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Motivation

Optimized Schwarz Methods (OSMs) are very versatile: they can be used with or without overlap, converge faster compared to other domain decomposition methods [START_REF] Gander | Optimized Schwarz methods[END_REF], are among the fastest solvers for wave problems [START_REF] Gander | A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods[END_REF], and can be robust for heterogeneous problems [START_REF] Gander | Heterogeneous optimized Schwarz methods for second order elliptic PDEs[END_REF]. This is due to their general transmission conditions, optimized for the problem at hand. Over the last two decades such conditions have been derived for many Partial Differential Equations (PDEs), see [START_REF] Gander | Heterogeneous optimized Schwarz methods for second order elliptic PDEs[END_REF] for a review.

Optimized transmission conditions can be obtained by diagonalizing the OSM iteration using a Fourier transform for two subdomains with a straight interface. This works surprisingly well, but there are important cases where the Fourier approach fails: geometries with curved interfaces (there are studies for specific geometries [START_REF] Gigante | Optimized Schwarz methods for spherical interfaces with application to fluid-structure interaction[END_REF][START_REF] Gander | Optimized Schwarz methods for domain decompositions with parabolic interfaces[END_REF]), and heterogeneous couplings when the two coupled problems are quite different in terms of eigenvectors of the local Steklov-Poincaré operators [START_REF] Gander | On the derivation of optimized transmission conditions for the Stokes-Darcy coupling[END_REF]. There is therefore a great need for numerical routines which allow one to get cheaply optimized transmission conditions, which furthermore could then lead to OSM black-box solvers. Our goal is to present one such procedure.

Let us consider the simple case of a two nonoverlapping subdomain decomposition, that is Ω = Ω 1 ∪ Ω 2 , Ω 1 ∩ Ω 2 = ∅, Γ := Ω 1 ∩ Ω 2 , and a generic second order linear PDE L(u) = f , in Ω, u = 0 on ∂Ω.
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The operator L could represent a homogeneous problem, i.e. the same PDE over the whole domain, or it could have discontinuous coefficients along Γ, or even represent a heterogeneous coupling. Starting from two initial guesses u 0 1 , u 0 2 , the OSM with double sided zeroth-order transmission conditions computes at iteration n

L(u n 1 ) = 0 on Ω 1 , (∂ n 1 + s 1 )u n 1 = (∂ n 1 + s 1 )u n-1 2 on Γ, L(u n 2 ) = 0 on Ω 2 , (∂ n 2 + s 2 )u n 2 = (∂ n 2 + s 2 )u n-1 1 on Γ, (2) 
where s 1 , s 2 ∈ R are the parameters to optimize. At the discrete level, the original PDE ( 1) is equivalent to the linear system

A 1 I I 0 A 1 I Γ 0 A 2 I I A 2 I Γ A 1 ΓI A 2 ΓI A ΓΓ u 1 u 2 u Γ = f 1 f 2 f Γ , (3) 
where the unknowns are split into those interior to domain Ω i , that is u i , i = 1, 2, and those lying on the interface Γ, i.e. u Γ . It is well known, see e.g. [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF], that the Dirichlet-Neumann and Neumann-Neumann methods can be seen as Richardson type methods to solve the discrete Steklov-Poincaré equation

Σu Γ = µ,
where

Σ := Σ 1 + Σ 2 , Σ i := A i ΓΓ -A i ΓI (A i I I ) -1 A i I Γ , µ := µ 1 + µ 2 , µ i := f i Γ - A i ΓI (A i I I ) -1 f i , i = 1, 2.
It is probably less known that the OSM (2) can be interpreted as an Alternating Direction Implicit scheme (ADI, see e.g. [START_REF] Axelsson | Iterative Solution Methods[END_REF]), for the solution of the continuous Steklov-Poincaré equation. This interesting point of view has been discussed in [START_REF] Agoshkov | Generalized Schwarz algorithm with variable parameters[END_REF][START_REF] Discacciati | Domain decomposition methods for the coupling of surface and groundwater flows[END_REF]. At the discrete level, it results in the equivalence between a discretization of (2) and the ADI scheme

(s 1 E + Σ 1 )λ n+ 1 2 = (s 1 E -Σ 2 )λ n + µ, (s 2 E + Σ 2 )λ n+1 = (s 2 E -Σ 1 )λ n+ 1 2 + µ, ( 4 
)
where E is either the mass matrix on Γ using a Finite Element discretization, or simply an identity matrix using a Finite Difference stencil. From now on, we will replace E with the identity I without loss of generality. Working on the error equation, the iteration operator of the ADI scheme is

T(s 1 , s 2 ) := (s 2 I + Σ 2 ) -1 (s 2 I -Σ 1 )(s 1 I + Σ 1 ) -1 (s 1 I -Σ 2 ), (5) 
and one would like to minimize the spectral radius, min s 1 ,s 2 ρ(T(s 1 , s 2 )). It would be natural to use the wide literature available on ADI methods to find the optimized parameters s 1 , s 2 for OSMs. Unfortunately, the ADI literature contains useful results only in the case where Σ 1 and Σ 2 commute, which is quite a strong assumption.

In our context, the commutativity holds for instance if Ω 1 = Ω 2 and L represents a homogeneous PDE. Under these hypotheses, Fourier analysis already provides good estimates of the optimized parameters. Indeed it can be shown quite generally that the Fourier analysis and ADI theory lead to the same estimates. Without the commutativity assumption, the ADI theory relies on rough upper bounds which do not lead to precise estimates of the optimized parameters. For more details on the links between ADI theory and classical results in OSM theory we refer to [START_REF] Vanzan | Domain decomposition methods for multiphysics problems[END_REF]Section 2.5].

Let us observe that if one used more general transmission conditions represented by matrices Σ 1 and Σ 2 , (5) becomes

T( Σ 1 , Σ 2 ) = ( Σ 2 + Σ 2 ) -1 ( Σ 2 -Σ 1 )( Σ 1 + Σ 1 ) -1 ( Σ 1 -Σ 2 ). (6) 
Choosing either Σ 1 = Σ 2 or Σ 2 = Σ 1 leads to T = 0, and thus one obtains that the local Steklov-Poincaré operators are optimal transmission operators [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF].

An algorithm based on probing

Our algorithm to find numerically optimized transmission conditions has deep roots in the ADI interpretation of the OSMs and it is based on the probing technique.

By probing, we mean the numerical procedure through which we estimate a generic matrix G by testing it over a set of vectors. In mathematical terms, given a set of vectors x k and

y k := Gx k , k ∈ K, we consider the problem Find G such that Gx i = y i , ∀i ∈ I. (7) 
As we look for matrices with some nice properties ( diagonal, tridiagonal, sparse...), problem [START_REF] Gander | Heterogeneous optimized Schwarz methods for second order elliptic PDEs[END_REF] does not always have a solution. Calling D the set of admissible matrices, we prefer considering the problem min

G ∈D max k ∈K y k -Gx k . (8) 
Having remarked that the local Steklov-Poincaré operators represent optimal transmission conditions, it would be natural to approximate them using probing. Unfortunately, this idea turns out to be very inefficient. To see this, let us carry out a continuous analysis on an infinite strip, Ω 1 = (-∞, 0)×(0, 1) and Ω 2 = (0, ∞)×(0, 1). We consider the Laplace equation and, denoting with S i the continuous Steklov-Poincaré operators, due to symmetry we have S 1 = S 2 =: S e . In this simple geometry, the eigenvectors of S e are v k = sin(kπy), k ∈ N + with eigenvalues µ k = kπ so that S e v k = µ k v k =: y k , see [START_REF] Gander | Optimized Schwarz methods[END_REF]. We look for an operator S = sI with s ∈ R + which corresponds to a Robin transmission condition with parameter s. As probing functions, we choose the normalized functions v k with k = 1, ...N h , where N h is the number of degrees of freedom on the interface. Then (8) becomes

min S:S=sI , s ∈R + max k ∈[1, N h ] y k -Sv k = min s ∈R + max k ∈[1, N h ] µ k v k -sv k = min s ∈R + max k ∈[1, N h ] |kπ -s|. (9) 

Algorithm 1

Require: A set of vector x k , k ∈ K, a characterization of Σ 1 , Σ 2 .

1: [Optional] For i = 1, 2, perform N iterations of the power method to get approximations of selected eigenvectors

x i k , i = 1, 2, k ∈ K. Map x i j into x k , for i = 1, 2, j ∈ K and k = 1, . . . , 2 | K |. Redefine K := {1, . . . , 2 |K | }. 2: Compute y i k = Σ i x k , k ∈ K,. 3 
: Call an optimization routine to solve [START_REF] Gigante | Optimized Schwarz methods for spherical interfaces with application to fluid-structure interaction[END_REF]. 4: Return the matrices Σ j , j = 1, 2.

The solution of ( 9) is s * = N h π 2 while, according to a Fourier analysis and numerical evidence [START_REF] Gander | Optimized Schwarz methods[END_REF], the optimal parameter is s opt = √ N h π. This discrepancy is due to the fact that problem (9) aims to make the parenthesis (s i I -Σ 3-i ), i = 1, 2 as small as possible, but it completely neglects the other terms

(s i I + Σ i ).
This observation suggests to consider the minimization problem min

Σ 1 , Σ 2 ∈D max k ∈K Σ 2 x k -Σ 1 x k Σ 1 x k + Σ 1 x k Σ 1 x k -Σ 2 x k Σ 2 x k + Σ 2 x k . ( 10 
)
We say that this problem is consistent in the sense that, assuming

Σ 1 , Σ 2 share a common eigenbasis {v k } k with eigenvalues µ i k , Σ i = s i I, i = 1, 2, k = 1, . . . , N h , then choosing x k = v k , we have min Σ 1 , Σ 2 ∈D max k ∈K Σ 2 x k -Σ 1 x k Σ 1 x k + Σ 1 x k Σ 1 x k -Σ 2 x k Σ 2 x k + Σ 2 x k = min s 1 ,s 2 max k ∈I ∈ s 1 -µ 2 k s 1 +µ 1 k s 2 -µ 1 k s 2 +µ 2 k = min s 1 ,s 2 ∈R + ρ(T(s 1 , s 2 )), (11) 
that is, [START_REF] Gigante | Optimized Schwarz methods for spherical interfaces with application to fluid-structure interaction[END_REF] is equivalent to minimize the spectral radius of the iteration matrix.

We thus propose our numerical procedure to find optimized transmission conditions, summarized in Steps 2-4 of Algorithm 1. It requires as input a set of probing vectors and a characterization for the transmission matrices Σ i , that is if the matrices are identity times a real parameter, diagonal, or tridiagonal, sparse etc. We then precompute the action of the local Schur complement on the probing vectors. We finally solve (10) using an optimization routine such as fminsearch in M , which is based on the Nelder-Mead algorithm.

The application of Σ i to a vector x k requires a subdomain solve, thus Step 2 requires 2|K | subdomain solves which are embarrassingly parallel. Step 3 does not require any subdomain solves, and thus is not expensive.

As discussed in Section 3, the choice of probing vectors plays a key role to obtain good estimates. Due to the extensive theoretical literature available, the probing vectors should be heuristically related to the eigenvectors associated to the minimum and maximum eigenvalues of Σ i . It is possible to set the probing vectors x k equal to lowest and highest Fourier modes. This approach is efficient when the Fourier analysis itself would provide relatively good approximations of the parameters. However there are instances, e.g. curved interfaces or heterogeneous problems, where it is preferable to have problem-dependent probing vectors. We thus include an additional optional step (Step 1), in which, starting from a given set of probing vectors, e.g Fourier 

Numerical experiments

We start with a sanity check considering a Laplace equation on a rectangle Ω, with Ω 1 = (-1, 0) × (0, 1), Ω 2 = (0, 1) × (0, 1) and Γ = {0} × (0, 1). Given a discretization of the interface Γ with N h points, we choose as probing vectors the discretization of the functions

x 1 = sin(πy), x 2 = sin( N h πy), x 3 = sin(N h πy), (12) 
motivated by the theoretical analysis in [START_REF] Gander | Optimized Schwarz methods[END_REF], which shows that the optimized parameters s i satisfy equioscillation between the minimum, the maximum and a medium frequency which scales as √ N h . We first look for matrices Σ i = s i I representing zeroth order double sided optimized transmission conditions. Then, we look for matrices Σ i = pI + qH, where H is a tridiagonal matrix

H := diag( 2 h 2 ) -diag( 1 h 2 , -1) -diag( 1 h 2 , +1
), where h is the mesh size. At the continuous level, Σ i represents second order transmission conditions. Fig 1 shows that Algorithm 1 permits to obtain excellent estimates in both cases with just three probing vectors. We emphasize that Algorithm 1 requires 6 subdomain solves, which can be done in parallel, and leads to a convergence factor of order ≈ 0.07 for second order transmission conditions. It is clear that, depending on the problem at hand, this addition of 6 subdomain solves is negligible, considering the advantage of having such a small convergence factor. We now look at a more challenging problem. We solve a second order PDE

-∇ • ν(x)∇u + a(x) • ∇u + η(x)u = f in Ω, ( 13 
)
where Ω is represented in Fig. 2 on the left. The interface Γ is a parametric curve γ(t) : [0, 1] → (0, r sin( kπt)), with r ∈ R + . The coefficients are set to ν(x) = 1, a(x) = (10(y

+ x 2 ), 0) , η(x) = 0.1(x 2 + y 2 ) in Ω 1 , ν(x) = 100, a(x) = (10(1-x), x) , η(x) = 0 in Ω 2 , f (x) = x 2 + y 2 in Ω.
The geometric parameters are r = 0.4, k = 8 and the interface is discretized with N h = 100 points. Driven by the theoretical analysis [START_REF] Gander | Heterogeneous optimized Schwarz methods for second order elliptic PDEs[END_REF], we rescale the transmission conditions according to the physical parameters, setting S i := f i (s)I, where

f i := ν i (s 2 + a 2 i1 4ν 2 i + a 2 i2 4ν 2 i + η i ν i ) 1/2 -a i1 2 .
The left panel of Fig 2 shows a comparison of the optimized parameters obtained by a Fourier analysis to the one obtained by Algorithm 1 using as probing vectors the sine frequencies of [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF]. It is evident that both do not deliver efficient estimates. The failure of Algorithm 1 is due to the fact that, in contrast to the Laplace case, the sine frequencies do not contain information about the slowest modes. On the right panel of Fig 2 , we plot the lowest eigenvectors of Σ i , which clearly differ significantly from the simple lowest sine frequency. We therefore consider Algorithm 1 with the optional Step 1 and as starting probing vectors we only use the lowest and highest sine frequencies. The left panel of Fig. 2 shows that Algorithm 1 delivers efficient estimates with just one iteration of the power method.

Let us now study the computational cost. To solve [START_REF] Vanzan | Domain decomposition methods for multiphysics problems[END_REF] up to a tolerance of 10 -8 on the error, an OSM using the Fourier estimated parameters (black cross in Fig 2 ) requires 21 iterations, while only 12 are needed by Algorithm 1 with only one iteration of the power method. In the offline phase of Algorithm 1, we need to solve 4 subdomain problems in parallel in Step 1, and further 8 subdomain problems again in parallel in Step 2. Therefore the cost of the offline phase is equivalent to two iterations of the OSM in a parallel implementation, and consequently Algorithm 1 is computationally attractive even in a single-query context.

Next, we consider the Stokes-Darcy system in Ω, with Ω 1 = (-1, 0) × (0, 1), Ω 2 = (0, 1) × (0, 1) and Γ = {0} × (0, 1) with homogeneous Dirichlet boundary conditions along ∂Ω. Refs. [START_REF] Gander | On the derivation of optimized transmission conditions for the Stokes-Darcy coupling[END_REF][START_REF] Vanzan | Domain decomposition methods for multiphysics problems[END_REF] show that the Fourier analysis fails to provide optimized parameters since the two subproblems do not share a common separation of variable expansion in bounded domains, unless periodic boundary conditions are enforced, see also [START_REF] Gander | Heterogeneous optimized Schwarz methods for second order elliptic PDEs[END_REF][Section 3.3]. Thus, the sine functions do not diagonalize the OSM iteration, even in the simplified domain Ω with straight interface. Nevertheless, we apply Algorithm 1 using two different sets of sines as probing vectors, corresponding to frequencies

K 1 = 1, √ N h , N h and K 2 = 1, 2, √ N h , N h .
In K 2 the first even frequency is included because in Ref. [START_REF] Gander | On the derivation of optimized transmission conditions for the Stokes-Darcy coupling[END_REF] it was observed that the first odd Fourier frequency converges extremely fast.

Fig 3 shows the estimated parameters for single and double sided zeroth order transmission conditions obtained through a Fourier analysis [START_REF] Discacciati | Optimized Schwarz methods for the Stokes-Darcy coupling[END_REF] and using Algorithm 1. The left panel confirms the intuition of [START_REF] Gander | On the derivation of optimized transmission conditions for the Stokes-Darcy coupling[END_REF], that is, the first even frequency plays a key role in the convergence. The right panel shows that Algorithm 1, either with K 1 or K 2 provides better optimized parameters than the Fourier approach.

Next, we consider the stationary heat transfer model coupling the diffusion equation ∇ • (-λ∇u 1 (x)) = 0 in the porous medium domain Ω 1 = (0, L) × (5, 15) with the convection diffusion equation ∇ • (u 2 (x)V t (y) -λ t (y)∇u 2 (x)) = 0 in the free flow domain Ω 2 = (0, L) × (0, 5). Both the turbulent velocity V t = (V t (y), 0) T and the thermal conductivity λ t (y) exhibit a boundary layer at the interface Γ = (0, L) × {5} and are computed from the Dittus-Boelter turbulent model. Dirichlet boundary conditions are prescribed at the top of Ω 1 and on the left of Ω 2 , homogeneous Neumann boundary conditions are set on the left and right of Ω 1 and at the bottom of Ω 2 , and a zero Fourier flux is imposed on the right of Ω 2 . Flux and temperature continuity is imposed at the interface Γ. The model is discretized by a Finite Volume scheme on a Cartesian mesh of size 50 × 143 refined on both sides of the interface. Figure 4 shows that the probing algorithm provides a very good approximation of the optimal solution for the case L = 100 m, V t = 5 m/s (mean velocity) both with the 3 sine vectors [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF] and with the 6 vectors obtained from the power method starting from the sine vectors. In the case L = 10 m, V t = 0.5 m/s, the spectral radius has a narrow valley with two minima. In that case the probing algorithm fails to find the best local minimum but still provides a very good approximation. 

Fig. 2

 2 Fig.2Left: Ω decomposed into Ω 1 and Ω 2 . Middle: optimized parameters obtained using Fourier analysis or Algorithm 1 with different sets of probing vectors. Right: eigenvectors associated to the smallest eigenvalues of Σ j , j = 1, 2.

Fig. 4

 4 Fig. 4 For L = 100 m, V t = 5 m/s (left) and L = 10 m, V t = 0.5 m/s (right), comparison of the double sided Robin parameters s 1 and s 2 obtained from the probing algorithm using either the 3 sines vectors or the 6 vectors obtained from the 3 sines vectors by 2 PM iterations on both sides. It is compared with the minimizer of the spectral radius ρ(T (s 1 , s 2 )).

  Contour plot of the spectral radius of the iteration matrix T ( Σ 1 , Σ 2 ) with Σ i = s i I (left) and of T ( Σ 1 , Σ 2 ) with Σ i = pI + qH (right). The red crosses are the parameters obtained through Algorithm 1.
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modes, we perform N iterations of the power method, which essentially correspond to N iterations of the OSM, to get more suitable problem-dependent probing vectors. To compute the eigenvector associated to the minimum eigenvalue of Σ i , we rely on the inverse power method which requires to solve a Neumann boundary value problem. Including Step 1, Algorithm 1 requires in total 2|K |(N + 2) subdomain solves, where |K | is the number of probing vectors in the input.

  Comparison between the optimized parameters obtained through Fourier analysis and Algorithm 1 for single sided Robin boundary conditions (left) and double sided Robin boundary conditions (right).
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