average. We then used the EpiEstim method (5) and the eponym
package in R (18).
Earlier studies have reported that, for patients who develop severe symptoms, the median time between
infection and hospital admission is in the order of 14 days (12, 13).

S5.4 Statistical analyses

All the analyses were performed in R version 3.6.3.

S5.4.1 Linear model

The linear model was performed in individuals from 1 to 90 years old. We also removed Ct values
associated to internal controls because they caused the distribution of the residuals to be non-Gaussian.
Quantitative factors, namely R(t), date, and age were scaled and centered.
The model was formulated as follows in R:

modele_general = lm(Ct ~ Rt*date + age + sexe + target_gene +
assay_PCR + id_lab + symptoms + result +
sample_type + sampling_facility + control_variable, data)

The adjusted R2 of the model was 38.8% and the distribution of the residuals Gaussian (Figure S2A).
The model was analyzed using an ANOVA assuming type-II errors because of the unbalanced nature
of the data set. All the variable were found to be extremely significant (p-value < 10−6), except for
Rt (p-value of 0.68) the control variable (p-value of 0.0131), sampling facility (p-value of 0.0135), sex
(p-value of 0.0021), interaction between Rt and date (p-value of 0.000842).

S5.4.2 Time series analyses

To analyze the time series of reproduction number and Ct values we restricted the data to tests performed
after July 1, 2021, in a screening context, using nasopharyngeal swabs, in individuals aged from 6 to 80.
These assumptions were made such that Ct values would reflect the state of the ongoing epidemic.
Finally, we excluded values from internal control genes. Overall, we analysed 234,782 Ct values from
110,227 individuals.
To correct for other potential confounding factors, we first performed a linear model.
The analyses were performed on the residuals of the linear model. For each day, we computed the median

and the skewness of the distribution. Skewness was computed using the formula n
(n−1)(n−2)

∑
i

(
xi−mean(xi)

Var(xi)

)3
,

with xi the individual values and n the total number of values. We then computed a 7-day rolling mean
to buffer daily variations.
The temporal reproduction number was computed as indicated above. We also analyzed a 7-day rolling
mean.
Cross-correlation function analyses were performed using the ccf function in R.

15

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/


S5.4.3 Predictive analyses

We used ARIMA models (implemented in the R package forecast) to predict the hospital-admission
temporal reproduction number (Rt) from past observations.
For each date, predictions were evaluated in terms of the mean absolute percentage error (MAPE) for
horizons of 7 days in the future based on coefficients learned from past data starting on July 29th, 2020.
More precisely, for each date we compared the temporal reproduction number data {Dk; k = 1, . . . , 7}
with the seven-day model forecast {Fk; k = 1, . . . , 7} by

MAPE =
1

7

7∑
k=1

∣∣∣∣Dk − Fk

Dk

∣∣∣∣
We considered 4 types of data:

1. past Rt data (i.e. endogenous data),

2. quartiles from Ct residuals (to remove biases),

3. skewness from Ct residuals,

4. national positive test ratio collected from https://covid.ourworldindata.org/data/.

The residuals of Ct were obtained from the following linear model:

lm(Ct ~ age + target_gene*assay_PCR + id_lab, data)

Our goal was to see if adding exogenous data, i.e. Ct values and proportion of positive tests, increased
prediction precision.
Models were tuned with the auto.arima function, and untuned models were run with p = 9, d = 2,
and q = 0 as default parameters, based on the cross-correlation analysis between Rt and Ct time series
(Figure S2).
Prediction improvement by models using in addition exogenous data relative to model using past values
of Rt only was defined by

∆MAPE = MAPERt −MAPERt+exo

S5.4.4 Figure 2 Ct values

To visualize the effect of the different factors, we first perform a linear model to correct for the effect of
confounding factors.
We used the general model described above but removed the effect ‘control_variable’, as well as the
effects ‘target_gene’, ‘sample_type’, ‘symptoms’ and ‘sampling_facility’ which had little effect and were
sometimes lacking for many participants. For each figure, we also removed the main factor of interest
(depending on the panel).
The Ct value itself was generated using the predict.lm function in R.

16

https://covid.ourworldindata.org/data/


S6 Supplementary Figures
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Figure S1: Effect of the RT-PCR assay used on the estimated Ct value as a function of the targeted
genomic area. Only tests with at least 1,000 Ct values are shown.
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Figure S2: Distribution of the Ct residuals value. A) For the linear model used for the main analysis
shown in Table 1, B) for the linear model used to generate residuals for the Rt time series analysis.
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Figure S3: Cross correlation functions between Rt and A) the median or B) the skewness of the Ct

residuals distribution. The blue shaded areas show the non-significant values (with a 95% threshold)
and the red vertical dotted lines the lag with the highest significant correlation. Note that the lag is
smaller for the skewness than for the median of the distribution.
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Figure S4: Predicting temporal reproduction number (Rt) from time time series with untuned
ARIMA parameters p = 9, d = 2, q = 0 The top four panels show the the 7-days rolling averages
of the time series of the ratio of positive tests (in purple), the median (in green) and skewness (in cyan)
of the daily Ct residuals distribution, and Rt (in black). The bottom panels show the error made by a
prediction using only Rt data (red dots) and the potential improvement made by including exogeneous
data.
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