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Tiling billiards and Dynnikov’s helicoid

Olga Paris-Romaskevich

To Anatoly Stepin, who helped me do my first steps as a researcher.

Abstract

Here are two problems. First, understand the dynamics of a tiling billiard in
a cyclic quadrilateral periodic tiling. Second, describe the topology of connected
components of plane sections of a centrally symmetric subsurface S⊂ T3 of genus
3. In this note we show that these two problems are related via a helicoidal con-
struction proposed recently by Ivan Dynnikov. The second problem is a particular
case of a classical question formulated by Sergei Novikov. The exploration of the
relationship between a large class of tiling billiards (periodic locally foldable tiling
billiards) and Novikov’s problem in higher genus seems promising, as we show in
the end of this note.

Bibliography : 25 items; 5 figures; MSC: Primary 37E35, Secondary 37J60;
keywords : Novikov’s problem, tiling billiards, billiards, translation surfaces

1 Introduction and intentions
Tiling billiards are billiards in tilings. They were first introduced only several years
ago, in the works of Davis and her coauthors, see [7, 5, 8]. The definition of the
billiard flow is as follows. Each time a ray of light crosses an edge between two tiles, it
refracts through this edge. A new direction of the beam is obtained from the old one by
reflection with respect to the crossed edge, following thus the Snell’s law of refraction
with coefficient −1, see Figure 1.

The goal is to understand the dynamics of such tiling billiards. What are typical
trajectories? And atypical ones? The answers to these questions, and the dynamics in
general, depend strongly on the form of the underlying tiling.

Figure 1: Four beams of light crossing a horizontal line under tiling billiard law.
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To this date, our community has reached relative success in the understanding of
the dynamics of three non-trivial tiling billiards. These are, trihexagonal tiling [8];
periodic triangle tilings [5], [18], [24]; and periodic cyclic quadrilateral tilings [12].
In particular, the dynamics of a tiling billiard in a parallelogram tiling seems at the
moment completely obscure.

One of the reasons to be interested in tiling billiards is their connection to classical
objects in mathematics. For example, the dynamics of triangle tiling billiards is equiv-
alent to that of Arnoux-Rauzy family of interval exchange transformations and their
rel-deformations. The exceptional set of trajectories of these tilings is parametrized by
a famous fractal object, the Rauzy gasket, see [3] for its definition.

In this work we point out a new connection of triangle and cyclic quadrilateral
tiling billiards to another classical subject which is a so-called Novikov’s problem.
This problem studies the connected components of plane sections of triply periodic
surfaces. Of particular interest are chaotic components – curves such that there closure
in the fundamental domain of the surface fills in the subsurface of genus at least 3.
Novikov’s problem has deep connections to conductivity physics and is often presented
as the problem on semiclassical motion of an electron in a homogeneous magnetic field.
We send our reader to [22] for the overview of the state of art on Novikov’s problem
from the point of view of experimental physics. In this note we formulate and study
this problem in purely topological terms. Mathematically, first observations were done
by Zorich in [25], and a breakthrough via Morse theory has been done by Dynnikov, we
refer especially to [11]. The generalizations of the problem related to quasi-periodic
functions having more than 3 quasiperiods appear in [23].

The connection between tiling billiard systems and Novikov’s problem has been
hinted to us by Dynnikov. His constuction gives a title to this work, and we make it
explicit.

Once the connection between two subjects, tiling billiards and Novikov’s problem,
is established, we show how the ideas from topology and Morse theory that were de-
velopped for treating the Novikov’s problem, apply to tiling billiard dynamics. We
formulate, at the very end of this work, Conjecture 5.1 on the behavior of tiling bil-
liards in a large class of tilings that includes triangle and cyclic quadrilateral tilings -
locally foldable tilings. This conjecture is based on two strongly non-trivial results.
First, Dynnikov’s result on the generic behaviour of plane sections of 3-periodic sur-
faces that he obtained at the end of the last century in [11]. And second, a recent result
by Kenyon, Lam, Ramassamy and Russkikh [19] describing the space of parameters of
locally foldable tilings, in the setting of the dimer model.

The general intention of this article is to express hope for a new approach of the
Novikov’s problem through tiling billiard dynamics and, in particular, renormalization
for such dynamics. We refer our reader to [24] and [12] for introduction to renormal-
ization in tiling billiards. Recently we have shown, in collaboration with Dynnikov,
Hubert, Mercat and Skripchenko, that the measure of chaotic regimes in the Novikov’s
problem with central symmetry, in genus 3, is equal to 0. This question has been open
for 40 years and we answer it using the renormalization of cyclic quadrilateral tiling
billards. We hope that the connection with tiling billiards will permit new discoveries
for Novikov’s problem in higher genus as well.
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This note is structured in a following way. In Section 2, we remind the folding
procedure for tiling billiards and define locally foldable tilings, and, in particular, tri-
angle and cyclic quadrilateral periodic tilings. The billiards in these two last classes of
tilings are the main dynamical systems discussed in this note. The Section 2 introduces
the folding map and the so-called parallel foliations are obtained as preimages under
folding of standard foliations by parallel lines. In Section 3 triply periodic surfaces
called Dynnikov’s helicoids are constructed, correponding to tiling billiards. In Sec-
tion 4 we remind the statement of Novikov’s problem (paragraph 4.1) and make explicit
the connection between tiling billiards and this problem, using Dynnikov’s helicoids.
Then, we interpret classical results on Novikov’s problem in terms of such tiling bil-
liards (paragraph 4.2) and advance in the proof of the so-called Tree Conjecture for
cyclic quadrilateral tilings (paragraph 4.3). Sections 3 and 4 concern only triangle and
cyclic quadrilateral tilings. In Section 5, we discuss open questions and perspectives
for general locally foldable tilings.

We excuse ourselves for some familiarity with regularity. The goal of this article
is to share the ideas on a conceptual level. The question of regularity of the surfaces
in Novikov’s problem is although extremely important, and should be addressed if one
wants to obtain precise statements. It will be done in the upcoming work [12], at least
for cyclic quadrilateral tilings.

2 Folding and its consequences
Any triangle (or quadrilateral) P tiles a plane periodically as follows. A fundamental
domain Dm of a tiling is obtained by gluing P with its centrally symmetric copy, with
respect to a middlepoint m of its side. We call a corresponding P-tiling P a (periodic)
triangle (quadrilateral) tiling. Such tiling is 2-colorable in a way that neighbouring
tiles have different colors, as a chess-board. We denote P a tiling and the set of its tiles.

A tiling of a plane by polygons is locally foldable if it is 2-colorable, and the
sum of angles in any vertex v of the same-colored tiles containing v is equal to π.
Triangle tilings are locally foldable, and quadrilateral tilings are locally foldable only
if the quadrilateral is cyclic (inscribed in a circle). Tiling billard trajectories in locally
foldable tilings share fundamental properties that we state in the points 2. and 3. of
Theorem 2.1 below. Throughout this work, we concentrate on the case of P-tilings by
triangles and cyclic quadrilaterals. In Section 5 we discuss the general case.

2.1 Folding and reduction of dynamics to dimension one
I like to fold my magic carpet, after use, in such a way as to superimpose one part of
the pattern upon another. Vladimir Nabokov, Speak, Memory

Opening up a polygonal billiard table in order to understand the trajectories is now
a habit for any mathematician : while a table is unfolded in order to produce a, poten-
tially, self-overlapping and layered tiling of the plane, a trajectory is unfolded into a
straight line. This idea (called Katok-Zemlyakov construction) provides, in the case of

3



rational tables, a connection of billiard dynamics with translation flows.1

For tiling billiards, the billiard table is already a tiled plane. We fold two neigh-
bouring tiles along the crease like the wings of an asymmetric butterfly. The segments
of a tiling billiard trajectory in these two tiles fold into segments on the same line. It
is easy to show that for locally foldable tilings, such a folding map is defined globally,
and not only along a path in a tiling. The entire plane may be folded and any tiling bil-
liard trajectory folds into a line inside this folding, see [24] for more details and precise
statements. In the following, we use this folding map, unique up to isometry.

For triangle and cyclic quadrilateral tilings, the image of a folded plane is partic-
ularly simple to understand. The plane folds inside a disk, and all of the vertices of
a tiling fold onto its boundary - a circle. The preimage of this circle under the fold-
ing is the union of all circumcircles of tiles. This beautiful observation first appeared
in the work [5] by Baird-Smith, Davis, Fromm and Iyer. Their work contains many
illustrations, as well as a pattern to cut out and experience the folding manually.

A powerful, and elementary, consequence of the existence of global folding is

Theorem 2.1 ([5], [18], [24]). The following holds for the trajectories of tiling billiards
in periodic triangle and cyclic quadrilateral tilings.

1. The oriented distance τ(γ,P) between an (oriented) segment of a trajectory γ in a
tile P and the circumcenter of this tile, is constant along γ, that is, τ(γ,P) = τ(γ);

2. every trajectory intersects any tile in at most one segment;

3. any bounded trajectory is periodic and stable under small perturbations (of a
tile or initial condition): perturbed trajectory passes by the same tiles.

The authors of [5] use the folding in order to reduce the dynamics of the triangle
tiling billiard to that of a family of 3-interval exchange transformations (with flips!) on
a circle. For cyclic quadrilaterals, similarly, one gets 4-IETs, see paragraph 3.4 here. In
Section 3 of our work [24], Theorem 2.1 is generalized for all locally foldable tilings.

2.2 Parallel foliations of trajectories
Take any periodic trajectory γ of a billiard in a tiling, not even necessarily locally
foldable. A close enough to γ trajectory γ′, launched in the same direction as γ, is
necessarily periodic and disjoint from γ. The cylinder between γ and γ′ is foliated by
parallel tiling billiard trajectories.

For triangle and cyclic quadrilateral tiling billiards this idea can be pushed much
further. First, as follows from Theorem 2.1, «in the same direction» can be omitted for
triangle and cyclic quadrilateral tilings. And second, parallel trajectories foliate the full
plane, as we noticed and explored in [24]. For any trajectory γ, there exists a so-called
parallel foliation of the entire tiled plane (singular only in vertices of the tiling) such
that its non-singular leaves are tiling billiard trajectories (one of which is γ) and that

1For tiling billiards, the connection with translation flows is not straightforward, even though it may be
given, at least for locally foldable tilings.
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in restriction to any tile, it is a foliation by parallel segments. We invite our reader to
discover a video work Refraction tilings by O. David on parallel foliations.2

Remark 2.2. It is interesting to compare the parallel foliation construction for tiling
billiards with the straight skeleton method for polygons [1] discovered in 1995. This
method was used by Demaines, father and son, and Lubiw, see [10], in order to solve
a following fold-and-cut problem. Fix a polygonal motive on a piece of paper. Can the
paper be folded in such a way that a polygonal motive may be cut out by exactly one
scissor cut ? (and the answer is yes!)

Parallel foliations are a handy tool to study the dynamics of locally foldable tiling
billiards. Indeed, to one trajectory is associated an entire family of trajectories in the
same parallel foliation. The singular leaves of such a foliation uniquely define the
symbolic dynamics of all other leaves. We have introduced parallel foliations in [24]
in order to prove the following Tree Conjecture (a theorem since), formulated in [5].

Theorem 2.3 ([24]). For any periodic trajectory γ of a triangle tiling billiard, the
domain Ωγ bounded by it doesn’t contain any full tile of the tiling. In other words, all
the vertices and edges of the tiling contained in Ωγ form a graph which is a tree.

In paragraph 4.3, we advance in the proof of the Tree Conjecture for cyclic quadri-
lateral tiling billiards. For this, we use a new idea that connects such tiling billiards
with the topology of sections of periodic surfaces. This idea is a heart of this article
and deserves a section for itself.

3 Stairway to topology
Here we construct a helicoidal surface such that the connected components of its hori-
zontal sections coincide with tiling billiard trajectories of the same parameter τ(γ) = τ,
see Theorem 2.1. This surface will be triply periodic and, via projection, a compact
subsurface of the 3-torus. The study of trajectories will be thus reduced to the study
of plane sections of surfaces in T3 which is a classical problem discussed in Section 4.
We speculate in [24] on the existence of such a link between this problem and tiling
billiards. Recently, Dynnikov made this connection precise, and we make his brilliant
idea explicit.

3.1 Notations
For a triangle (or cyclic quadrilateral) tiling P , we fix the following notations that are
respected throughout the article, in particular on Figure 2.

Triangle tiling. The sides of the tiles are a,b and c, a clockwise tour of a tile reads
abc. The vertices opposite to the sides a,b,c are A,B,C and their angles are α,β and γ.
Define vectors a := BC,b :=CA,c := AB. Then a+b+ c = 0 and α+β+ γ = π.

Cyclic quadrilateral tiling. The sides of the tiles are a,b,c and d, a clockwise tour
of a tile reads abcd. The vertices are A,B,C,D and A = d∩a,B = a∩b etc. The angles

2The video is accessible on the Youtube channel Dragonazible, or via https://youtu.be/t1r1cO1V35I.
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in these vertices are α,β,γ and δ. Define vectors a := AB,b := BC,c :=CD,d := DA.
Cyclicity is equivalent to the relations α+ γ = β+δ = π.

3.2 Quasi-periodicity of trajectory angles
Fix a tile P0 ∈ P . There exists a unique folding, in sense of paragraph 2.1 such that the
tile P0 is fixed. Then, to any tiling billiard trajectory γ, we associate two parameters.

First, we define the energy τ(γ) via Theorem 2.1. It is positive if the trajectory turns
counterclockwise around the circumcenter and negative otherwise. When τ(γ) = 0, the
direction of the trajectory points in (or out of) the circumcenter. The set of energy
values is bounded and symmetric. Up to a rescaling of the tiling, we suppose that
τ ∈ [−π,π].

The second parameter is the angle θ(γ,P) that makes an (oriented) segment of a
trajectory in a tile P with some fixed direction. This parameter depends on a tile that
the trajectory γ crosses. We denote by θ(γ) := θ(γ,P0). If some trajectory γ doesn’t
cross a tile P, the value θ(γ,P) can still be defined and is done via the following

Lemma 3.1. For any tile P0 in triangle (or cyclic quadrilateral) tiling, there exists a
unique function fP(θ) := f (P,θ) : P × [0,2π)→ [0,2π) such that f (P0,θ)≡ θ and that
the following holds.

1. For two tiles P1 and P2 of same (different) color,

fP1(θ)∓ fP2(θ) = ϕ(v), v := P1−P2.

Here ϕ is a function of the vector v that connects the barycenters of the tiles. 3

2. For any trajectory γ and any two tiles P1 and P2 that it crosses,

θ(γ,P1)∓θ(γ,P2) = ϕ(v).

Hence θ(γ,P) is globally and correctly defined for all γ and all P ∈ P , even if
γ∩P = /0.

3. The function f is defined via Figure 2 in the case when the fixed direction is that
of AB. In general, it is sufficient to define its values on all the tiles neighbouring
to P0 and then to continue by quasiperiodicity on all P .

Proof. This follows obviously from the existence of folding. The images of two tiles
of the same color P1,P2 map under folding differ by a circle rotation by ϕ(P1−P2).

The function fP(θ) is described also in Table 1 of [5] for triangle tilings. Although,
there it is only defined on «half» of the tiles. On Figure 2 we picture the values of
the function f on the tiles that one can access in one or two steps from P0. A Lemma
analogous to Lemma 3.1 can be proven for any periodic locally foldable tiling.

Remark 3.2. If a fixed direction is defined by some angle θ0 then, on Figure 2, one
should add θ0 to all values of ϕ(P−P0) with P- grey and subtract it when P-white.

3In other words, this vector depends only on the relative positions of tiles. This vector belongs to the
period lattice for tiles of the same color.
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Figure 2: The values of function fP(θ)± fP0(θ) in the vicinity of P0, for triangle and
cyclic quadrilateral tilings. The values are calculated using the notations of paragraph
3.1. In both cases, a fixed direction is chosen as that of the segment AB in P0.

3.3 Dynnikov’s helicoid: construction

In this paragraph we construct a one-parametric family {Ŝτ

P}τ∈[−π,π] of piecewise smooth
surfaces in R3, associated to any triangle (cyclic quadrilateral) tiling P . All the trajec-
tories with the same energy τ appear as horizontal sections of Ŝτ

P .
Fix some parameters τ ∈ [−π,π] and θ ∈ [0,2π). Let Γτ,θ be the set of all tiling

billiard trajectories γ such that τ(γ) = τ and θ(γ,P0) = θ. We identify the set Γτ,θ and
the geometric union of the trajectories ∪γ∈Γτ,θ

γ. Potentially (and generically, as shown
in [18], [24] and [12]), the set Γτ,θ consists of more than one trajectory. This set is
obtained as the union of curves which fold into the same chord defined by parameters
τ and θ.

Example 3.3. Fix some θ0 ∈ [0,2π). Then the sets {Γτ,θ0}τ∈[−1,1] foliate the tiled plane
and form a parallel foliation corresponding to any trajectory γ with θ(γ,P0) = θ0.

Let us now fix τ0. Then the sets Γτ0,θ overlap, even inside one tile. Similarly to
the case of the geodesic flow, we lift them up in another dimension, in order to avoid
intersection.

Consider the euclidian space R3 = {(X,Θ)} as a product of a tiled plane R2 with a
coordinate X on it, and of an orthogonal line with a coordinate Θ. We now define a set
Ŝτ

P as a union of its horizontal sections: Ŝτ

P := ∪θ∈[0,2π)Γτ,θ. It is obviously a piecewise
smooth surface.

The surface Ŝτ

P is built from many gradually turning «stairs» of trajectories with the
same energy parameter. Any tiling billiard trajectory γ on the tiling P is a connected
component of a horizontal section of the helicoid, its height is defined by the angle
parameter. We call such a surface Ŝτ

P (depending strongly on the underlying tiling)
Dynnikov’s helicoid of energy τ. It has 3 periods that do not depend on τ, as shows
the following
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Figure 3: The compact ruled surface Sτ

P obtained as an intersection of Dynnikov’s
helicoid with a torus obtained by gluing parallel faces of the prism D× [0,2π).

Lemma 3.4. Let P be a triangle or cyclic quadrilateral tiling, and Ŝτ

P a corresponding
Dynnikov’s helicoid of some energy τ ∈ [−π,π]. Then, Ŝτ

P is 3-periodic with periods
V1 :=V1(P ),V2 :=V2(P ) and V3 = (0,0,2π) given by

1. V1(P ) = (−c,2γ) ,V2(P ) = (−a,2α) if P is a triangle tiling,

2. V1(P ) = (a+b,2δ) ,V2(P ) = (b+ c,2α) if P is a cyclic quadrilateral tiling.

The notations here are consistent with those from paragraph 3.1.

Proof. Periodicity in vertical direction is obvious since Γτ,θ =Γτ,θ+2π. The rest follows
from Lemma 3.1. Indeed, for two tiles P1,P2 of the same color, the difference of angle
parameters is constant and equal to ϕ(v) with v = P1−P2. One concludes that a point
(X,Θ) ∈ Ŝτ

P belongs to a surface if and only if a shifted point (X′,Θ′) := (X+v,Θ−
ϕ(v)) ∈ Ŝτ

P does. By continuity, the argument follows for differently colored tiles.
The lattice of periods is generated by the vectors v1 :=−→BA=−c and v2 :=−→CB=−a

for triangle tilings and by the vectors v1 :=−→AC = a+b and v2 :=−→BD = b+c for cyclic
quadrilateral tilings. The values of ϕ are given on Figure 2.

3.4 Symmetries of Sτ

P and link to interval exchange maps
We now describe some properties of Dynnikov’s helicoid. Consider a fundamental
domain Dm of a P-tiling, as in Section 2 and on Figure 4. Fix a horizontal direction
as the direction needed for the definition of the angle parameter as that of the edge
containing m.

Lemma 3.4 implies that the intersection with the prism Dm× [0,2π)∩ Ŝτ

P is a fun-
damental domain of the surface Ŝτ

P . Under identification of the borders under shifts
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Figure 4: Fundamental domain Dm of a triangle tiling and two trajectories passing
through it, γ and γ′. Each of the trajectories is tangent to both circles centered at cir-
cumcenter of radius τ(γ) = τ(γ′) = τ. Moreover, θ(γ)+θ(γ′) = π.

Vj, j = 1,2,3, such a prism becomes a 3-torus T3
P . Let π : R3→T3

P be a corresponding

projection. Denote by S := Sτ

P = π

(
Ŝτ

P

)
a compact surface, represented on Figure 3.

Lemma 3.5. Let τ ∈ [−π,π], and P be a triangle (cyclic quadrilateral) tiling. For a
corresponding Dynnikov’s helicoid Ŝ := Ŝτ

P and S := π(Ŝ), the following holds:

1. the surface S is centrally symmetric with respect to the point M := (m,π). The
quotient SM under the central symmetry with respect to M, is a non-orientable
surface; moreover, this point M belongs to S if and only if τ = 0;

2. if τ = 0, the surface S has an additional symmetry under the map s : Θ 7→Θ+π.
The quotient S/s under this symmetry is homeomorphic to the projective plane
P2(R). Moreover, for tiles containing its circumcenter, the foliation on the pro-
jective plane induced by a horizontal foliation on S is a foliation with one 3 (or
4)-prong singularity and three (or four) 1-prong singularities;

3. if P contains its circumcenter4 and τ = 0, the genus of S is equal to 3. For P a
triangle, S has two double saddles, exchanged by s. If P is a cyclic quadrilateral,
the surface S has four simple saddles, exchanged in pairs via s. If P doesn’t
contain its circumcenter, the genus of S is equal to 1.

Proof. All of this is direct. The first statement follows from the symmetry of Dm.
If there exists a trajectory γ crossing Dm×{θ}, there exists a trajectory γ′ crossing
Dm×{π− θ}, see Figure 4. If τ = 0, the trajectory passing by m and orthogonal to
the edge that contains it, belongs to S, and γ coincides with γ′ above (and has opposite
orientation). The second statement follows from the existence of the additional sym-
metry and the calculation of Euler characteristic. In this particular case, the interior
and exterior of S0

P in T3
P are isometric.

Suppose now that P contains its circumcenter and τ = 0. We calculate χ(S) as a
sum of indices of its singular points with respect to the height function Θ. If P is a

4for triangles it is equivalent to the acuteness

9



triangle, all of the vertices of Dm are identified under lattice action. The surface S
has then two monkey saddles (index −2) corresponding to the angle parameters θ and
θ+π, where the trajectories enter (or get out from) the vertex. This gives χ =−4 and
g = 3. Analogous calculation may be done for «acute» cyclic quadrilaterals : Dm has
two vertices, modulo the action of the lattice. They give then 4 simple saddles on layers
θ1,θ2,θ1 +π,θ2 +π, each of index −1. Then, once again, g = 3. For the obtuse case,
the same calculation gives g = 1. This proves the third point.

Remark 3.6. It is not surprising that genus may fall drastically when the parameters
change continuously since the helicoid is parametrically defined by θ and τ. A good
exercise is to understand the change of genus of S when τ changes.

The surfaces Ŝ and S are equipped with natural oriented foliations by tiling billiard
trajectories. The intersection of S with the border of prism Dm× [0,2π) consists of a
circle, and the first return map of the tiling billiard flow on this circle is an interval
exchange transformation T = T (P,τ) with 6 or, in case of quadrilaterals, 8 intervals
of continuity. If one passes to the quotient SM , such first return map is reduced to an
interval exchange transformation F(P,τ) of 3 or 4 intervals of continuity with flips, and
T = F2. The study of tiling billiard dynamics in triangle and cyclic quadrilateral tilings
is then reduced to the study of parametric families of interval exchange transformations
with flips. This is the important leitmotiv of the works [5, 18, 24] for triangles and of
the work [12] for quadrilaterals.

4 Novikov’s problem and tiling billiards
The helicoid construction from Section 3 is elementary but crucial since it connects
the dynamics of tiling billiards with a classical topology problem formulated in 1982
by Novikov. It concerns the level sets of quasiperiodic functions on the plane with 3
quasi-periods and has important motivations coming from physics of metal conductiv-
ity. Nowadays, the interest to this problem is vivid in both mathematics and physics.
Novikov’s problem is a field in itself and we do not aim to give an overview nor a bib-
liography of this rich subject. Our goal is to point out a new connection – the one with
tiling billiard systems that, hopefully, can shed some light on the problem in itself.

4.1 Novikov’s problem : statement and generic behaviour
Consider a piecewise smooth function f : T3→R,T3 = R3/Z3. Without loss of gener-
ality we suppose that f takes values in the interval [−π,π]. Let Mτ = f−1(τ) be its level
surface and M̂ = π−1(M) be the Z3-covering in R3. Here π : R3 → T3 is a standard
projection.

Novikov’s problem. Fix a covector H = (H1,H2,H3) ∈ P2(R). Study the behavior
of connected components of plane sections of M̂ by a family of parallel planes H1x1 +
H2x2 +H3x3 = const.

The corresponding parallel plane sections define an orientable foliation F on M.
We are interested in the closures of its leaves.
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For simplicity we suppose that the covector H is totally irrational. As Dynnikov
showed in [11], three qualitative behaviors are possible: trivial, integrable and chaotic.
Trivial behavior means that all components of all H-sections are compact. Integrable
behavior means that all regular non-closed components are confined in bands of the
plane, i.e. have an asymtptotic direction. Integrable behavior corresponds to the de-
composition of M into cylinders of closed trajectories and tori (possibly, with holes)
on which F winds in a way that it is topologically equivalent to irrational rotation.
Finally, chaotic behavior means that the closure of some leaf of F coincides with a
component of M of genus at least 3. One of the main results in [11] is that the chaotic
behavior occurs in a very rare number of cases, see Theorems 1 and 3 there.

Theorem 4.1 (Dynnikov, [11]). Fix a piecewise smooth and generic function f and
a vector H. Then there exist two values τ1(H),τ2(H), τ1 ≤ τ2 such that for all τ /∈
[τ1(H),τ2(H)] the behavior of corresponding sections of Mτ is trivial, and for τ ∈
[τ1(H),τ2(H)] it is integrable. In the case when τ1(H) = τ2(H), the behavior may be
chaotic. Moreover, the chaotic behavior is rare in the following sense : the set O of
vectors H corresponding to non-chaotic behavior is open and dense in P2(R).

Question 1. The question of whether the set O is of full Lebesgue measure is open,
even for M of genus 3.

Remark 4.2. The space of couples function-covector {( f ,H)} has infinite dimension
although the qualitative behavior of sections depends only on the finite number of pa-
rameters. Indeed, one considers an exact 1-form induced on M by a linear form α= dH
on R3. Via Hodge theorem, take a unique harmonic form ω on M such that ω ∈ [α].
Then ω defines a cohomologous, and even cobordant foliation to F which has the same
global invariants as F itself. In other words, one can straighten out the foliation F
and preserve the class of qualitative behavior (trivial, integrable or chaotic). The cor-
responding surface has a flat metric. This shows the relationship of Novikov’s problem
with the dynamics of families of interval exchange transformations.

Moreover, the word generic in Theorem 4.1 has to be precised. We refer our reader
to the original article [11]. Some details are discussed at the end of this Section.

Question 2. A much less stronger question than Question 1 is open - prove that in the
set of pairs (surface, vector) the set of chaotic couples is of measure 0.

The most strongest form of such type of questions is a following

Conjecture 4.1 (Novikov-Maltsev, 2003). For a fixed surface M, the Hausdorff di-
mension of the set of covectors H admitting chaotic sections is smaller than 2.

4.2 Results on tiling billiards and their topological interpretation
Our goal here is to include the study of tiling billiards in triangle and cyclic quadrilat-
eral tilings into the setting of Novikov’s problem.

Lemma 3.4 states that a surface Ŝτ

P is 3-periodic, with the vectors V1,V2,V3 defining
the base of the corresponding lattice of symmetries. Therefore, there exists a unique
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linear map AP ∈ SL3(R) such that AP (Vj) = E j, with E j forming the standard or-
thonormal basis in R3, j = 1,2,3. Note that V3 = 2π ·E3. Denote M̂τ

P := AP Ŝτ

P the
rectified surface. Then, Mτ

P := π(M̂τ

P ) is a subsurface of a standard torus. Traectories
of a billiard are the connected components of horizontal sections of Dynnikov’s heli-
coid. Under the linear map, they map to the connected components of intersections
M̂τ

P ∩AP{Θ = θ}. Once a helicoid is constructed, two points of view differ only by a
linear map!

Remark 4.3. The map AP as well as the direction of the co-vector H defining the
planes AP{Θ = θ} doesn’t depend on τ since the vectors Vj do not depend on it.

Question 3. How large is a class of surfaces described (in terms of Remark 4.2) by
Dynnikov’s helicoids for triangle and cyclic quadrilateral tilings?

The first non-trivial case of Novikov’s problem (when chaotic behavior is possible)
occurs in genus g(M) = 3. By Lemma 3.5, the maximal genus of Dynnikov’s helicoids
is equal to 3 and such helicoids are always centrally symmetric. We think that this is
the only obstruction and that the answer to the Question 3 is : any centrally symmetric
surface of genus 3. A careful dimension count should be done, see Remark 4.2.

Let us now remind some results on the dynamics of considered tiling billiards. The
following has been conjectured in [5], first proven in [18] and, finally, a simpler proof
was found in [24] via renormalization. As we have recently discovered, the analogous
proof, even if in a different setting, has already been provided in 1989 by Meester and
Nowicki in [21].5

Theorem 4.4 ([18, 24, 4]). For a tiling billiard in a P-tiling defined by a triangle P,
the following holds :

1. For almost any P, all trajectories are either periodic or linearly escaping.

2. If a trajectory γ escapes in a non-linear way then, necessarily, τ(γ) = 0 (it passes
by circumcenters of all crossed tiles) and P ∈ R . Here R is a fractal set de-
fined by an explicit continued fraction algorithm. This set has zero measure and
dimH R ∈ (1,2).

This set R is the Rauzy gasket. We refer to [3] for the classic definition of the
Rauzy gasket. Many other definitions have been given throughout the last fourty
years, related to the circle percolation (Meester-Nowicki [21]), dynamics of Arnoux-
Rauzy family of interval exchange transformations (Arnoux-Rauzy [2]), systems of
isometries (Dynnikov-Skripchenko [14]), Novikov’s sections of some polyhedral ob-
ject (Dynnikov-DeLeo [9]), and, as shown here, in relation to the dynamics of non-
linearly escaping trajectories of tiling billiards (Davis et al. [5], Hubert and ourselves

5Meester and Nowicki consider a percolation model on the circle which is exactly the circumcircle ap-
pearing via folding. Their model is defined by drawing a chord in a circle and coloring all vertices in the
set {αn+βm,m,n ∈ Z} ⊂ S1 on the left of the chord in one color, and others in another color. The corre-
sponding coloring of the lattice Z2 with coordinates (m,n) has open one-colored clusters. They correspond
to escaping trajectories of triangle tiling billiards that fold into the initial chord.
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[18, 24]). In the last years the understanding emmerged that all these different inter-
pretations of the Rauzy gasket are equivalent, as is implied in this work and shown in
the works [13] and [18].

Remark 4.5. The calculation of the Hausdorff dimension of the Rauzy gasket is highly
non-trivial. The first estimate dimH R < 2 was obtained in [4]. Nowadays more refined
norms exist and dimH is confined into the interval (1.19,1.825). The lower bound was
obtained by Gutiérrez-Romo and Matheus in [17], the upper bound is obtained by
combining the arguments of Gamburd-Magee-Ronan [16] with estimates by Baragar
[6], as was recently explained in [15].

Recently, our French-Russian team managed to prove the following result, analo-
gous to Theorem 4.4 result for cyclic quadrilateral tilings.

Theorem 4.6 ([12]). For a tiling billiard in a P-tiling defined by a cyclic quadrilateral
P, the following holds :

1. For almost any P, all trajectories are either periodic or linearly escaping.

2. If a trajectory γ escapes in a non-linear way then, necessarily, τ(γ) = 0 and
P ∈N . Here the set N is a fractal set defined by an explicit continued fraction
algorithm, has zero measure and dimH N < 3.

The first difficulty in proving this Theorem was to find a renormalization process
in order to define the algorithm that constructs N via a continued fraction algorithm.
Once this was done, the main technical difficulty consisted in proving the ergodic prop-
erties of such an algorithm. The first part is combinatorial and generalises the methods
in [24], the second part is based on the thermodynamic formalism, elaborated recently
by Fougeron [15].

Modulo the regularity details described in Question 3 that have to be figured out,
Theorem 4.6 solves an open case of Novikov’s problem since it characterizes chaotic
directions for symmetric genus 3 surfaces. In relation to this interpretation, the set N
of cyclic quadrilaterals that may exhibit non-linear escaping trajectories is called the
Novikov’s gasket.

The renormalization methods proposed in [24, 12] prove the first points of both
Theorems 4.4 and 4.6. Although one can see that these first points follow, naively,
from Dynnikov’s result of 1999, namely Theorem 4.1 here. Indeed, since for a fixed
direction H, the chaotic behavior can only happen for one energy parameter, the central
symmetry of Mτ implies that this parameter is exactly τ = 0.

Although, the consequence is, as we said, not completely precise. The regularity is
problematic. Indeed, consider a function f corresponding to some Dynnikov’s helicoid
for triangle tilings. Then f is not generic in Dynnikov’s sense : its level surfaces have
double saddle points and the work [11] works with surfaces admitting only simple
saddles. Although, the explicit calculations of chaotic sections were done for this case
in [24] and in [9], and they finalise the proof of Theorem 4.4.

For cyclic quadrilaterals, Dynnikov’s results do apply since the surfaces are generic
enough and the corresponding saddles are simple. The point 1. of Theorem 4.6 is then
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a direct consequence of Theorem 4.1. We wonder if the genericity assumptions of
Theorem 4.1 in [11] could be weakened in order to apply directly to surfaces with
saddles of higher multiplicity.

Remark 4.7. Triangle tilings can be seen as degenerations of cyclic quadrilateral
tilings with two vertices of a quadrilateral approaching by following the arc of the
circumcircle of a tile. The corresponding surfaces are degenerations of a more general
case : saddle points collide in a double (monkey) saddle.

4.3 Tree Conjecture for cyclic quadrilateral tilings
In this paragraph, we advance towards the understanding of the symbolic dynamics of
cyclic quadrilateral tilings, analogous to Theorem 2.3.

Conjecture 4.2 (Tree Conjecture for cyclic quadrilateral tiling billiards). Any periodic
trajectory γ in cyclic quadrilateral tiling doesn’t contour tiles, i.e. the domain Ωγ

bounded by it doesn’t contain a full tile.

The symbolic behavior of any periodic trajectory γ is defined by the behavior of
singular trajectories in its parallel foliation inside Ωγ. Using this idea, we have shown
in [24] that for any locally foldable tiling, the Tree Conjecture is equivalent to the fol-
lowing Bounded Flower Conjecture dealing with only singular trajectories (or petals).

Bounded Flower Conjecture. Any singular periodic trajectory γ passing by a ver-
tex v of a tiling satisfies the two following properties : first, it intersects two neigboring
tiles P and Pe, P∩Pe = e; second, e ∈Ωγ.

Let us include a petal γ in its parallel foliation. If there is another petal γ′ passing by
the same vertex v, then we can prove that the Bounded Flower Conjecture for γ holds.
If it doesn’t, it would mean that either Ωγ ⊂Ωγ′ or Ωγ′ ⊂Ωγ, and two trajectories have
opposite orientations. Then there exist two periodic trajectories of the same energy τ in
the parallel foliation turning in different senses. It means that a corresponding helicoid
Ŝτ

P has a section with two connected components, one of electron type, and one of hole
type in the terminology of [11]. This and the connectedness of Ŝτ

P would imply that the
surface Sτ

P has genus at least 4 which brings a contradiction with Lemma 3.5.
Unfortunately, we were not yet able to eliminate the sitation when γ is an only sin-

gular trajectory passing by v in its parallel foliation, giving the obstructions to Bounded
Flower Conjecture. It would mean that either γ doesn’t pass by P and Pe, or it does but
with e /∈ Ωγ. In the case of triangle tilings, the two cases were eliminated by using
the additional symmetries which are not anymore present for quadrilaterals. The sym-
bolic dynamics for quadrilateral tiling billiards is more complicated and still needs to
be understood in more detail.

5 Perspectives for higher genus
The ideas of Section 2 apply to any locally foldable tiling: parallel foliations exist,
and all bounded trajectories are periodic and stable. Moreover, the quasiperiodicity
observed in Lemma 3.1 is present in any locally foldable periodic tiling.
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Figure 5: Bipartitie graphs on the torus T2 defining the combinatorics of triangle and
quadrilateral tilings. Both graphs have 2 vertices, the triangle graph has 3 edges, the
cyclic quadrilateral graph has 4 edges. The torus is given as regluing the opposite
parallel sides of the fundamental domain of the tiling.

In this Section we show why the helicoid of Section 3, constructed there for trian-
gle and cyclic quadrilateral tilings, can be constructed for many other locally foldable
polygonal periodic tilings.

Remark 5.1 (Combinatorial data of a locally foldable periodic tiling). Any locally fold-
able polygonal periodic tiling defines a bipartite graph G on the 2-torus T2. Indeed,
we consider a dual graph (a graph of faces of the tiling) : two tiles are connected if
and only if they have a common edge in the tiling, see Figure 5 for two examples. By
periodicity, this graph factors to the graph G on the torus. Since the locally foldable
tiling is 2-colorable, G is bipartite. Of course, one such graph G defines a family of
corresponding locally foldable tilings. We say that these tilings have the same combi-
natorics.

The apparent difficulty in the realization of a helicoidal construction for a general
locally foldable periodic tiling is that it is not clear what should be the energy parameter
τ. In the point 1. of Theorem 2.1 τ was defined as a distance to a circumcenter of a
triangle or cyclic quadrilateral. Here we point out an approach that gives a substitute to
this circumcenter in the general case. For this, we use recent results obtained on locally
foldable tilings in relationship to the study of dimers.

It is non-trivial to describe the set of parameters of locally foldable periodic polyg-
onal tilings of fixed combinatorics G. This can been done by following recent works on
dimers, in particular that by Kenyon, Lam, Ramassamy and Russkikh in [19]. There the
authors show that there is a bijection beween such tilings and liquid phase dimer mod-
els. This bijection uses the beautiful connection of the dimer model with the complex
algebraic curves and their amoebas established by Kenyon, Okounkov and Sheffield. It
happens that the studied curves are of a very special type, namely Harnack curves, we
refer to [20] for more details.

From all this important theory we use only the fact that typically the locally foldable
tilings fold into bounded domains.6 In this case, take any tile P and all of its copies
gP in the tiling, here g is an element of the lattice of isometries of the tiling. Then,
the boundedness of the folding implies that for all g, the images of P and g(P) under
folding differ by a rotation with some center C.7 Moreover, the center C can’t depend

6This corresponds to the spectral curve only having simple zeroes.
7Indeed, the orbit of a discrete subgroup H of the affine group is bounded only if H is a subgroup of
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on P in order for the folding to be bounded. This center C is a point with respect to
which we define the energy τ! Once this step is done, the helicoid construction of
Section 3 is repeated word by word.

Question 4. Suppose that the helicoid Sτ

P exists for a locally foldable tiling P . What
is its genus as a function of P and τ ?

Question 5. What families TP of interval exchange transformations arise as first-
return maps on some well-chosen transversals ?

We hope to answer these questions in future work, in order to prove the following

Conjecture 5.1. Fix the combinatorics of a periodic 2-colored tiling of a plane, defined
via a bipartite graph G on the 2-torus. Suppose that a tiling with such combinatorics
folds into a bounded domain. Then, the non-linear escape of trajectories on such tiling
is only possible if the trajectories pass by the point C. Otherwise, the trajectories either
escape linearly or are periodic.

Conjecture 5.1 follows naively from Theorem 4.1 and helicoidal construction. We
do not announce it as a result since the regularity details have to be thouroughly
checked, as discussed in paragraph 4.2. Indeed, locally foldable tilings permit mut-
liplicity in saddles, although the arguments in [11] suppose Morse property. Never-
theless, we believe that these complications are avoidable. Moreover, as follows from
dimer model theory, this Conjecture would apply to an open set of parameters of locally
foldable tilings, maybe even of full measure.

A following much stronger conjecture is a reformulation of Question 2.

Conjecture 5.2. The set of parameters of locally foldable tilings of fixed combinatorics
G admitting non-linearly escaping trajectories, has measure zero.

Question 6. Is such set an invariant gasket of some continued fraction algorithm?

We find very exciting a possibility to construct multi-dimensional fractal objects
corresponding to every bipartie graph on the torus. It could make quite a collection! For
the graphs, corresponding to triangle and quadrilateral periodic tilings, these objects
are, respectively, the Rauzy and the Novikov gaskets.
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