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Local and global coincidence homology classes

Jean-Paul Brasselet∗and Tatsuo Suwa†

Comme c’est curieux !

Comme c’est bizarre !

et quelle cöıncidence !

J’ai pris le même train, Monsieur, moi aussi !

Eugène Ionesco

La cantatrice chauve.

Abstract

For two differentiable maps between two manifolds of possibly different dimensions,
the local and global coincidence homology classes are introduced and studied by Bisi-
Bracci-Izawa-Suwa (2016) in the framework of Čech-de Rham cohomology. We take up
the problem from the combinatorial viewpoint and give some finer results, in particular
for the local classes. As to the global class, we clarify the relation with the cohomology
coincidence class as studied by Biasi-Libardi-Monis (2015). In fact they introduced such
a class in the context of several maps and we also consider this case. In particular we
define the local homology class and give some explicit expressions. These all together lead
to a generalization of the classical Lefschetz coincidence point formula.

Keywords : Alexander duality; Thom class; intersection product with map; coincidence
homology class; Lefschetz coincidence point formula.

Mathematics Subject Classification (2010) : 14C17, 37C25, 54H25, 55M05, 55M20, 57R20,
58C30.

1 Introduction

After Poincaré [9] and Brouwer [4], the Lefschetz fixed point theorem provided a new
insight on the fixed point theory. S. Lefschetz [8] proved that, given a self map f of a
compact oriented manifoldM , the sum of indices at fixed points is equal to the alternating
sum of the matrix traces of the linear maps induced by f on the homology of M with
rational coefficients.

In fact, Lefschetz [7] provided the result in the context of coincidences. Given two
maps f and g between compact oriented manifolds M and N of the same dimension, the
coincidence points are defined as points x ∈ M such that f(x) = g(x). At these points,
one defines the coincidence index and the Lefschetz result expresses the sum of indices in
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terms of alternating sum of suitable matrix traces (cf. Theorem 4.4 below). The Lefschetz
fixed point formula is just the case M = N and g is the identity map 1M on M .

The result has been generalized in two ways. The first one is the case of manifolds
with different dimensions. In fact it seems that Lefschetz himself possibly considered this
case (cf. p. 28 in [11]). There have been a number of literatures on this (e.g., [10] and
references therein). In [2], the global and local homology classes are introduced and some
explicit formulas are given. The second one is the case of multi-coincidence. In [1], the
Lefschetz class for several maps is introduced and studied.

In this paper, we will recall the main definitions and results concerning the Lefschetz
coincidence indices and classes in the case of manifolds with same and possibly different
dimensions. We study the global and local classes of [2] from combinatorial viewpoint
and give some finer results. We also study the situation of multicoincidence, providing
an alternative definition for the global class in homology. We further define local classes
and give some explicit formulas.

The paper is organized as follows. In Section 2 we review, from the combinatorial
viewpoint, the Poincaré and Alexander dualities, the Thom class and localized intersection
products. After a brief description of the coincidence problem in Section 3, we recall in
Section 4, the original Lefschetz coincidence point formula and sketch an outline of the
proof. One of the key ingredients is that the local index is given as the local mapping
degree of the difference of the maps.

We then take up the case of two maps between manifolds of possibly different dimen-
sions in Section 5. We recall the definitions of the global and local coincidence classes
(Definitions 5.5 and 5.9) as well as a general coincidence point theorem (Theorem 5.11).
For the global class we prove that it correspnds to the cohomology coincidence class of
[1] via the Poincaré duality (Theorem 5.7). The local class is representen by a cycle of
the form

∑

css, where s runs through the simplices of an appropriate dimension in the
coincidence set. Thus once we know the coefficient cs for each simplex s, we have an
explicit expression for the local class. This can be done with the aid of the representation
of the Thom in the Čech-de Rham cohomology. A general formula is given in Theorem
5.14 and, in some specific cases, it leads to the formulas as in Theorems 5.16, 5.18 and
Corollary 5.19.

Finally we consider the case of several maps in Section 6. Since this case can be
reduced to the case of two maps, everything done for two maps may be applied to obtain
the results for this case (Theorems 6.5, 6.6 and Corollary 6.7).

2 Basic tools of algebraic topology

In the sequel, the homology is that of locally finite chains and the cohomology is that
of cochains on finite chains, both with integral coefficients, unless otherwise stated. Also
for a cycle C, its class in the homology of the ambient space is denoted by [C], while the
class in the homology of its support is simply denoted by C.

2.1 Poincaré and Alexander dualities

Combinatorial definitions of the dualities presented here can be found in [3], see also [13]
and [14].
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Let M be a connected oriented C∞ manifold of dimension m. We take a triangulation
K0 of M and let K be the barycentric subdivision of K0. We further take the barycentric
subdivision K ′ of K. We take the second barycentric subdivision so that the star SK ′(S)
of a subcomplex S with respect to K ′, i.e., the union of simplices of K ′ intersecting with
S, proper deformation retracts to S. Let K∗ denote the cell decomposition dual to K.
Thus for a simplex s of K its dual cell s∗ is the union of simplices of K ′ that intersect
with s only at the barycenter bs of s. We orient the simplices and cells so that, if s is an
(m − p)-simplex of K and s

∗ its dual p-cell, the orientation of s∗ followed by that of s
gives the orientation of M . This orientation convention is that of [14].

Poincaré duality : We denote by Cp
K∗(M) and CK

m−p(M) the groups of p-cochains in
K∗ and (m− p)-chains in K and define

P : Cp
K∗(M) −→ CK

m−p(M) by u 7→
∑

s

〈s∗, u〉s, (2.1)

where 〈 , 〉 denotes the Kronecker paring and the sum is taken over all (m− p)-simplices
s of K. Then it induces the Poincaré duality isomorphism

PM : Hp(M)
∼

−→ Hm−p(M).

It is shown that PM is given by the left cap product with the fundamental class of M ,
the class of the sum of all m-simplices in M . Thus a class c in Hp(M) corresponds to the
class γ in Hm−p(M) such that

〈M, c ` a〉 = 〈γ, a〉 for all a ∈ Hm−p(M). (2.2)

In the sequel PM will simply be denoted by P if there is no fear of confusion.

Remark 2.3 In some literature such as [15], the Poincaré duality isomorphism is defined
so that it is given by the right cap product with the fundamental class. If we denote this
isomorphism by P ′

M , we have
P ′

M = (−1)p(m−p)PM .

Alexander duality : Let S be a K0-subcomplex of M . We denote by SK ′(S) and
OK ′(S) the star and the open star of S in K ′ and set

C
p
K∗(M,MrOK ′(S)) = { u ∈ C

p
K∗(M) | 〈s∗, u〉 = 0 for s 6⊂ S }

Then (2.1) induces
C

p
K∗(M,MrOK ′(S)) −→ CK

m−p(S)

and the Alexander isomorphism

AM,S : Hp(M,MrS)
∼

−→ Hm−p(S).
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In the sequel AM,S is denoted by A if there is no fear of confusion. We have the following
commutative diagram:

Hp(M,MrS)
j∗

//

A≀

��

Hp(M)

P≀

��

Hm−p(S)
i∗ // Hm−p(M),

(2.4)

where i : S →M and j : (M, ∅) → (M,S) are inclusions.

Thom homomorphism : Let X be an oriented pseudo-manifold of dimension d in M
(cf. Definition 5.17 below). For a (d− p)-simplex s of K, s∗ ∩X is a p-chain of K ′. The
homomorphism

P : Cp
K ′(X) −→ CK

d−p(X) given by u 7→
∑

s

〈s∗ ∩X, u〉s,

induces the Poincaré homomorphism

PX : Hp(X) −→ Hd−p(X).

It is also given by the cap product with the fundamental class of X .
Setting k = m− d, the Thom homomorphism

TM,X : Hp(X) −→ Hp+k(M,MrX)

is induced from the homomorphism

T : Cp
K ′(X) −→ C

p+k
K∗ (M,MrOK ′(X)) given by 〈s∗, T (u)〉 = 〈s∗ ∩X, u〉.

Extending (2.4) for S = X , we have the following commutative pentahedron (square
pyramid) where PX and TM,X are isomorphisms if X is a manifold. The map i! is the
Gysin map and the map a is defined as a = PM ◦ j∗ = i∗ ◦ AM,X .

Hp+k(M,MrX)

j∗

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

a

""❉
❉

❉
❉

❉
❉

❉
❉

❉

AM,X ≃

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏

Hp+k(M)
PM ≃

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Hd−p(M)

Hp(X)
PX (≃)

//

i!

dd■■■■■■■■■

TM,X (≃)

AA
✄✄✄✄✄✄✄✄✄✄✄

✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄

Hd−p(X).

i∗

ggP
P
P
P
P
P

(2.5)

Definition 2.6 The Thom class ΨX of X is a class in Hk(M,MrX) defined as

ΨX = TM,X([1]), [1] ∈ H0(X).
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Thus it may also be written as

ΨX = (AM,X)
−1X. (2.7)

Remark 2.8 If we use the convention that the duality homomorphisms are given by the
right cap product (cf. Remark 2.3), then the Thom class Ψ ′

X in this convention is given
by

Ψ ′

X = (−1)d(m−d)ΨX .

2.2 Intersection product and localized intersection product

Let M be a connected oriented C∞ manifold of dimension m, as before. For two classes
a ∈ Hr(M) and b ∈ Hs(M), the intersection product a· b is defined by

a· b = P (P−1a ` P−1b) in Hr+s−m(M), (2.9)

where ` denotes the cup product. Then a· b is additive in a and b and we have

b·a = (−1)(m−r)(m−s)a· b. (2.10)

Suppose M is compact. In this case, if r + s = m, then a· b is in H0(M) = Z and
may be thought of as an integer.

Remark 2.11 The above intersection product remains the same if we use P ′

M instead of
PM .

Let S1 and S2 be two K0-subcomplexes of M and set S = S1 ∩ S2. Let A1, A2 and
A denote the Alexander isomorphisms for (M,S1), (M,S2) and (M,S), respectively. For
two classes a ∈ Hr(S1) and b ∈ Hs(S2), the intersection product (a· b)S localized at S is
defined by

(a· b)S = A(A−1
1 a ` A−1

2 b) in Hr+s−m(S), (2.12)

where ` denotes the cup product

Hm−r(M,MrS1)×Hm−s(M,MrS2)
`

−→ H2m−r−s(M,MrS).

Then (a· b)S is additive in a and b and satisfies a relation similar to (2.10). Letting
i1 : S1 →֒ M , i2 : S2 →֒ M and i : S →֒ M be the inclusions, from (2.4) we see that the
definitions (2.9) and (2.12) are consistent in the sense that

(i1)∗a· (i2)∗b = i∗(a· b)S.
In the above situation, suppose S has a finite number of connected components (Sλ).

Then Hr+s−m(S) =
⊕

λHr+s−m(Sλ) and we have the intersection product (a· b)Sλ
in

Hr+s−m(Sλ) for each λ. We have the “localization formula”

(i1)∗a· (i2)∗b =
∑

λ

(iλ)∗(a· b)Sλ
in Hr+s−m(M),
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where iλ : Sλ →֒ M denotes the inclusion. It is a formula of the same nature as the one
given in Theorem 5.2 below. Suppose S is compact. Then, if r + s = m, H0(Sλ) = Z for
each λ and (a· b)Sλ

is an integer. In this case, the above formula is written as

(i1)∗a· (i2)∗b =
∑

λ

(a· b)Sλ
. (2.13)

The above dualities and intersection products may also be defined in the framework
of Čech-de Rham cohomology (cf. [2], [12], [14]).

3 Coincidence problem

Let M and N denote connected oriented C∞ manifolds of dimensions m and n, respec-
tively. Let us consider two C∞ maps f :M → N and g :M → N .

Definition 3.1 The coincidence set Coin(f, g) is defined as

Coin(f, g) = { x ∈ M | f(x) = g(x) }.

In the subsequent sections we introduce global and local invariants for the pair (f, g),
study the relation among them and try to express the invariants explicitly. We then
generalize the results to the case of several maps.

We denote by Γf and Γg the graphs of f and g inM×N , respectively. They are bothm-
dimensional submanifolds ofM×N . We orient Γf so that the map f̃ :M → Γf ⊂M×N
given by f̃(x) = (x, f(x)) is an orientation preserving diffeomorphism, and similarly for
Γg.

4 Lefschetz coincidence point formula - case of com-

pact manifolds of the same dimension

In this section we review the original Lefschetz coincidence point formula in the case of
C∞ maps between manifolds of the same dimension, which will be generalized in various
settings in the subsequent sections.

LetM and N denote compact connected oriented C∞ manifolds of the same dimension
m. Let us consider two maps f :M → N and g :M → N .

Lefschetz number : In this paragraph, we consider homology and cohomology with
Q coefficients and denote by fp and f p the homomorphisms induced by f on the p-th
homology and p-th cohomology, respectively, and similarly for gp and gp. For each p, we
have the commutative diagram :

Hp(M,Q)
PM

∼ //Hm−p(M,Q)
∼

KM

//

fm−p

��

Hm−p(M,Q)∗

(fm−p)∗

��

Hp(N,Q)

fp

OO

PN

∼ // Hm−p(N,Q) ∼

KN

// Hm−p(N,Q)∗,

6



where KM and KN denote the isomorphisms induced by the Kronecker pairing. Consid-
ering a similar diagram for g, we set

g̃p = P−1
N ◦ gm−p ◦ PM : Hp(M,Q) −→ Hp(N,Q).

Definition 4.1 The Lefschetz number Lef(f, g) of the pair (f, g) is defined by

Lef(f, g) =
m
∑

p=0

(−1)p · tr(f p ◦ g̃p).

We give a proof of the following for the sake of completeness :

Proposition 4.2 We have

Lef(g, f) = (−1)m Lef(f, g).

Proof: First note that if we set

D
p
M = (KM ◦ PM)p : Hp(M,Q)

∼

−→ Hm−p(M,Q)∗,

then its transpose (dual map) is equal to D
m−p
M , i.e., (Dp

M)∗ = D
m−p
M . We compute,

omitting the superscripts for D,

(gp ◦ f̃ p)∗ = (gp ◦ (D−1
N ) ◦ (fm−p)∗ ◦DM)∗ = DM ◦ fm−p ◦ (D−1

N ) ◦ (gp)∗

= DM ◦ fm−p ◦ (D−1
N ) ◦ (gp)∗ ◦DM ◦D−1

M = DM ◦ fm−p ◦ g̃m−p ◦D−1
M .

Thus
tr(gp ◦ f̃ p) = tr(fm−p ◦ g̃m−p),

which proves the proposition. ✷

Remark 4.3 1. If we set

g̃p = PM ◦ gm−p ◦ P−1
N : Hp(N,Q) −→ Hp(M,Q),

then we may write

Lef(f, g) =

m
∑

p=0

(−1)p · tr(g̃p ◦ fp).

2. If we use P ′

M and P ′

N (cf. Remark 2.3) the above remains the same.

Local mapping degree : Let f, g : M → N be as above. Suppose p is an isolated
point in Coin(f, g). Let U be a coordinate neighborhood around p with coordinates
x = (x1, . . . , xm) in M and V a coordinate neighborhood around f(p) = g(p) in N . Also
let B be a closed ball around p in U such that f(B) ⊂ V and g(B) ⊂ V . Thus we may
consider the map g − f : B → Rm whose image is the origin 0 in Rm only at p. The
boundary ∂B is homeomorphic to the unit sphere Sm−1 and we have the map

γ : ∂B −→ Sm−1 defined by γ(x) =
g(x)− f(x)

‖g(x)− f(x)‖
.
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We denote the degree of this map by deg(g − f, p) and call it the coincidence index of
(f, g) at p.

An isolated coincidence point p of the pair (f, g) is said to be non-degenerate if

det(Jg(p)− Jf(p)) 6= 0,

where Jf (p) and Jg(p) denote the Jacobian matrices of f and g at p. If p is a non-
degenerate coincidence point, then we have

deg(g − f, p) = sgn det(Jg(p)− Jf(p)).

With these, we have :

Theorem 4.4 (Lefschetz coincidence point formula) LetM and N be compact con-

nected oriented C∞ manifolds of the same dimension and let f, g : M → N be C∞ maps.

Suppose Coin(f, g) consists of a finite number of isolated points. Then

Lef(f, g) =
∑

p∈Coin(f,g)

deg(g − f, p).

In particular, Lef(f, g) is an integer, which is zero if Coin(f, g) = ∅.

The above theorem applied to the case N = M and g = 1M , the identity map of M ,
gives the Lefschetz fixed point formula for f .

Basically the proof of the above theorem consists of the following two parts. Note
that, in the case under consideration, Γf and Γg are both m-cycles and the intersection
product [Γf ]· [Γg] is in H0(M ×N) = Z.

Part I. To show that Lef(f, g) = [Γf ]· [Γg].

Part II. To show that [Γf ]· [Γg] localizes at the points of Coin(f, g) and the local con-
tribution from each point is equal to the local mapping degree.

In some literature such as [15], the intersection number does not appear explicitly.
Instead the following number is introduced. Let ∆N denotes the diagonal in N × N

and define (f, g) : M → N × N by (f, g)(x) = (f(x), g(x)). Consider the commutative
diagram :

Hm(N ×N,N ×Nr∆N )
j∗

//

A′

N×N,∆N
≀

��

Hm(N ×N)
(f,g)∗

//

P ′

N×N≀

��

Hm(M)

P ′

M≀

��

Hm(∆N )
i∗ // Hm(N ×N) H0(M),

The Lefschetz class of (f, g) is defined by (cf. Remarks 2.3 and 2.8)

L(f, g) = (f, g)∗ ◦ j∗(Ψ ′

∆N
) = (f, g)∗ ◦ (P ′

N×N)
−1([∆N ]) in Hm(M). (4.5)

Then we have (cf. Theorem 5.7 below)

P ′

ML(f, g) = [Γf ]· [Γg].
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Part I is of purely global nature and can be done by direct computations taking bases
of homology or cohomology of M and N ([15], also [2]). For this, it is not necessary
to consider the Thom class Ψ ′

∆N
. In [15] it is used for Part II. See also [6] for a similar

approach and the statement of the theorem as above. In [2], a simple direct proof for
these is given using the expression of the Thom class of Γg in the framework of the
Čech-de Rham cohomology.

5 Coincidence of two maps between manifolds of pos-

sibly different dimensions

In this section, we generalize the results in the previous section to the case of two maps
between manifolds with possibly different dimensions.

5.1 Intersection product with a map

We recall the notion of intersection product with a map, see [2], [13] and [14], also [5] in
the algebraic category.

Definition 5.1 LetW andM be oriented C∞ manifolds of dimensions m′ andm, respec-
tively, and F :M → W a C∞ map. We define the intersection product M ·F so that the
first diagram below is commutative. Also, for a subcomplex S̃ of a triangulation ofW , we
set S = F−1(S̃) and suppose S is a subcomplex of a triangulation of M . We then define
the localized intersection product (M ·F )S so that the second diagram is commutative :

Hp(W )
∼

P
//

F ∗

��

Hm′−p(W )

M ·F

��

Hp(M)
∼

P
// Hm−p(M),

Hp(W,W r S̃)
∼

A
//

F ∗

��

Hm′−p(S̃)

(M ·F )S
��

Hp(M,MrS)
∼

A
// Hm−p(S).

Note that, if M is a submanifold of W and if F = ι : M →֒ W is the inclusion, the
products M ·ι and (M ·ι )S coincide with (M · )M and (M · )S, respectively, defined in
Section 2 (cf. [2] Proposition 3.9, also [13] Section 7).

In the above situation, suppose S has only a finite number of connected components
(Sλ)λ. Then

Hm−p(S) =
⊕

λ

Hm−p(Sλ)

and, for a class c in Hm−p(S), the class (M ·F c)S determines a class (M ·F c)Sλ
in

H̆m−p(Sλ) for each λ. We have the “residue theorem”, which basically follows from (2.4) :

Theorem 5.2 Let C be an (m′−p)-cycle in W with support S̃ = |C|. Suppose S = F−1S̃

has a finite number of connected components (Sλ)λ. Then we have

M ·F [C] =
∑

λ

(iλ)∗(M ·F C)Sλ
in Hm−p(M),

where iλ : Sλ →֒ M denotes the inclusion.
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5.2 Global classes

5.2.1 The Lefschetz coincidence cohomology class.

We recall the Lefschetz coincidence cohomology class as considered in [1], which is a
generalization of (4.5). See also [10] for related problems.

Let X be a topological space and N an oriented manifold of dimension n. Suppose
we have two maps f, g : X → N . Then we have the map (f, g) : X → N × N and the
diagram :

Hn(N ×N,N ×Nr∆N )
j∗

//

≀ A′

N×N,∆N
��

Hn(N ×N)
(f,g)∗

//

≀ P ′

N×N

��

Hn(X)

Hn(∆N )
i∗ //Hn(N ×N).

Denoting by Ψ ′

∆N
= (A′)−1∆N the Thom class of ∆N , the Lefschetz coincidence cohomol-

ogy class is defined as

L(f, g) = (j ◦ (f, g))∗(Ψ ′

∆N
) = (f, g)∗(P ′)−1[∆N ] = (−1)n(f, g)∗P−1[∆N ] in Hn(X).

(5.3)
In [1] it is assumed that N is compact and the cohomology is with rational coefficients.
Note that L(g, f) = (−1)n

2
L(f, g) = (−1)nL(f, g). Note also that as long as we consider

the global class, it is not necessary to consider the Thom class of ∆N .
In the case X =M is an oriented manifold of dimension m, we have the commutative

diagram

Hn(N ×N)

PN×N≀

��

(f,g)∗
// Hn(M)

≀ PM

��

Hn(N ×N)
M ·(f,g)

// Hm−n(M)

so that
PML(f, g) = (−1)nM ·(f,g) [∆N ]. (5.4)

5.2.2 Global coincidence homology class

The global homology coincidence class is defined in [2] in the framework of Čech-de Rham
cohomology. It can be done as well in the combinatorial context.

Let M and N be oriented manifolds of dimensions m and n, respectively. Suppose
we have two maps f, g : M → N . Let 1M denote the identity map of M and consider
the map f̃ = (1M , f) : M → M × N . Setting W = M × N , we have the commutative
diagram :

Hn(W )
∼

PW

//

f̃∗

��

Hm(W )

M ·
f̃

��

Hn(M)
∼

PM

// Hm−n(M).

Let us denote by Γg the graph of g in W , that defines an m-cycle whose homology class
in Hm(W ) is denoted by [Γg].

10



Definition 5.5 The global coincidence homology class Λ(f, g) is defined by

Λ(f, g) =M ·f̃ [Γg] in Hm−n(M).

Note that f̃ induces an isomorphism f̃∗ : Hm−n(M)
∼

→ Hm−n(Γf ) and Λ(f, g) corre-
sponds to Γf · [Γg] in Hm−n(Γf ), which is sent to [Γf ]· [Γg] in Hm−n(W ) by the canonical
homomorphism Hm−n(Γf) → Hm−n(W ).

Remark 5.6 1. Λ(g, f) = (−1)n
2
Λ(f, g) = (−1)nΛ(f, g).

2. In particular, if m = n and if M and N are compact, Λ(f, g) = [Γf ]· [Γg] is the
intersection number, which in turn coincides with the Lefschetz number Lef(f, g) defined
in Section 4.

5.2.3 “Coincidence” of the two Lefschetz coincidence classes

Theorem 5.7 If M and N are compact,

PML(f, g) = (−1)n(m−n)Λ(f, g), i.e., P ′

ML(f, g) = Λ(f, g) in Hm−n(M,Q).

Proof: Let us consider the Poincaré isomorphisms

PN×N : Hn(N ×N)
∼

−→ Hn(N ×N) and PM×N : Hn(M ×N)
∼

−→ Hm(N ×N)

and set η∆ = P−1
N×N(∆N) and ηg = P−1

M×N(Γg). By (5.4), it suffices to prove

(g, f)∗η∆ = (−1)n(m−n)f̃ ∗ηg in Hn(M,Q). (5.8)

Let {µp
i }i be a basis of Hp(M). We set q = m−p and let {µ̌q

j}j be the basis of H
q(M)

dual to {µp
i }i :

〈M,µ
p
i ` µ̌

q
j〉 = δij .

We also take a basis {νpk}k ofH
p(N) and the basis {ν̌rℓ }ℓ ofH

q(N) dual to {νpk}k, r = n−p.
By the Künneth formula, a basis of Hn(M ×N) is given by

{

ξ
p,r
i,ℓ = π∗

1µ
p
i ` π∗

2 ν̌
r
ℓ

}

p+r=n
,

where π1 and π2 are projections onto the first and second factors. Also a basis of the
cohomology Hn(N ×N) is given by

{

η
p,r
k,ℓ = ̟∗

1ν
p
k ` ̟∗

2ν̌
r
ℓ

}

p+r=n
,

where ̟1 and ̟2 are projections onto the first and second factors. By definition

〈N ×N, η∆ ` ϕ〉 = 〈∆,ϕ〉.

We write
η∆ =

∑

a
p
k,ℓη

p,r
k,ℓ

11



Letting ϕ = ̟∗

1ν̌
p′

k′ ` ̟∗

2ν
n−p′

ℓ′ , we see that apk,ℓ = (−1)n−pδk,ℓ and η∆ =
∑

(−1)n−pη
p,r
k,k.

Thus we have
(g, f)∗η∆ =

∑

(−1)n−pg∗ν
p
k ` f ∗ν̌

n−p
k .

Next, by definition
〈M ×N, ηg ` ψ〉 = 〈Γg, ψ〉.

We write
ηg =

∑

b
p
i,ℓξ

p,r
i,ℓ

By similar computations, letting ψ = π∗

1µ̌
p′

i′ ` π∗

2ν
m−p′

ℓ′ , we have

f̃ ∗ηg =
∑

(−1)εg∗νpk ` f ∗ν̌
n−p
k ,

where ε = (m− p)p− (n− p)m, and we have (5.8). ✷

5.3 Local classes

5.3.1 The local coincidence homology class

We recall the local coincidence homology class defined in [2] in our context.
Note that Coin(f, g) = f̃−1(Γg), which will be simply denoted by C. We have the

commutative diagram :

Hn(W,W rΓg)
∼

A
//

f̃∗

��

Hm(Γg)

(M ·
f̃

)C
��

Hn(M,MrC)
∼

A
// Hm−n(C).

Definition 5.9 ([2], Definition 4.2) The local coincidence class Λ(f, g;C) of the pair (f, g)
at C is defined to be the localized intersection class :

Λ(f, g;C) = (M ·f̃ Γg)C in Hm−n(C).

If we denote by ΨΓg
the Thom class of Γg, we have

Λ(f, g;C) = Af̃ ∗ΨΓg
. (5.10)

Suppose C = Coin(f, g) has a finite number of connected components (Cλ)λ. Then
we have Hm−n(C) = ⊕λHm−n(Cλ) and accordingly we have the local coincidence class
Λ(f, g;Cλ) in Hm−n(Cλ). We have a general coincidence point theorem :

Theorem 5.11 ([2] Theorem 4.4) In the above situation

Λ(f, g) =
∑

λ

(ιλ)∗Λ(f, g;Cλ) in Hm−n(M),

where ιλ : Cλ →֒ M denotes the inclusion.

In the sequel we give explicit expressions of the local classes. For this, we use (5.10)
and a representation of the Thom class in the relative Čech-de Rham cohomology.
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5.3.2 Čech-de Rham cohomology

Let M be a C∞ manifold of dimension m. For an open set U of M , we denote by Ap(U)
the vector space of complex valued C∞ p-forms on U . The cohomology of the complex
(A∗(M), d) is the de Rham cohomology H∗

d(M). The Čech-de Rham cohomology may
be defined for an arbitrary open covering of M , however here we only consider coverings
consisting of two open sets.

Čech-de Rham cohomology : Let U = {U0, U1} be an open covering of M . We set
U01 = U0 ∩ U1 and define the complex vector space Ap(U) as

Ap(U) = Ap(U0)⊕ Ap(U1)⊕ Ap−1(U01).

An element σ in Ap(U) is given by a triple σ = (σ0, σ1, σ01) with σi a p-form on Ui, i = 0, 1,
and σ01 a (p− 1)-form on U01. We define an operator D : Ap(U) → Ap+1(U) by

Dσ = (dσ0, dσ1, σ1 − σ0 − dσ01).

Then we see that D ◦ D = 0 so that we have a complex (A∗(U), D). The p-th Čech-

de Rham cohomology of U , denoted by Hp
D(U), is the p-th cohomology of this complex.

It is also abbreviated as ČdR cohomology. We denote the class of a cocycle σ by [σ].
It can be shown that the map Ap(M) → Ap(U) given by ω 7→ (ω|U0, ω|U1, 0) induces an
isomorphism

α : Hp
d(M)

∼

−→ H
p
D(U). (5.12)

Relative Čech-de Rham cohomology : Let S be a closed set in M . Letting U0 =
MrS and U1 a neighborhood of S in M , we consider the covering U = {U0, U1} of M . If
we set

Ap(U , U0) = { σ ∈ Ap(U) | σ0 = 0 },

we see that (A∗(U , U0), D) is a subcomplex of (A∗(U), D). We denote by Hp
D(U , U0) the

p-th cohomology of this complex.
Suppose S is a subcomplex relative to a C∞ triangulation K0 of M . Then we have a

natural isomorphism :
H

p
D(U , U0) ≃ Hp(M,MrS;C).

Let K, K ′ and K∗ be as before. We may assume that U1 contains the open star OK ′(S)
of S in K ′. Let R1 be an m-dimensional manifold with piecewise C∞ boundary in OK ′(S)
containing S in its interior, for example we may take the star SK ′′(S) of S in the barycen-
tric subdivision K ′′ of K ′ as R1. We set R01 = −∂R1.

Theorem 5.13 ([13, 14]) The Alexander isomorphism

A : Hp
D(U , U0)

∼
−→ Hm−p(S,C)

is induced from the homomorphism

Ap(U , U0) −→ CK
m−p(S,C) given by σ = (0, σ1, σ01) 7→

∑

s

(

∫

s
∗∩R1

σ1 +

∫

s
∗∩R01

σ01

)

s,

where s runs through the (m− p)-simplices of K in S.
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5.3.3 Explicit expressions of local classes

If we use the Čech-de Rham cohomology, the local class is given as follows. Let W0 =
WrΓg and W1 a neighborhood of Γg and consider the covering W = {W0,W1} of W . Let
(0, ψ1, ψ01) be a representative of the Thom class ΨΓg

in Hn
D(W,W0) ≃ Hn(W,WrΓg;C).

Let U0 =MrC, C = Coin(f, g), and U1 a neighborhood of C such that f̃(U1) ⊂W1. Let
R1 and R01 be as in Theorem 5.13. Then from Theorem 5.13 and (5.10), we have :

Theorem 5.14 The class Λ(f, g;C) in Hm−n(C,C) is represented by the cycle

∑

s

css, cs =

∫

s
∗∩R1

f̃ ∗ψ1 +

∫

s
∗∩R01

f̃ ∗ψ01,

where s runs through the (m− n)-simplices of K in C.

If C has a finite number of connected components (Cλ), we take U1 (and K0) so that
U1 =

⋃

λ Uλ, where Uλ ⊃ OK ′(Cλ), for each λ, and Uλ ∩ Uµ = ∅, if λ 6= µ. Then the class
Λ(f, g;Cλ) in Hm−n(Cλ,C) is represented by the above cycle with s running through the
(m− n)-simplices of K in Cλ.

(a) The case m = n and Cλ is compact : In this case, the local class Λ(f, g;Cλ) is in
H0(Cλ) = Z so that it is an integer. By Theorem 5.14 and the above remark, it is given
by

Λ(f, g;Cλ) =

∫

Rλ

f̃ ∗ψ1 +

∫

R0λ

f̃ ∗ψ01, (5.15)

where Rλ = R1 ∩ Uλ and R0λ = −∂Rλ.
Now suppose Cλ = {a} is an isolated point. A short proof of the following formula

using the Thom class in the Čech-de Rham cohomology is given in [2] :

Theorem 5.16 We have :
Λ(f, g; a) = deg(g − f, a).

From Theorems 5.11 and 5.16, we recover Theorem 4.4.

(b) The case Cλ is a pseudo-manifold :

Definition 5.17 A pseudo-manifold X of dimension d in M is a subcomplex of M with
respect to a triangulation of M satisfying the following conditions :

(1) Every simplex in X is a face of some d-simplex in X ,

(2) Every (d− 1)-simplex is the face of exactly two d-simplices,

(3) The d-simplices in X can be oriented so that, if s is a (d−1)-simplex in X and if s1
and s2 are the two simplices that contain s in their boundary, then the prescribed
orientations of s1 and s2 induce opposite orientations of s.
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A pseudo-manifold X is said to be oriented, once orientations of d-simplices in X

satisfying (3) above are fixed. We say that X is irreducible if X rXd−2 is connected,
where Xd−2 denotes the (d − 2)-skeleton of X . Then we have a decomposition into
irreducible components :

X =
⋃

i

Xi.

If X is oriented, each Xi carries a fundamental cycle, the union of d-simplices in Xi and
it defines a class in Hd(X). In fact Hd(X) is generated by these classes.

Let Cλ be a connected component of C = Coin(f, g) as above and suppose it is an
oriented pseudo-manifold of dimension m− n. If s is an (m− n)-simplex in Cλ, s

∗ is an
n-cell such that s∗ ∩ Cλ = {bs}, Thus deg(g − f)|s∗ makes sense.

Theorem 5.18 In the above situation, the local class Λ(f, g;Cλ) in Hm−n(Cλ) is repre-

sented by the cycle
∑

s

deg(g − f)|s∗ · s,

where s runs through the (m− n)-simplices of K in Cλ.

Proof: This follows from (5.10) and Theorems 5.14, 5.16. ✷

Corollary 5.19 In the above situation, if Cλ =
⋃

i Cλ,i is the irreducible decomposition,

Λ(f, g;Cλ) =
∑

i

deg(gλ,i − fλ,i) · Cλ,i in Hm−n(Cλ),

where gλ,i − fλ,i is the restriction of g − f to a small ball of dimension n transverse to

Cλ,i at a non-singular point of Cλ,i.

In the case Cλ is a manifold, the above reduces to Proposition 4.8 in [2]. Note that
we do not need the compactness of M or Cλ.

6 Coincidence of several maps

6.1 Global cohomology class

LetX be a topological space andN a compact connected oriented n-dimensional manifold.
In [1] the authors consider p maps f1, . . . , fp : X → N , p ≥ 2, and define a Lefschetz class
L(f1, . . . , fp) ∈ H(p−1)n(X,Q). They prove that L(f1, . . . , fp) 6= 0 implies that one has
“multi-coincidence” f1(x) = · · · = fp(x) for some x ∈ X .

We recall the definition of the class L(f1, . . . , fp) and give explicit local contributions
subsequently. Again, it is not necessary to consider the Thom class of ∆N or to assume
the compactness of N . Also, it is defined in H(p−1)n(X,Z).

Definition 6.1 The Lefschetz coincidence cohomology class of f1, . . . , fp is defined as

L(f1, . . . , fp) = L(f1, f2) ` · · · ` L(fp−1, fp) in H(p−1)n(X).
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6.2 Global homology classes

Suppose X =M is an oriented manifold of dimension m.

Definition 6.2 We define the global coincidence homology class as

Λ(f1, . . . , fp) = Λ(f1, f2)· · · · ·Λ(fp−1, fp) in Hm−(p−1)n(M).

From Theorem 5.7, we have :

Theorem 6.3 We have the equality :

Λ(f1, . . . , fp) = P ′

ML(f1, . . . , fp).

6.3 Local homology classes

Let us consider the case of p maps f1, . . . , fp :M → N . We set W =M ×N . We denote
by Ci,i+1 the coincidence set

Ci,i+1 = Coin(fi, fi+1) for i = 1, · · · , p− 1.

Then we have
p−1
⋂

i=1

Ci,i+1 = Coin(f1, · · · , fp),

which we denote by C.
For each i, 1 ≤ i ≤ p− 1, we have a commutative diagram:

Hn(W,W rΓfi+1
)

∼

A
//

f̃∗

i

��

Hm(Γfi+1
)

(M ·
f̃i

)Ci,i+1

��

Hn(M,MrCi,i+1)
∼

A
// Hm−n(Ci,i+1)

and the class

Λ(fi, fi+1;Ci,i+1) = (M ·f̃iΓfi+1
)Ci,i+1

in Hm−n(Ci,i+1).

Definition 6.4 We define the local coincidence class as

Λ(f1, . . . , fp;C) = (Λ(f1, f2;C1,2)· · · · ·Λ(fp−1, fp;Cp−1,p))C in Hm−(p−1)n(C).

Suppose C = Coin(f1, . . . , fp) has a finite number of connected components (Cλ)λ.
Then we have the local coincidence class Λ(f1, . . . , fp;Cλ) in Hm−n(Cλ) and we have a
general coincidence point theorem as in Section 5 :

Theorem 6.5 In the above situation, we have

Λ(f1, . . . , fp) =
∑

λ

(ιλ)∗Λ(f1, . . . , fp;Cλ) in Hm−(p−1)n(M),

where ιλ : Cλ →֒ M denotes the inclusion.
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From Corollary 5.19, we have an explicit expression of the local coincidence class.
For simplicity we assume that each Ci,i+1 is an irreducible oriented pseudo-manifold of
dimension m− n. Let Bi,i+1 be a small ball of dimension n in M transverse to Ci,i+1 at
a non-singular point of Ci,i+1. Then we have

Theorem 6.6 In the above situation, we have the following formula in Hm−(p−1)n(C) :

Λ(f1, . . . , fp;C) = deg((f2 − f1)|B1,2) · · ·deg((fp − fp−1)|Bp−1,p) · (C1,2 · · · · ·Cp−1,p)C .

If m = (p− 1)n and if the Ci,i+1’s intersect transversely, C consists of isolated points
and we have :

Corollary 6.7 In the above situation, for a point x in C,

Λ(f1, . . . , fp; x) = deg((f2 − f1)|B1,2) · · ·deg((fp − fp−1)|Bp−1,p).
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