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An elementary (Selberg, Erdos) derivation of an exact novel simple and short prime-counting function, by iteration of Legendre's 1808 formula

We derive an elementary (Selberg, Erdos) simple, short, exact and novel prime count π(x) by iteration of the Legendre prime count of 1808. The emphasis is on the structure and numerical programming of the iteration. We attempt to place π(x) in a post-Lehmer (1959) 'mathematics of computation'. We comment on the RH and experimental amthematics.

Background

The first analysis (Hadamard 1896, de la Vallée Poussin 1896) proving the prime number theorem (PNT) used: complex variable theory, Fourier analysis and the Riemann zeta function (the big-3).

Then (Selberg,1949, Erdos, 1949) gave 'elementary' derivations of the PNT (no big-3, only log(x) used), but which are still complicated and difficult. We shall now give an elementary derivation of a prime counting function π(x) which is exact, novel, simple and short.

We start by noting that in 1808 Legendre gave a prime counting formula [START_REF] Baker | A comprehensive course in number theory[END_REF] which, using modern Mobius notation µ(d), is:

π(x) -π(x 1/2 ) + 1 = d|P (x) µ(d) x d , (1) 
where π(x) is the number of primes p i ≤ real x, the sum is over all the divisors d of

P (x) = ii i=1 (p i ≤ x 1/2 ) 1 and x d ( ≡ [ x d ]
) is the floor/integer function.

Analysis

If from (1) we define:

f (x 1/2 ) = -1 + d|P (x) µ(d) x d , (2) 
then we have

π(x) = π(x 1/2 ) + f (x 1/2 ),
which we iterate thus (put y = x 1/2 , then π(y) = π(y 1/2 ) + f (y 1/2 ), i.e. π(x 1/2 ) = π(x 1/4 ) + f (x 1/4 ), etc.):

π(x) = π(x 1/2 ) + f (x 1/2 ) π(x) = π(x 1/4 ) + f (x 1/4 ) + f (x 1/2 ) π(x) = π(x 1/8 ) + f (x 1/8 ) + f (x 1/4 ) + f (x 1/2 ) π(x) = π(x 1/16 ) + f (x 1/16 ) + f (x 1/8 ) + f (x 1/4 ) + f (x 1/2 ) π(x) = π(x 1/32 ) + f (x 1/32 ) + f (x 1/16 ) + f (x 1/8 ) + f (x 1/4 ) + f (x 1/2 ) etc. π(x) = π(x 2 -N ) + N n=1 f (x 2 -n ) (3) 
The iteration has finite N terms, where x 2 -N ≤ 2 and thus π(x < 2) = 0, so with (2) in(3) we finally have

π(x) = π(x) = -N + N n=1 d|P (x 2 -n ) µ(d) x 2 -n+1 d , (4) 
N = log(log(x)/ log(2)) log (2) 

Discussion

Our (4) for π(x) is a conventional finite mathematical function which is exact for all x = 2..∞: it is not an assymptotic approximation like the logarithmic integral Li(x)

lim x→∞ π(x) = x 2 dt log(t) ≡ Li(x).
If we regard the core of number theory as identifying which integers n are prime p, then our π(x) = π(x): this is important, exact and novel . It can also identify

individual primes, which Li(x) cannot.

We also note that Riemann's 'explicit' formulae for π(x) are complicated infiniteseries approxmiations.

Lehmer [START_REF] Lehmer | On the exact number of primes less than a given limit[END_REF] pioneered and progressed electronic computing in number theory: later developments by Lehmer, Lagarias, Odlyzko, Miller, Deglise, Rivat, Bays, Hudson and others, see [START_REF] Riesel | Prime numbers and computer methods for factorization[END_REF][START_REF] Crandall | Prime numbers, a computational perspective[END_REF], have a start-point essentially [START_REF] Baker | A comprehensive course in number theory[END_REF]. We suggest that these developments be reconsidered with our π(x) as start-point.

We now offer a framework for proof of the RH (that the zeros of the Riemannzeta function, ζ(z n ) = 0 are z n = 1/2 + iy n ). We shall not use this original complex z statement, but rather the equivalent RHπ of [START_REF] Conrey | Equivalences to the Riemann hypothesis[END_REF][START_REF] Hardy | An introduction to the theory of numbers[END_REF][START_REF] Schonfeld | Sharper bounds for the Chebyshev functions[END_REF][START_REF] Stewart | Complex analysis[END_REF] 

We have numerically verified (4,5) on computer algebra systems Mathematica and GP/Pari for several (many) x ≤ 10 6 , a reassurance that (4,5) are correct for all x. Either a Landau big-O analysis could show that our π(x) of ( 4) satisfies [START_REF] Conrey | Equivalences to the Riemann hypothesis[END_REF], or possibly that our π(x) has the necessary properties of π(x).

This claim is simple, short, 'easy' to understand and needs little or no number theory: so I invite you (the reader) to look for the flaws. I feel that my novel number count π(x) is firmly established, but proof of the RH is less so.

(The reader who finds 'Legendre 1808' an old reference, may like to know that this is his analysis of the Sieve of Eratosthenes, c. 250 BC)

We shall finish, following (say) Euclid, by musing on what we would want and expect of a function/algorithm g(x) possessing the properties of π(x)?

We would ideally like g(x) to contain no direct reference to primes p i , thus excluding most standard number theoric functions (Mobius, Euler totient, divisors, etc.) Such a g(x) is [START_REF] Caola | A prime, prime, primer[END_REF], the indicator function

with e = 1/0 if n = prime/composite , and floor .. and ceiling .. functions. Thus we would ask active number theorists if

(6,7) and the above discussion are of use.

Practicalities

Prove [START_REF] Conrey | Equivalences to the Riemann hypothesis[END_REF], which may well be possible since both Li and our π(x) are normal mathematical functions. This might well lead to proof of the RH.

Both Gauss and I do mathematics by "systematic experimentation ".

Simple short (ten line) codes in Mathematica and GP/Pari, well suited to experimental mathematics, are available from the author.

Deriviation and use of our π(x) and GP/Pari algorithms could be a useful addition to basic number theory.