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OPTIMIZATION OF NON-CYLINDRICAL DOMAINS FOR THE

EXACT NULL CONTROLLABILITY OF THE 1D WAVE EQUATION

Arthur Bottois*, Nicolae Ĉındea and Arnaud Münch

Abstract. This work is concerned with the null controllability of the one-dimensional wave equation
over non-cylindrical distributed domains. The controllability in that case has been obtained by Castro
et al. [SIAM J. Control Optim. 52 (2014)] for domains satisfying the usual geometric optic condition.
We analyze the problem of optimizing the non-cylindrical support q of the control of minimal L2(q)-
norm. In this respect, we prove a uniform observability inequality for a class of domains q satisfying
the geometric optic condition. The proof based on the d’Alembert formula relies on arguments from
graph theory. Numerical experiments are discussed and highlight the influence of the initial condition
on the optimal domains.
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1. Introduction and main results

In the last decades, an important literature was devoted to the study of vibrating structures controlled or
stabilized using piezoelectric actuators [1, 12, 27, 28]. In most of the situations, the actuators occupy a fixed
position in space. Nevertheless, some studies consider the controllability of elastic structures (plates or beams)
by the action of mobile piezoelectric actuators [33] which might be available in the future. Actually, a mobile
actuator can be emulated by an array of fixed actuators distributed along the structure under the constraint that
only one actuator can be activated at a given time [20]. The present work aims to find the optimal trajectory of
a piezoelectric actuator in order to control, with a minimal cost, the vibrations of a simplified one-dimensional
structure corresponding to a given initial datum. Therefore, observing the state of the considered system, we
can provide in real time a trajectory for the controller in order to minimize the cost of control. More precisely,
we consider the null controllability of a one-dimensional wave equation by means of distributed controls acting
in non-cylindrical domains. The main contribution of this work is the proof of a uniform observability inequality
with respect to control domains in a precise class. A direct consequence of this uniform observability inequality
is the existence of an optimal trajectory for a piezoelectric actuator of a given size in order to control to zero
the vibrations of the considered structure with a control of minimal L2-norm.
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2 A. BOTTOIS ET AL.

Let T be a positive real, Ω = (0, 1), QT the domain Ω × (0, T ), q a non-empty subset of QT and ΣT =
∂Ω× (0, T ). We are concerned with the null distributed controllability of the 1D wave equation: ytt − yxx = v1q in QT ,

y = 0 on ΣT ,
(y, yt)(·, 0) = (y0, y1) in Ω.

(1.1)

where y represents the transverse deflection of a simplified elastic structure of length 1 and v is the voltage
applied to an actuator occupying the position qt = q ∩ {(x, t); x ∈ Ω} at time t.

We assume that (y0, y1) ∈ V := H1
0 (Ω)× L2(Ω); v is the control (a function in L2(q)) and y = y(x, t) is the

associated state. 1q from QT to {0, 1} denotes the indicator function of q. We also use the notation

Ly := ytt − yxx.

For any (y0, y1) ∈ V and any v ∈ L2(q), there exists exactly one solution y to (1.1), with the following regularity
y ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) (see [18]). The null controllability problem for (1.1) at time T is the
following: for each (y0, y1) ∈ V, find a control v ∈ L2(q) such that the corresponding solution y of (1.1) satisfies

(y, yt)(·, T ) = (0, 0) in Ω.

As a consequence of the Hilbert uniqueness method introduced by J.-L. Lions [18], the null controllability of
(1.1) is equivalent to an observability inequality for the associated adjoint problem: there exists a constant
Cobs(q) > 0 such that

‖(ϕ0, ϕ1)‖2W ≤ Cobs(q)‖ϕ‖2L2(q), ∀(ϕ0, ϕ1) ∈W := L2(Ω)×H−1(Ω), (1.2)

where (ϕ,ϕ0, ϕ1) solves

Lϕ = 0 in QT , ϕ = 0 on ΣT , (ϕ,ϕt)(·, 0) = (ϕ0, ϕ1) in Ω. (1.3)

Cobs(q) is the observability constant associated with the adjoint solution ϕ and depends on the control region q.
We address in this work the following extremal problem:

inf
q∈Qad

‖v‖L2(q) (1.4)

where v is the control of minimal L2(q)-norm. The set Qad is defined below and denotes an admissible class of
non-cylindrical domains q, that is domains which evolve with respect to the time variable.

In the cylindrical case for which the control region q takes the form q := ω× (0, T ), where ω denotes a subset
of Ω, the null controllability of (1.1) at any large T > T ? is well-known (for instance, see [2, 18]). The critical
time T ? is related to the measure of the set Ω \ ω. The controllability is also true in the multi-dimensional
case assuming the celebrated geometric optic condition on the triplet (Ω, ω, T ) introduced by Bardos, Lebeau
and Rauch in [2]. The optimal problem (1.4) has been studied by Periago in [29] with Qad = Qad,τ := {q =
ω × (0, T ); ω ⊂ Ω, |ω| = τ |Ω|, T ≥ 2} parameterized by τ in (0, 1). In particular, the analysis is based on the
following uniform property proved by using Fourier series: there exists a constant C > 0 which depends only on
QT and τ such that

sup
q∈Qad,τ

Cobs(q) < C. (1.5)
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We also mention that the problem of the optimal shape and position of the support has been numerically
investigated in [23, 24] for the one and two dimensional wave equation. This problem is also considered by
Privat, Trélat and Zuazua in [30] using spectral arguments. We also mention [31] which analyze the dependence
of the observability constant with respect to the control region.

The non-cylindrical case is more involved on a mathematical viewpoint. It concerns however an increasing
number of studies as it allows in many situations to obtain positive controllability results, in contrast to the
cylindrical case. Focusing on the wave equation, one of the first contributions is due to Khapalov [16] providing
observability results for a moving point sensor in the interior of the domain. This time-dependent observation
allows to avoid the usual difficulties related to strategic or non-strategic points. In particular, in the 1D setting,
for any T > 0, the existence of controls continuous almost everywhere in (0, T ) and supported over curves
continuous almost everywhere is obtained for data in H2(Ω) ∩H1

0 (Ω)×H1
0 (Ω). More recently, for initial data

in W, Castro analyzes in [5] the controllability from a moving interior point. By the way of the d’Alembert
formula, a uniform observability inequality is proved for a precise set of curves {(γ(t), t)}t∈[0,T ] leading to
moving controls in H−1(∪t∈(0,T )γ(t)× t). Still in the 1D setting, Ciu, Liu and Gao [11] and Haak and Hoang
[13] analyze the boundary and moving interior point observability for wave equations posed on a sufficiently
regular time-dependent domain. In the N -dimensional case, Liu and Yong [19] employ the multiplier method to
prove that the wave equation is controllable under the hypothesis that the distributed control region q covers
the whole space domain Ω before the time T . Under a similar hypothesis, we also mention the work [21] where
the controllability of the damped wave equation ytt − yxx − εytxx = 0 defined on the 1D torus is established.
Because of the presence of an essential spectrum, such property does not hold true in the cylindrical case.

In the 1D setting, the geometric assumption has been relaxed in [6]. Precisely, the observability inequality
(1.2) is obtained assuming that the distributed control domain q ⊂ QT is a finite union of connected open sets
and satisfies the following hypothesis: any characteristic line starting from a point of Ω× {0} and following the
laws of geometric optics when reflected on the boundary ΣT must meet the domain q (we refer to [6], Prop. 2.1).
This geometric condition is the natural extension to non-cylindrical domains of the condition introduced in [2].
Following [5], the proof of this result is obtained by the way of the d’Alembert formula. It has been extended in
[17] to the multi-dimensional case using microlocal analysis. We also mention the obtention of Carleman-type
inequalities for general hyperbolic equations in [32].

With the aim to extend [29] to a non-cylindrical setting, we prove in a first part that the observability
constant Cobs(q) in (1.2) is uniformly bounded from above for a class of domains satisfying the geometric optic
condition. More precisely, for any parameter ε > 0 small enough, we introduce the admissible set of control
domains by

Qεad =
{
q ⊂ QT ; q open and qε verifies the geometric optic condition

}
. (1.6)

Here, qε = qε(q) denotes the ε-interior of any q ⊂ QT and is defined by

qε =
{

(x, t) ∈ q; d((x, t), ∂q) > ε
}
. (1.7)

We obtain that, for any ε > 0, there exists a constant C > 0 which depends only on QT and ε such that

sup
q∈Qεad

Cobs(q) < C. (1.8)

As in [29], this uniform property allows, in a second part, to analyze the problem (1.4) of the optimal distribution
of the control domain q. Preliminarily, for numerical purposes, we restrict the analysis to control domains of
the form

qγ =
{

(x, t) ∈ QT ; |x− γ(t)| < δ0
}

(1.9)
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for a given δ0 > 0 and curves γ : (0, T )→ Ω in the following set

Gad =
{
γ ∈W 1,∞(0, T ); ‖γ′‖L∞(0,T ) ≤M, δ0 ≤ γ ≤ 1− δ0

}
(1.10)

consisting of uniformly Lipschitz functions of fixed constant M > 0. For T ≥ 2 and ε > 0 small enough, the
class {qγ ; γ ∈ Gad} is a subset of Qεad. In this setting, the optimal problem (1.4) reads as follows: for δ0 > 0,
M > 0 and a given initial datum (y0, y1) ∈ V, solve

inf
γ∈Gad

‖v‖2L2(qγ) (1.11)

where v is the control of minimal L2(qγ)-norm distributed over qγ ⊂ QT .
This paper is organized as follows. In Section 2, we prove the uniform observability property (1.8) on Qεad and

its variant on the subset {qγ ; γ ∈ Gad} (see Thm. 2.1). This is achieved by defining an appropriate decomposition
of the observation domains in Qεad, and by using the d’Alembert formula. The proof also relies on arguments
from graph theory. Then, in Section 3, following arguments from [15, 29], we analyze a variant of the extremal
problem (1.4). Introducing a C1-regularization of the support qγ , we prove that the underlying cost is continuous
over Gad for the L∞(0, T )-norm, and admits at least one local minimum (see Prop. 2). Section 4 illustrates
the result with numerical experiments for the regularized minimization problem introduced in Section 3.3.
Minimization sequences for the regularized cost are constructed using a gradient method: each iteration requires
the computation of a null control, performed using the space-time formulation developed in [9] and used in [6],
well-suited to the description of the non-cylindrical domains where the control acts. As expected, the optimal
domain we obtain are closely related to the travelling waves generated by the initial condition. Section 5
concludes the work with some perspectives.

2. Uniform observability with respect to the domain of
observation

We prove in this section the uniform observability property (1.8) with respect to the domain of observation.
Precisely, we prove the following equivalent result for regular data in V.

Theorem 2.1. Let T > 0 and let ε > 0 be a small enough fixed parameter such that the set Qεad defined by
(1.6) is non-empty. There exists a constant Cεobs > 0 such that for every q ∈ Qεad, the following inequality holds

‖(ϕ0, ϕ1)‖2V ≤ Cεobs‖ϕt‖2L2(q), ∀(ϕ0, ϕ1) ∈ V, (2.1)

where ϕ is the solution of the wave equation (1.3) associated with the initial datum (ϕ0, ϕ1).

We emphasize that the constant Cεobs does not depend on q ∈ Qεad. We also emphasize that the parameter
ε is introduced here to quantify to which extent a domain q satisfies the geometric optic condition used in [6].
As ε goes to zero, the observability constant Cεobs blows up (see Rem. 2.18). The same is true when τ goes to
zero in the study [29], see (1.5). Eventually, we emphasize that any domain q ∈ Qεad for some ε satisfies the
geometric optic condition. Conversely, for any domain q satisfying the geometric optic condition, there exists
ε > 0 such that q ∈ Qεad.

In the remaining part of this section, we assume that the hypotheses of Theorem 2.1 are satisfied.

2.1. Proof of Theorem 2.1

The idea of the proof is to decompose the domain QT as the sum of “elementary squares” on which, in view
of the d’Alembert formula, the terms in the inequality (2.1) can be simply computed and compared. The proof
based on arguments from graph theory allows notably to relate the value of the observability constant to the
spectrum of a Laplacian matrix, defined in terms of the graph associated to any domain q ∈ Qεad.
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The proof requires some notations and technical lemmas. We decompose it into seven steps.

Step 1 – Solution of the adjoint problem (1.3) associated with piecewise affine initial conditions.

Let N ∈ N∗ and κN = 1/N . We denote by SN = (xNi )0≤i≤N the regular subdivision of Ω in N intervals such
that xNi = i/N . For any (ϕ0, ϕ1) ∈ V, we then associate the functions ϕN0 , ϕN1 as follows: for all x ∈ Ω, we set

ϕN0 (x) =

N∑
i=1

(
ϕ0(xNi )

x− xNi−1

κN
+ ϕ0(xNi−1)

xNi − x
κN

)
1[xNi−1,x

N
i ](x), (2.2)

ϕN1 (x) =

N∑
i=1

βNi 1[xNi−1,x
N
i ](x), with βNi =

1

κN

∫ xNi

xNi−1

ϕ1, (2.3)

which are respectively affine and constant on each interval [xNi−1, x
N
i ]. We also denote by (ϕN0 )′ ∈ L2(Ω) the

“derivative” of ϕN0 :

(ϕN0 )′(x) =

N∑
i=1

αNi 1[xNi−1,x
N
i ](x), with αNi =

ϕ0(xNi )− ϕ0(xNi−1)

κN
.

Using that ϕ0 ∈ H1
0 (Ω), we easily check that

‖ϕN0 ‖2H1
0 (Ω) =

1

N

N∑
i=1

(αNi )2, ‖ϕN1 ‖2L2(Ω) =
1

N

N∑
i=1

(βNi )2 and

N∑
i=1

αNi = 0.

In order to use the d’Alembert formula for the solution of (1.3) associated with the initial datum (ϕN0 , ϕ
N
1 ),

we extend these functions as odd functions to [−1, 1] and then by 2-periodicity to R. In this respect, we first
extend the definition of xNi to i ∈ Z by putting xNi = i/N for every i ∈ Z, and then denote by INi for every
i ∈ Z∗ the following interval:

INi =

{
[xNi−1, x

N
i ] if i > 0,

[xNi , x
N
i+1] if i < 0.

(2.4)

Definition 2.2. For any N ∈ N∗ and i ∈ Z∗, we define the integer jN (i) as follows:

if i > 0, jN (i) =

{
(i− 1) mod (2N) + 1 if (i− 1) mod (2N) < N,
(i− 1) mod (2N)− 2N if (i− 1) mod (2N) ≥ N, (2.5)

and if i < 0, jN (i) = −jN (−i). Remark that for every i ∈ Z∗, jN (i) ∈ IN with

IN = {−N, . . . ,−1, 1, . . . , N}. (2.6)

Similarly, we extend αNi and βNi for every i ∈ Z∗ as follows: if i ∈ {−N, . . . ,−1}, we set αNi = αN−i and
βNi = −βN−i; if |i| > N , we set αNi = αNjN (i) and βNi = βNjN (i).

Definition 2.3. For any N ∈ N∗ and i ∈ IN , let

γNi = αNi + βNi . (2.7)

We extend the functions ϕN0 and ϕN1 as odd functions to [−1, 1] and by 2-periodicity to R.
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Lemma 2.4. For any N ∈ N∗, the solution ϕN of (1.3) associated with the initial datum (ϕN0 , ϕ
N
1 ) satisfies:

ϕNt (x, t) =
1

2

∑
i∈Z∗

∑
j∈Z∗

(γNjN (i) − γ
N
−jN (j))1INi (x+ t)1INj (x− t), ∀(x, t) ∈ QT . (2.8)

Proof. Using the notations above, we obtain

(ϕN0 )′(x) =
∑
i∈Z∗

αNi 1INi (x), ϕN1 (x) =
∑
i∈Z∗

βNi 1INi (x), ∀x ∈ R. (2.9)

Moreover, from the d’Alembert formula, the solution ϕN of (1.3) associated with the initial datum (ϕN0 , ϕ
N
1 ) is

given as follows:

ϕN (x, t) =
1

2

(
ϕN0 (x+ t) + ϕN0 (x− t)

)
+

1

2

∫ x+t

x−t
ϕN1 , ∀(x, t) ∈ QT . (2.10)

Taking the derivative with respect to t and replacing the expressions (2.9) in the above equation, we deduce
that for all (x, t) ∈ QT , we have

ϕNt (x, t) =
1

2

(
(ϕN0 )′(x+ t)− (ϕN0 )′(x− t) + ϕN1 (x+ t) + ϕN1 (x− t)

)
=

1

2

∑
i∈Z∗

(
(αNi + βNi )1INi (x+ t)− (αNi − βNi )1INi (x− t)

)
=

1

2

∑
i∈Z∗

∑
j∈Z∗

(αNi + βNi − αNj + βNj )1INi (x+ t)1INj (x− t).

Using the properties of the function jN defined in (2.5), we deduce that for i, j ∈ Z∗,

αNi + βNi − αNj + βNj = αNjN (i) + βNjN (i) − α
N
jN (j) + βNjN (j)

= (αNjN (i) + βNjN (i))− (αN−jN (j) + βN−jN (j))

= γNjN (i) − γ
N
−jN (j)

and the result.

Step 2 – Representation of q ∈ Qεad using “elementary squares”.

In view of the expression (2.8), we introduce the following definition.

Definition 2.5. For any N ∈ N∗ and i, j ∈ Z∗, we define the elementary square of indices (i, j) associated with
the subdivision SN as the following closed set of R2:

CN(i,j) =
{

(x, t) ∈ R2 such that x+ t ∈ INi and x− t ∈ INj
}
,

where the interval INi is given by (2.4).
We also denote by CN = {CN(i,j); i, j ∈ Z∗} the set of all the elementary squares associated with the subdivision

SN . We easily check that R2 =
⋃
i,j∈Z∗ C

N
(i,j).

Figure 1 illustrates the way the elementary squares are indexed, with the example of the subdivision S4.
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Figure 1. Some elementary squares in C4.

Remark 2.6. For every i, j ∈ Z∗, the coordinates of the center of the elementary square CN(i,j) associated with
the subdivision SN are given by xN(i,j) =

mNi +mNj
2 ,

tN(i,j) =
mNi −m

N
j

2 ,
with mN

i =

{
xNi−1+xNi

2 if i > 0,
xNi +xNi+1

2 if i < 0.

The area of every elementary square CN(i,j) ∈ CN is given by |CN(i,j)| =
1

2N2 . Notice that for every i, j ∈ Z∗ with

|i|, |j| > 1, the elementary squares having one side in common with the elementary square CN(i,j) are CN(i±1,j)

and CN(i,j±1).

Definition 2.7. For every q ∈ Qεad, we denote by CN (q) and CN (QT ) the sets of the elementary squares in CN
with their interior included in q and QT respectively:

CN (q) =
{
CN(i,j) ∈ CN ;

◦
CN(i,j) ⊂ q

}
, CN (QT ) =

{
CN(i,j) ∈ CN ;

◦
CN(i,j) ⊂ QT

}
.

If N is large enough, the sets CN (q) and CN (QT ) are non-empty.
We also define RN (q) as the union of the elementary squares in CN (q):

RN (q) =

◦︷ ︸︸ ︷⋃
CN

(i,j)
∈CN (q)

CN(i,j) . (2.11)

With these notations, we can prove the following lemma.

Lemma 2.8. Let N > 1/ε be a fixed integer. For every q ∈ Qεad, the set
⋃
CN

(i,j)
∈CN (q) C

N
(i,j) is a cover of the

ε-interior qε of q (see (1.7)). Moreover, the set RN (q) defined by (2.11) satisfies qε ⊂ RN (q) ⊂ q.

Proof. Let X ∈ qε. By definition of qε, we have X ∈ q and d(X, ∂q) > ε. Since R2 is covered by squares in CN ,
there exists CN(i,j) ∈ CN such that X ∈ CN(i,j). Moreover, since diam(CN(i,j)) = κN , we have CN(i,j) ⊂ B(X,κN ).
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Figure 2. Cover R8(q) of qε, for ε = 0.15.

Let Y ∈ B(X,κN ). Then, for every Z ∈ R2 \ q, it follows that

d(Y, Z) ≥ |d(Y,X)− d(X,Z)| > ε− κN > 0.

Consequently, d(Y,R2 \ q) > 0 which implies Y ∈ q. Therefore, CN(i,j) ⊂ B(X,κN ) ⊂ q and, finally, CN(i,j) ∈
CN (q).

Figure 2 illustrates Lemma 2.8 in the case of the cylindrical observation domain q = ( 5
16 ,

11
16 ) × (0, 2), for

ε = 0.15 and N = 8.

Step 3 – Weighted graph associated with q ∈ Qεad.

In order to write several expressions in a simpler form, we use elements from graph theory.
More precisely, the introduction of a weighted graph in Definition 2.9 allows to reformulate the observability

inequality for the solution ϕN in terms of a spectral inequality involving the Laplacian matrix of the graph
(see Def. 2.11). In this way, the observability constant associated with ϕN is linked to the first strictly positive
eigenvalue of the Laplacian matrix.

Definition 2.9. Let q ∈ Qεad an observation domain. We define the weighted graph GN (q) as follows:

– IN given by (2.6) is the set of vertices;
– for every i ∈ IN , the degree of the vertex i is given by:

dNi = Card
({
CN(k,−l) ∈ CN (q); i ∈ {jN (k), jN (l)}

})
;

– for every i, j ∈ IN , the weight of the edge linking the vertices i and j is

wNi,j = wNj,i = Card
({
CN(k,−l) ∈ CN (q); {i, j} = {jN (k), jN (l)}

})
.

Definition 2.10. Let q ∈ Qεad and let i, j ∈ IN be two vertices of the graph GN (q). We say that there is a path
from i to j in GN (q) and we denote i N∼ j if the vertices i and j are in the same connected component of GN (q).
In particular, if wNi,j 6= 0, then i N∼ j.

We then recall the definition of the Laplacian matrix associated with a graph (see [4, 8]).
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Definition 2.11. Let q ∈ Qεad. The Laplacian matrix associated with the graph GN (q) (see Def. 2.9) is the
symmetric positive matrix AN (q) ∈M2N (R) defined by

AN (q) =



dN−N · · · −wN−N,−1 −wN−N,1 · · · −wN−N,N
...

. . .
...

...
...

−wN−1,−N · · · dN−1 −wN−1,1 · · · −wN−1,N

−wN1,−N · · · −wN1,−1 dN1 · · · −wN1,N
...

...
...

. . .
...

−wNN,−N · · · −wNN,−1 −wNN,1 · · · dNN


2N×2N

. (2.12)

Remark 2.12. Remark that for every q ∈ Qεad, the graph GN (q) has no loop, i.e. wNi,i = 0 for every i ∈
IN . Indeed, the elementary squares CN(k,−l) such that jN (k) = jN (l) = i have their center xN(k,−l) ∈ Z and,
consequently, cannot be in QT .

Remark also that the Laplacian matrix AN (q) of the graph GN (q) verifies the following property (see [4, 8]):
for every η = (η−N , . . . , η−1, η1, . . . , ηN ) ∈ R2N ,

ηTAN (q)η =
∑
i∈IN

dNi η
2
i −

∑
i,j∈IN

wNi,jηiηj =
∑

CN
(i,j)
∈CN (q)

(ηjN (i) − η−jN (j))
2. (2.13)

From now on, we consider that the assumption of Lemma 2.8 holds true, i.e. we take N > 1/ε. More precisely,
we fix N the smallest integer strictly greater than 1/ε.

Lemma 2.13. Let q ∈ Qεad. Then the associated graph GN (q) is connected.

Proof. Let i ∈ {1, . . . , N − 1}. We denote by D+
i the support of the characteristic line ”x + t = xNi ”, starting

from xNi in the direction of decreasing x and following the laws of geometric optics for its reflection on ΣT .
Since q ∈ Qεad, qε satisfies the geometric optic condition; consequently, there exists (x∗, t∗) ∈ qε ∩D+

i . From
Lemma 2.8, we have qε ⊂ RN (q), so (x∗, t∗) belongs to the common side of two elementary squares in CN (q):(

CN(k,l) and CN(k+1,l) with jN (k) = i
)

or
(
CN(l,k) and CN(l,k−1) with jN (k) = −i

)
.

Therefore i N∼ i+ 1 and, so, the vertices {1, . . . , N} are in the same connected component.
Similarly, we denote by D−i the support of the characteristic line ”x − t = xNi ”, starting from xNi in the

direction of increasing x and following the laws of geometric optics for its reflection on ΣT . Since qε satisfies
the geometric optic condition, there exists (x∗, t∗) ∈ qε ∩D−i . From Lemma 2.8, we have qε ⊂ RN (q), so (x∗, t∗)
belongs to the common side of two elementary squares in CN (q):(

CN(l,k) and CN(l,k+1) with jN (k) = i
)

or
(
CN(k,l) and CN(k−1,l) with jN (k) = −i

)
.

Therefore −i N∼ − i− 1 and, so, the vertices {−N, . . . ,−1} are in the same connected component.
It remains to show that the vertices N and −N belong to the same connected component. We denote by

D+
N the support of the characteristic line “x+ t = xNN”, starting from xNN in the direction of decreasing x and

following the laws of geometric optics for its reflection on ΣT . Since qε satisfies the geometric optic condition,
there exists (x∗, t∗) ∈ qε ∩D+

N . From Lemma 2.8, we have qε ⊂ RN (q), so (x∗, t∗) belongs to the common side
of two elementary squares in CN (q):(

CN(k,l) and CN(k+1,l) with jN (k) = N
)

or
(
CN(l,k) and CN(l,k−1) with jN (k) = −N

)
.
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Hence, N N∼ −N .

Remark 2.14. A well-known graph theory result (see, for instance, [4], Prop. 1.3.7) states that the graph GN (q)
is connected if and only if dim(ker(AN (q))) = 1. Moreover, if GN (q) is connected, then ker(AN (q)) = Vect(12N ),
where 12N is the vector in R2N with all its component equal to 1.

Let us denote λN (q) > 0 the smallest non-zero eigenvalue of the matrix AN (q). This eigenvalue is known in
graph theory as the algebraic connectivity of the graph. We also define λN by

λN = min
q∈Qεad

λN (q) > 0. (2.14)

Note that since the set {GN (q); q ∈ Qεad} has a finite number of elements, λN is well defined.

Step 4 – p-refinement of the graph and connection with the spectrum of the Laplacian matrix.

Definition 2.15. For every p ∈ N∗, we denote by CpN (q) the set formed by the elementary squares associated
with the subdivision SpN and having their interior in RN (q):

CpN (q) =
{
CpN(i,j) ∈ CpN ;

◦
CpN(i,j) ⊂ RN (q)

}
.

We then define the graph GpN (q) following Definition 2.9, substituting N by pN and substituting CN (q) by
CpN (q) in the definitions of the vertex degrees and the edge weights. Finally, we denote ApN (q) ∈ M2pN (R) the
Laplacian matrix associated with the graph GpN (q). This matrix has the following block form:

ApN (q) =



dN−NpIp · · · −wN−N,−1Jp −wN−N,1Jp · · · −wN−N,NJp
...

. . .
...

...
...

−wN−1,−NJp · · · dN−1pIp −wN−1,1Jp · · · −wN−1,NJp
−wN1,−NJp · · · −wN1,−1Jp dN1 pIp · · · −wN1,NJp

...
...

...
. . .

...
−wNN,−NJp · · · −wNN,−1Jp −wNN,1Jp · · · dNNpIp


2pN×2pN

, (2.15)

where Ip, Jp ∈Mp(R) are respectively the identity matrix and the matrix with all its elements equal to 1.

Definition 2.16. For any i ∈ Z∗, we define the set Jpi by

Jpi =

{
{p(i− 1) + 1, . . . , pi} if i > 0,

{pi, . . . , p(i+ 1)− 1} if i < 0.
(2.16)

For every η = (η−pN , . . . , η−1, η1, . . . , ηpN ) ∈ R2pN , we check that

ηTApN (q)η =
∑

CN
(i,j)
∈CN (q)

∑
i′∈Jpi

∑
j′∈Jpj

(ηjpN (i′) − η−jpN (j′))
2.

For any p ∈ N∗, the following lemma makes the link between the spectrum of the Laplacian matrix ApN (q)
(see Def. 2.15) and the spectrum of the Laplacian matrix AN (q) (see Def. 2.11).

Lemma 2.17. Let p ∈ N∗. The spectrum of the Laplacian matrix 1
pA

p
N (q) (see (2.15)) is composed of the

spectrum of the Laplacian matrix AN (q) (see (2.12)), and the diagonal elements of AN (q) repeated p− 1 times.
Moreover, dim(ker(ApN (q))) = 1 and ker(ApN (q)) = Vect(12pN ).
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Proof. Let η = (η−pN , . . . , η−1, η1, . . . , ηpN ) ∈ R2pN . For every i ∈ IN , we denote by Γi = (ηi′)i′∈Jpi ∈ Rp and we
group these vectors in the matrix

Γ = (Γ−N | · · · |Γ−1|Γ1| · · · |ΓN ) ∈Mp,2N (R).

In view of (2.15), it follows that

ηTApN (q)η = p
∑
i∈IN

dNi ΓTi Γi −
∑
i,j∈IN

wNi,jΓ
T
i JpΓj .

Since Jp is a real symmetric matrix, there exists an orthonormal basis (bk)1≤k≤p of Rp diagonalizing Jp. Let
us denote b1 = 1√

p1p. Then, there exists a diagonal matrix D ∈Mp(R) and a unitary matrix Q ∈Mp(R) such

that Jp = QDQT . These matrices have the following form:

D =


p 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


p×p

and Q = (b1| · · · |bp)p×p.

We also define the matrix U = QTΓ ∈Mp,2N (R), and denote respectively

Uk,. = (bTk Γi)i∈IN ∈ R2N and U.,i = (bTk Γi)1≤k≤p ∈ Rp

the rows and the columns of U . Then, for i, j ∈ IN , we have

ΓTi Γi = UT.,iU.,i =

p∑
k=1

U2
k,i and ΓTi JpΓj = UT.,iDU.,j = pU1,iU1,j .

The spectrum of the matrix 1
pA

p
N (q) can now be computed from

1

p
ηTApN (q)η =

∑
i∈IN

dNi U
2
1,i −

∑
i,j∈IN

wNi,jU1,iU1,j +

p∑
k=2

∑
i∈IN

dNi U
2
k,i

= UT1,.AN (q)U1,. +

p∑
k=2

UTk,. Diag(AN (q))Uk,..

Indeed, the expression above shows that ApN (q) is unitarily similar to the block diagonal matrix
AN (q)

Diag(AN (q))
. . .

Diag(AN (q))


2pN×2pN

.

Step 5 – Uniform observability for the solution ϕN associated with (ϕN0 , ϕ
N
1 ) w.r.t. q ∈ Qεad.
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Let N be the smallest integer strictly greater than ε−1. We prove an observability inequality for the function
ϕN given by (2.10) and associated with the initial datum (ϕN0 , ϕ

N
1 ) defined in (2.2)–(2.3).

In view of Lemma 2.4, the function (ϕNt )2 is constant on each elementary square CN(i,j) in CN :

(ϕNt )2|CN
(i,j)

=
1

4
(γNjN (i) − γ

N
−jN (j))

2,

where γNjN (i) is given by (2.7) and jN by (2.5). In view of the definition of the set RN (q) (see (2.11)), we can

estimate from below the L2(q)-norm of ϕNt as follows:∫∫
q

(ϕNt )2 ≥
∫∫

RN (q)

(ϕNt )2 =
∑

CN
(i,j)
∈CN (q)

∫∫
CN

(i,j)

(ϕNt )2

=
1

8N2

∑
CN

(i,j)
∈CN (q)

(γNjN (i) − γ
N
−jN (j))

2. (2.17)

In the previous equality, we used that the area of every elementary square in CN is equal to 1
2N2 . Combining

(2.17) with the relation (2.13), we obtain∫∫
q

(ϕNt )2 ≥ 1

8N2
(γN )TAN (q)γN , (2.18)

with γN = (γN−N , . . . , γ
N
−1, γ

N
1 , . . . , γ

N
N ) ∈ R2N and γNi given by (2.7).

It is easy to see that γN ∈ ker(AN (q))⊥. Indeed, applying Lemma 2.13, the graph GN (q) is connected. Then,
from Remark 2.14, we have ker(AN (q)) = Vect(12N ) and, since αNi = αN−i and βNi = −βN−i, the vector γN

verifies

(γN )T12N =
∑
i∈IN

γNi = 2

N∑
i=1

αNi = 0.

Then, using λN defined in (2.14), it follows that

(γN )TAN (q)γN ≥ λN
∑
i∈IN

(γNi )2 = 2λN

N∑
i=1

(
(αNi )2 + (βNi )2

)
= 2NλN

(
‖ϕN0 ‖2H1

0 (Ω) + ‖ϕN1 ‖2L2(Ω)

)
. (2.19)

From (2.18) and (2.19), we deduce the following observability inequality:

‖(ϕN0 , ϕN1 )‖2V ≤
4N

λN
‖ϕNt ‖2L2(q),

where the constant 4N
λN

is independent of the domain q and the initial datum (ϕ0, ϕ1).

Step 6 – Uniform observability for the solution ϕpN associated with (ϕpN0 , ϕpN1 ) w.r.t. q ∈ Qεad and p ∈ N∗.

The next step consists in obtaining a uniform observability inequality for an initial datum (ϕpN0 , ϕpN1 ) of the

form (2.2)–(2.3) with respect to q ∈ Qεad and p ∈ N∗. As in the previous step, we get that (ϕpNt )2 is constant
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on every elementary square CpN(i′,j′) ∈ CpN :

(ϕpNt )2|CpN
(i′,j′)

=
1

4
(γpNjpN (i′) − γ

pN
−jpN (j′))

2,

where ϕpN is the solution of (1.3) associated with the initial datum (ϕpN0 , ϕpN1 ) given by (2.2)–(2.3), and γpNjpN (i′)

is defined by (2.7).
Then, remark that every elementary square CN(i,j) ∈ CN is the union of p2 elementary squares in CpN , or more

precisely that

CN(i,j) =
⋃
i′∈Jpi

⋃
j′∈Jpj

CpN(i′,j′), ∀i, j ∈ Z∗.

Using the above expression in the evaluation of the L2(q)-norm of ϕpNt , we have

∫∫
q

(ϕpNt )2 ≥
∫∫

RN (q)

(ϕpNt )2 =
∑

CN
(i,j)
∈CN (q)

∫∫
CN

(i,j)

(ϕpNt )2

=
∑

CN
(i,j)
∈CN (q)

∑
i′∈Jpi

∑
j′∈Jpj

∫∫
CpN

(i′,j′)

(ϕpNt )2

=
1

8p2N2

∑
CN

(i,j)
∈CN (q)

∑
i′∈Jpi

∑
j′∈Jpj

(γpNjpN (i′) − γ
pN
−jpN (j′))

2

=
1

8p2N2
(γpN )TApN (q)γpN . (2.20)

Since GN (q) is a connected graph, the degree dNi of every vertex i ∈ IN verifies dNi ≥ 1. Applying Lemma 2.17,
the smallest non-zero eigenvalue λpN (q) of 1

pA
p
N (q) verifies

λpN (q) = min(λN (q),min
i∈IN

dNi ) ≥ min(λN , 1) > 0.

The vector γpN = (γpNi′ )i′∈IpN belongs to ker(ApN (q))⊥. Indeed,

(γpN )T12pN =
∑
i′∈IpN

γpNi′ = 2

pN∑
i′=1

αpNi′ = 0.

Setting λ̂N = min(λN , 1), it follows that

1

p
(γpN )TApN (q)γpN ≥ λ̂N

∑
i′∈IpN

(γpNi′ )2 = 2λ̂N

pN∑
i′=1

(
(αpNi′ )2 + (βpNi′ )2

)
= 2pNλ̂N

(
‖ϕpN0 ‖2H1

0 (Ω) + ‖ϕpN1 ‖2L2(Ω)

)
.
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Consequently, combining the above relation with (2.20), we obtain the following observability inequality:

‖(ϕpN0 , ϕpN1 )‖2V ≤
4N

λ̂N
‖ϕpNt ‖2L2(q), (2.21)

where the constant 4N

λ̂N
is independent of the domain q, the initial datum (ϕ0, ϕ1) and the integer p.

Step 7 – Passing to the limit p→∞ and conclusion.

In order to finish the proof, we pass to the limit when p→∞ in the observability inequality (2.21). We easily
check that as p tends to ∞,

ϕpN0 → ϕ0 in H1
0 (Ω) and ϕpN1 → ϕ1 in L2(Ω).

Moreover, since the solution ϕ of the wave equation (1.3) depends continuously on its initial condition (ϕ0, ϕ1) ∈
V, we can write

ϕpNt → ϕt in L2(0, T ;L2(Ω)).

Eventually, passing to the limit in (2.21), we get

‖(ϕ0, ϕ1)‖2V ≤ max

{
4N,

4N

λN

}
‖ϕt‖2L2(q), ∀(ϕ0, ϕ1) ∈ V,

which concludes the proof with Cεobs = max
{

4N, 4N
λN

}
. We recall that N depends on ε by the condition N > 1/ε.

Remark 2.18. Let q ⊂ QT be a finite union of open sets. If q verifies the usual geometric optic condition, there
exists ε > 0 small enough such that qε still verifies the geometric optic condition. We then set N = b1/εc+1. The
associated graph GN (q) being connected, there exists a relation (see, for instance, [22]) between the algebraic
connectivity λN (q), the number of vertices NV and the diameter DG of the graph. More precisely, we have
λN (q) ≥ 4

NVDG
. Since in our case NV = 2N and DG ≤ 2N , we deduce that λN (q) ≥ 1

N2 and therefore that

Cobs(q) ≤ 4N3. Thus, in the worst situation, we could have an observability constant of order 1/ε3. If we see
ε as a measure of the “thickness” of the observation domain q, we get the same estimate of the observability
constant as the one given in Proposition 2.1 of [29].

2.2. One explicit example

We illustrate the proof of Theorem 2.1 on a simple example for which the observation domain q depicted in
Figure 3 (colored in red) is well adapted to the subdivision S4. The study of this example is also the opportunity
to develop a method for the computation of the observability constant for observation domains which are exactly
the union of elementary squares associated with a given subdivision SN , for a fixed integer N > 0.

We start by enumerating the elementary squares composing the observation domain q. In Table 1, we list,
for i, j ∈ Z∗, the elementary squares C4

(i,j) included in q and the values of the indices j4(i) and −j4(j), allowing

to compute the Laplacian matrix A4(q) associated with the corresponding graph G4(q).
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Figure 3. Observation domain q adapted to S4.

Table 1. Elementary squares associated with S4 and belonging to C4(q).

C4
(i,j) j4(i) −j4(j) C4

(i,j) j4(i) −j4(j) C4
(i,j) j4(i) −j4(j)

C4
(2,1) 2 −1 C4

(6,−1) −3 1 C4
(9,−4) 1 4

C4
(2,−1) 2 1 C4

(7,1) −2 −1 C4
(8,−5) −1 −4

C4
(3,1) 3 −1 C4

(7,−1) −2 1 C4
(9,−5) 1 −4

C4
(3,−1) 3 1 C4

(8,−1) −1 1 C4
(8,−6) −1 −3

C4
(4,1) 4 −1 C4

(8,−2) −1 2 C4
(9,−6) 1 −3

C4
(4,−1) 4 1 C4

(9,−2) 1 2 C4
(8,−7) −1 −2

C4
(5,1) −4 −1 C4

(8,−3) −1 3 C4
(9,−7) 1 −2

C4
(5,−1) −4 1 C4

(9,−3) 1 3

C4
(6,1) −3 −1 C4

(8,−4) −1 4

The Laplacian matrix associated with the graph G4(q) is given by

A4(q) =



4 0 0 −2 −2 0 0 0
0 4 0 −2 −2 0 0 0
0 0 4 −2 −2 0 0 0
−2 −2 −2 13 −1 −2 −2 −2
−2 −2 −2 −1 13 −2 −2 −2
0 0 0 −2 −2 4 0 0
0 0 0 −2 −2 0 4 0
0 0 0 −2 −2 0 0 4


8×8

.

The spectrum of A4(q) can be explicitly computed:

Sp(A4(q)) = {0, 4, 4, 4, 4, 4, 14, 16}.

It confirms that the kernel of A4(q) is one-dimensional – therefore G4(q) is connected – and implies that the
smallest non-zero eigenvalue of A4(q) is λ4(q) = 4. If we replace the subdivision S4 by the subdivision S4p for
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any p ∈ N∗, then the Laplacian matrix associated with the graph Gp4(q) is the following one:

Ap4(q) =



4pIp 0p 0p −2Jp −2Jp 0p 0p 0p
0p 4pIp 0p −2Jp −2Jp 0p 0p 0p
0p 0p 4pIp −2Jp −2Jp 0p 0p 0p
−2Jp −2Jp −2Jp 13pIp −Jp −2Jp −2Jp −2Jp
−2Jp −2Jp −2Jp −Jp 13pIp −2Jp −2Jp −2Jp

0p 0p 0p −2Jp −2Jp 4pIp 0p 0p
0p 0p 0p −2Jp −2Jp 0p 4pIp 0p
0p 0p 0p −2Jp −2Jp 0p 0p 4pIp


8p×8p

.

According to Lemma 2.17, the smallest non-zero eigenvalue of 1
pA

p
4(q) is given by

λp4(q) = min(λ4(q),min
i∈I4

d4
i ) = min(4, 4) = 4.

Consequently, the observability constant associated with the observation domain q depicted in Figure 3 is given
by

Cobs(q) =
4 · 4
λp4(q)

= 4.

2.3. A corollary

We prove a uniform observability inequality for the observation domains qγ defined in (1.9), with γ ∈ Gad

(see (1.10)), which will be used in the next section.

Corollary 2.19. Let T ≥ 2. There exists a constant Cobs > 0 such that for every γ ∈ Gad,

‖(ϕ0, ϕ1)‖2W ≤ Cobs‖ϕ‖2L2(qγ), ∀(ϕ0, ϕ1) ∈W,

where ϕ is the solution of the wave equation (1.3) associated with the initial condition (ϕ0, ϕ1).

Proof. We show that for any ε > 0 small enough, {qγ ; γ ∈ Gad} ⊂ Qεad. Let γ ∈ Gad. We introduce the sets

Γ± =
{

(γ(t)± δ0, t); t ∈ [0, T ]
}

, Γ̃± =
{

(γ(t)± δ0
2 , t); t ∈ [0, T ]

}
and QεT = Ω× (ε, T −ε). γ being a M -Lipschitz

curve, we can show that

d(Γ̃±,Γ±) ≥ δ0

2
√
M2 + 1

.

Then, for ε < δ0
2
√
M2+1

, we have q̃γ ∩ QεT ⊂ qεγ , with the observation domain q̃γ defined as in (1.9) with a

half-width of δ0/2. The domain q̃γ ∩ QεT verifies the geometric optic condition because δ0 ≤ γ ≤ 1 − δ0 and
T − 2ε ≥ 2(1− δ0). Consequently, qεγ also verifies the geometric optic condition and qγ ∈ Qεad. We conclude the

proof by noticing that the constant δ0
2
√
M2+1

is independent of the choice of γ.

Finally, the observability inequality follows from Theorem 2.1 with Cobs = Cεobs, for any ε < δ0
2
√
M2+1

. We

conclude the proof by noticing that the constant δ0
2
√
M2+1

is independent of the choice of γ.

We end this section by emphasizing the role of the bound M on the derivative of the curve γ introduced in
the set Gad, namely ‖γ′‖L∞(0,T ) ≤ M . As can be seen in the previous proof, if M goes to infinity, then ε goes
to zero, and consequently, in view of Remark 2.18, the constant Cεobs blows up. This is illustrated in Figure 4
where a ray starting from the point ( 1

2 , 0) only intersects the control region on a narrow part corresponding to
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Figure 4. Ray intersecting a narrow part (in the neighborhood of the point (1/2, 1)) of the
control region corresponding to a large slope of γ.

a large slope of γ. Any initial condition generating a solution localized around such ray leads to an arbitrarily
large cost of control. The constraint on the slope of γ has been introduced to avoid this phenomenon.

3. Optimization of the shape of the control domain

In this section, we study the problem of finding the optimal shape and position of the control domain, for a
given initial condition (y0, y1) ∈ V.

3.1. Existence of an optimal domain

In order to obtain a well-posedness result, we consider a variant of the optimal problem (1.11) and replace
the characteristic function 1q in (1.1) by a regular function in space. More precisely, we fix δ ∈ (0, δ0) and, for
every γ ∈ Gad, we define χγ(x, t) = χ(x− γ(t)), with χ : R→ [0, 1] a C1 even function such that

χ(x) =

 1 if x ∈ (−δ0 + δ, δ0 − δ),
0 if x /∈ (−δ0, δ0),
∈ (0, 1) otherwise.

(3.1)

In the sequel, we also use the function χ′γ defined by χ′γ(x, t) = χ′(x − γ(t)). In this new setting, the HUM
control now lives in the weighted space

L2
χ(qγ) := L2(qγ ;χγ) =

{
v : qγ → R;

∫∫
qγ

v2χγ < +∞

}
.

Moreover, we can adapt the uniform observability inequality given in Corollary 2.19. For T ≥ 2, there exists a
constant Cobs > 0 such that for every γ ∈ Gad,

‖(ϕ0, ϕ1)‖2W ≤ Cobs‖ϕ‖2L2
χ(qγ), ∀(ϕ0, ϕ1) ∈W, (3.2)

where ϕ is the solution of (1.3) associated with the initial condition (ϕ0, ϕ1).
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Then, our optimization problem reads as follows: for a given initial datum (y0, y1) ∈ V, solve

inf
γ∈Gad

J(γ) = ‖v‖2L2
χ(qγ) =

∫∫
qγ

ϕ2χγ , (3.3)

where v is the control of minimal L2
χ-norm distributed over qγ ⊂ QT , and ϕ is the associated adjoint state

such that v = ϕ|qγ . This adjoint state can be characterized using the HUM method, it is the solution of (1.3)
associated with the minimum (ϕ0, ϕ1) of the conjugate functional

J ?γ (ϕ0, ϕ1) =
1

2

∫∫
qγ

ϕ2χγ − 〈ϕ1, y0〉H−1(Ω),H1
0 (Ω) + 〈ϕ0, y1〉L2(Ω), ∀(ϕ0, ϕ1) ∈W. (3.4)

To show the well-posedness of (3.3), we follow the steps of Theorem 2.1 in [29]. We start with a convergence
result on the function χγ .

Lemma 3.1. Let (γn)n≥0 ⊂ Gad and γ ∈ Gad. If γn → γ in L∞(0, T ), then χγn → χγ in L∞(QT ).

Proof. It is a direct consequence of the inequality ‖χγn − χγ‖L∞(QT ) ≤ ‖χ′‖L∞(R)‖γn − γ‖L∞(0,T ).

We then have that the following continuity result.

Proposition 3.2. The cost J is continuous over Gad for the norm L∞(0, T ).

Proof. Let (γn)n≥0 ⊂ Gad and γ ∈ Gad such that γn → γ in L∞(0, T ) as n→∞.
For any n ∈ N, we denote (ϕn0 , ϕ

n
1 ) ∈W the minimum of J ?γn , and ϕn the corresponding solution of (1.3).

Using the uniform observability inequality (3.2) and the optimality condition of J ?γn , it follows that

‖(ϕn0 , ϕn1 )‖2W ≤ Cobs

∫∫
qγn

(ϕn)2χγn = Cobs

(
〈ϕn1 , y0〉H−1,H1

0
− 〈ϕn0 , y1〉L2

)
≤ Cobs‖(ϕn0 , ϕn1 )‖W‖(y0, y1)‖V

leading to the uniform bound ‖(ϕn0 , ϕn1 )‖W ≤ Cobs‖(y0, y1)‖V. Consequently, there exist two functions ϕ0 ∈
L2(Ω) and ϕ1 ∈ H−1(Ω) such that, up to a subsequence, as n→∞

ϕn0 ⇀ ϕ0 weakly in L2(Ω) and ϕn1 ⇀ ϕ1 weakly in H−1(Ω).

From the continuous dependence of the solution of the wave equation with respect to the initial condition, it
follows

ϕn ⇀ ϕ weakly in L2(0, T ;L2(Ω)),

where ϕ is the solution of (1.3) associated with (ϕ0, ϕ1).
Let ψ ∈ L2(0, T ;L2(Ω)). We then have∫∫

QT

ψϕnχγn =

∫∫
QT

ψϕnχγ +

∫∫
QT

ψϕn(χγn − χγ)→
∫∫

QT

ψϕχγ .

Indeed, we can take the weak limit in the first term because ψχγ ∈ L2(0, T ;L2(Ω)). Using Lemma 3.1 and the
boundedness of (ϕn)n≥0 in L2(0, T ;L2(Ω)), the second term converges to 0 in view of the estimate∣∣∣∣∫∫

QT

ψϕn(χγn − χγ)

∣∣∣∣ ≤ ‖ψ‖L2(L2)‖ϕn‖L2(L2)‖χγn − χγ‖L∞(QT ).
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Consequently, we obtain the convergence

ϕnχγn ⇀ ϕχγ weakly in L2(0, T ;L2(Ω)).

Let now (ψ0, ψ1) ∈W and ψ the corresponding solution of (1.3). Taking the weak limit in the optimality
condition ∫∫

qγn

ψϕnχγn = 〈ψ1, y0〉H−1,H1
0
−
∫

Ω

ψ0y1,

we find ∫∫
qγ

ψϕχγ = 〈ψ1, y0〉H−1,H1
0
−
∫

Ω

ψ0y1.

This means that (ϕ0, ϕ1) is the minimum of J ?γ . Besides, we remark that this property uniquely characterizes
the weak limit of any subsequence of (ϕn0 , ϕ

n
1 ). This implies that the whole sequence (ϕn0 , ϕ

n
1 ) weakly converges.

The continuity of J is finally obtained by taking the weak limit in the optimality condition∫∫
qγn

(ϕn)2χγn = 〈ϕn1 , y0〉H−1,H1
0
−
∫

Ω

ϕn0y1 → 〈ϕ1, y0〉H−1,H1
0
−
∫

Ω

ϕ0y1 =

∫∫
qγ

ϕ2χγ .

The continuity of J then allows to show that the extremal problem (3.3) is well-posed.

Proposition 3.3. The cost J reaches its minimum over Gad.

Proof. The cost J being bounded from below, there exists a minimizing sequence (γn)n≥0 ⊂ Gad. By definition of
Gad, this sequence is bounded in W 1,∞(0, T ). Moreover, since W 1,∞(0, T ) is compactly embedded in L∞(0, T ),
there exists a curve γ ∈ L∞(0, T ) such that, up to a subsequence, γn → γ in L∞(0, T ). From the definition
of Gad, all the curves γn are M -Lipschitz, with M independent of n. So, taking the pointwise limit in the
expressions

|γn(t)− γn(s)| ≤M |t− s|, ∀t, s ∈ [0, T ],

δ0 ≤ γn(t) ≤ 1− δ0, ∀t ∈ [0, T ],

we notice that γ ∈ Gad. Finally, using Proposition 3.2, we obtain J(γn)→ J(γ) = infGad J which means that γ
is a minimum of J over Gad.

It follows in particular from Proposition 3.2 that the optimal cost J(γ?) = infγ∈Gad J(γ) is stable with respect
to the initial datum (y0, y1) ∈ V in the following sense: J(γ?) ≤ Cobs‖(y0, y1)‖2V, where Cobs is the observability
constant appearing in Corollary 2.19. However, we highlight that the optimal curve γ? does not vary continuously
with respect to (y0, y1) (see Sect. 4.1).

Remark 3.4. We emphasize that the functional J may have several global minima. Indeed, if the initial
datum (y0, y1) ∈ V is such that y0(x) = −y0(1 − x), y1(x) = 0 for x ∈ Ω, there are examples (see [29] and
example (EX1) in Sect. 4.1) where the optimal domain is not the cylinder centered at x = 1

2 . Hence, if γ? is
an optimal curve for J corresponding to this initial datum, from symmetry arguments, the curve 1− γ? is also
optimal.



20 A. BOTTOIS ET AL.

3.2. First directional derivative of the cost J

We now give the expression of the directional derivative of the cost J .

Definition 3.5. Let γ, γ ∈W 1,∞(0, T ), with δ0 ≤ γ ≤ 1− δ0. The perturbation γ is said admissible if and only
if for any η > 0 small enough, the perturbed curve γη = γ + ηγ verifies δ0 ≤ γη ≤ 1− δ0.

Lemma 3.6. Let χ ∈ C2(R) and γ, γ ∈ W 1,∞(0, T ), with δ0 ≤ γ ≤ 1 − δ0. For any η > 0, we define the
perturbed curve γη = γ + ηγ. Taking η → 0, we then have

χγη − χγ
η

→ −γχ′γ in L∞(QT ).

Proof. It is a direct consequence the inequality

‖χγη − χγ + ηγχ′γ‖L∞(QT ) ≤
η2

2
‖χ′′‖L∞(R)‖γ‖2L∞(0,T ).

Proposition 3.7. Let χ ∈ C2(R) and γ, γ ∈ W 1,∞(0, T ), with δ0 ≤ γ ≤ 1 − δ0. For any η > 0, we define the
perturbed curve γη = γ + ηγ. If γ is an admissible perturbation, then the directional derivative of J at γ in the
direction γ, denoted by dJ(γ; γ), reads

dJ(γ; γ) = lim
η→0

J(γη)− J(γ)

η
=

∫ T

0

γ

∫
Ω

ϕ2χ′γ ,

where ϕ is the solution of (1.3) associated with the minimum (ϕ0, ϕ1) of J ?γ .

Proof. For η > 0 small enough, we denote by (ϕη0 , ϕ
η
1) the minimum of J ?γη , and ϕη the corresponding solution

of (1.3). Similarly, we denote by (ϕ0, ϕ1) the minimum of J ?γ , and ϕ the corresponding solution of (1.3). Using
the optimality conditions of J ?γη and J ?γ , we can write

J(γη)− J(γ) =

∫∫
qγη

(ϕη)2χγη −
∫∫

qγ

ϕ2χγ

=

(
〈ϕη1 , y0〉H−1,H1

0
−
∫

Ω

ϕη0y1

)
−
(
〈ϕ1, y0〉H−1,H1

0
−
∫

Ω

ϕ0y1

)
=

∫∫
qγ

ϕηϕχγ −
∫∫

qγη

ϕϕηχγη = −
∫∫

QT

ϕηϕ(χγη − χγ).

Arguing as in the proof of Proposition 3.2, we can show that ϕη ⇀ ϕ weakly in L2(0, T ;L2(Ω)). As a result, we
have

J(γη)− J(γ)

η
=

∫∫
QT

ϕηϕγχ′γ −
∫∫

QT

ϕηϕ

(
χγη − χγ

η
+ γχ′γ

)
→
∫∫

QT

ϕ2γχ′γ =

∫ T

0

γ

∫
Ω

ϕ2χ′γ .
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Indeed, we can take the weak limit in the first term since ϕγχ′γ ∈ L2(0, T ;L2(Ω)). Moreover, using Lemma 3.6
and the boundedness of (ϕη)η>0 in L2(0, T ;L2(Ω)), the second term converges to 0 in view of the estimate∣∣∣∣∫∫

QT

ϕηϕ

(
χγη − χγ

η
+ γχ′γ

)∣∣∣∣ ≤ ‖ϕη‖L2(L2)‖ϕ‖L2(L2)

∥∥∥∥χγη − χγη
+ γχ′γ

∥∥∥∥
L∞(QT )

.

Remark 3.8. We emphasize that the expression of the directional derivative dJ(γ; γ) does not involve the
solution of an adjoint boundary value problem. This is due to the fact that the curve γ, argument of the cost
J , is associated with the control of minimal L2(qγ)-norm. We refer to the proof of Theorem 2.3 in [23] for more
details.

3.3. Regularization and Gradient algorithm

At the practical level, in order to solve the optimal problem (3.3) numerically, we need to handle the Lipschitz
constraint included in Gad. In this respect, we add a regularizing term to the cost J in order to keep the derivative
of γ uniformly bounded. The optimization problem is now the following one: for ε > 0 fixed, solve

min
γ∈W 1,∞(0,T )
δ0≤γ≤1−δ0

Jε(γ) = J(γ) +
ε

2
‖γ′‖2L2(0,T ).

The regularization parameter ε, which can be compared to the Lipschitz constant M in the definition of Gad,
controls the speed of variation of the curves γ ∈W 1,∞(0, T ).

We fix γ ∈ W 1,∞(0, T ) such that δ0 ≤ γ ≤ 1 − δ0. Using Proposition 3.7, for any admissible perturbation
γ ∈W 1,∞(0, T ), a direct calculation provides the expression of the directional derivative of Jε

dJε(γ; γ) = dJ(γ; γ) + ε

∫ T

0

γ′γ′ = 〈jγ , γ〉L2(0,T ) + ε〈γ′, γ′〉L2(0,T ),

with

jγ(t) =

∫
Ω

ϕ2(x, t)χ′γ(x, t) dx, ∀t ∈ [0, T ].

In the expression of jγ , the function ϕ is the solution of (1.3) associated with the minimum (ϕ0, ϕ1) of J ?γ .
Consequently, a minimizing sequence (γn)n∈N for Jε is defined as follows:{

γ0 given in H1(0, T ),
γn+1 = P[δ0,1−δ0](γn − ρ jεγn), for n ≥ 0,

where P[δ0,1−δ0] is the pointwise projection in the interval [δ0, 1−δ0], ρ > 0 a descent step-size and jεγn ∈ H
1(0, T )

is the solution of the variational formulation

〈jεγn , γ̃〉L2(0,T ) + ε〈jε ′γn , γ̃
′〉L2(0,T ) = 〈jγn , γ̃〉L2(0,T ) + ε〈γ′n, γ̃′〉L2(0,T ), ∀γ̃ ∈ H1(0, T ). (3.5)

This implies that dJε(γn; jεγn) = ‖jεγn‖
2
L2(0,T ) + ε‖jε ′γn‖

2
L2(0,T ) ≥ 0.

Remark 3.9. For simplicity, we have relaxed here the constraint ‖γ′‖L∞(0,T ) ≤M appearing in the set Gad (see
(1.10)) through the regularization term ε

2‖γ
′‖2L2(0,T ), with ε > 0. We may instead consider the term ε

2‖γ
′′‖2L2(0,T )
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ensuring that ‖γ′‖L∞(0,T ) ≤ Mε, with Mε = O(ε−1). Our numerical experiments – some of them discussed in
the next section – suggest that this later possibility is not necessary.

4. Numerical experiments

Before presenting some numerical experiments, let us briefly mention some aspects of the resolution of the
underlying discretized problem.

– The discretization of the curve γ is performed as follows. For any fixed integer N > 0, we denote δt = T/N
and define the uniform subdivision {ti}i=0,··· ,N of [0, T ] with ti = iδt. We then approximate the curve γ in the
space of dimension N + 1

P
δt
1 =

{
γ ∈ C([0, T ]); γ|[ti−1,ti] affine, ∀i ∈ {1, . . . ,N}

}
.

For any γ ∈ Pδt1 , γ =
∑N
i=0 γ

iLδti with (γi)0≤i≤N ∈ ΩN+1 where (Lδti )0≤i≤N is the usual Lagrange basis.
Consequently, γ is defined by the N + 1 points (γi, ti) ∈ Ω× [0, T ]. The knowledge of the initial curve γ0 ∈ Pδt1
such that δ0 ≤ γ0 ≤ 1− δ0 determines such points and then a triangular mesh of QT . At each iteration n ≥ 0,
these points are updated along the x-axis according to the pointwise time descent direction jεγn ∈ H

1(0, T ) (see
(3.5)) as follows:

xn+1
i = P[δ0,1−δ0]

(
xni − ρ jεγn(tni )

)
, tn+1

i = tni , ∀i = 0, · · · ,N + 1.

We emphasize that a re-meshing of QT is performed at each iteration n according to the set of points
(xni , t

n
i )i=0,··· ,N+1.

Remark that, for a fixed value of N , the curves γ ∈ Pδt1 are uniformly Lipschitz with constant M = 1
δt , as

required in Gad.

– Each iteration of the algorithm requires the numerical approximation of the control of minimal L2(qγn)-norm
for the initial datum (y0, y1) ∈ V. We use the space-time method described in Sections 3–4 of [6], which is very
well-adapted to the description of γ embedded in a space-time mesh of QT . The minimization of the conjugate
functional J ?γn (see (3.4)) with respect to (ϕ0, ϕ1) ∈W is replaced by the search of the unique saddle-point of
the Lagrangian L : Z× L2(0, T ;H1

0 (Ω))→ R defined by

L(ϕ, y) =
1

2
‖ϕ‖2L2(qγn ) −

∫ T

0

〈Lϕ, y〉H−1(Ω),H1
0 (Ω) + 〈ϕt(·, 0), y0〉H−1(Ω),H1

0 (Ω) − 〈ϕ(·, 0), y1〉L2(Ω),

with Z = C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)). The corresponding mixed formulation is solved with a conformal
space-time finite element method, while a direct method is used to invert the discrete matrix. The interesting
feature of the method, for which the adaptation of the mesh is very simple to handle, is that only a small part
of the matrix – corresponding to the term ‖ϕ‖2L2(qγn ) – is modified between two consecutive iterations n and

n + 1. Moreover, this space-time framework leads to strong convergent approximations of the control as the
fineness of the mesh goes to zero. We refer to [6] for more details.

4.1. Numerical illustrations

We discuss several experiments performed with FreeFEM++ (see [14]) for various initial data and control
domains. We notably use an UMFPACK type solver.

We denote in this section by Jnε and dJnε a numerical approximation of Jε(γn) and dJε(γn) respectively.
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Table 2. (EX1) – Number of iterations, optimal value of the functional Jε and performance
index, for the initial curves (γi0)i∈{1,2,3} given by (4.1).

Initial curve γ1
0 γ2

0 γ3
0

Number of iterations 33 33 84
Jε(γopt) 47.09 47.09 47.93
Π(γopt) −0.32% −0.32% −2.11%

We fix δ0 = 0.15 and δ = δ0/4. Moreover, according to (3.1), we define the function χ ∈ C2(R) in [δ0− δ, δ0] as
the unique polynomial of degree 5 such that χ(δ0−δ) = 1, χ(δ0) = χ′(δ0−δ) = χ′(δ0) = χ′′(δ0−δ) = χ′′(δ0) = 0
and vanishing on R \ [δ0 − δ, δ0].

Concerning the stopping criterion for the descent algorithm, we observed that the usual one based on the
relative quantity |Jnε − Jn−1

ε |/J0
ε is inefficient because too noisy. This is due to the uncertainty on the numerical

computation of the adjoint state ϕn and the perturbation jεγn . Consequently, in order to better capture the
variations of the sequence (Jnε )n∈N, we replace Jnε and Jn−1

ε by the right and left p-point average respectively
leading to the stopping criterion

∆Jnε :=

∣∣∣∣∣
1
p

∑n+p−1
i=n J iε − 1

p

∑n−1
i=n−p J

i
ε

J0
ε

∣∣∣∣∣ < η, for p ∈ N∗ fixed.

In the sequel, we fix p = 10 and η = 10−3.
Furthermore, in order to measure the gain obtained by using non-cylindrical control domains rather than

cylindrical ones, we introduce a performance index associated with each optimal curves γopt: identifying any
constant curve γ ≡ x0 with its value x0 ∈ [δ0, 1− δ0], we compute the minimal cost minx0

Jε(x0) for cylindrical
domains; the performance index of γopt is then defined as follows:

Π(γopt) = 100

(
1− Jε(γopt)

minx0
Jε(x0)

)
.

In the sequel, in practice, the minimum of Jε with respect to x0 is searched among 13 distinct values
equi-distributed between 0.2 and 0.8.

– We first consider the regular initial datum (y0, y1) given by

y0(x) = sin(2πx), y1(x) = 0, for x ∈ (0, 1) (EX1)

and T = 2, ε = 10−2, ρ = 10−4. We initialize the descent algorithm with the following three initial curves:

γ1
0(t) =

2

5
, γ2

0(t) =
3

5
, γ3

0(t) =
1

2
+

1

10
cos

(
π
t

T

)
, for t ∈ (0, T ). (4.1)

The corresponding initial and optimal domains are depicted in Figure 5 together with typical space-time meshes.
The numbers of iterations until convergence, the values of the functional Jε evaluated at the optimal curve γopt

and the performance indices of γopt are listed in Table 2.
In Figure 5, we observe that the optimal domain computed by the algorithm depends on the chosen initial

domain. This indicates that the functional Jε have several local minima. Moreover, one can show that, among
the cylindrical domains, there are two optimal values, x0 = 1/4 and x0 = 3/4, leading to Jε(x0) ≈ 46.94. These
values correspond to the extrema of the function x → sin(2πx), x ∈ [0, 1]. The simulations associated with
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Figure 5. (EX1) – Initial top and optimal (bottom) control domains for the initial curves
(γi0)i∈{1,2,3} given by (4.1) (from left to right).

the initial curves γ1
0 and γ2

0 are in agreement with this fact. On the other hand, the worst cylindrical domain
corresponds to x0 = 1/2 (see Fig. 7-Left).

Eventually, the adjoint states ϕ (from which we obtain the control v = ϕ|qnγ ) computed for the optimal
domains in Figure 5-Bottom, are displayed in Figure 6.
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Figure 6. (EX1) – Isovalues of the adjoint states ϕ computed for the optimal domains
obtained for the initial curves (γi0)i∈{1,2,3} given by (4.1) (from left to right) and for the initial
datum (EX1).

Figure 7. Values of Jε for constant curves γ ≡ x0 (•), for the initial datum (EX1) (left) and
(EX2) (right). The dashed line (- -) represents the value of Jε(γopt), for the initial curves
γ0 ≡ 2/5 (left) and γ0 ≡ 1/2 (right).

– We now consider the initial datum (y0, y1) given by

y0(x) = (10x− 4)2(10x− 6)2
1[0.4,0.6](x), y1(x) = y′0(x), for x ∈ (0, 1). (EX2)

As can be seen in Figure 9−3, this initial condition, plotted in Figure 8, generates a travelling wave.
For T = 2, ε = 10−2 and ρ = 10−4, we initialize the descent algorithm with the curve γ0 ≡ 1/2. The con-

vergence is reached after 68 iterations and the optimal cost is Jε(γopt) ≈ 48.70. Moreover, the minimal cost
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Figure 8. Initial datum (y0, y1) defined in (EX2).

Figure 9. (EX2) – From left to right, optimal control domain, isovalues of the corresponding
adjoint state ϕ, isovalues of the uncontrolled and controlled wave over the optimal domain, for
the initial curve γ0 ≡ 1/2.

for cylindrical domains is minx0
Jε(x0) ≈ 179.22 leading to a performance index Π(γopt) ≈ 72.83%. The non-

cylindrical setup is in that case much more efficient that the cylindrical one. This is due to the fact that the
domains we consider can follow very closely the propagation of the travelling wave. This can be noticed in
Figure 9, where we display the optimal control domain, the corresponding adjoint state ϕ, the uncontrolled and
controlled solutions over the optimal domain.

The evolution of the cost Jnε and the derivative dJnε with respect to n are displayed in Figure 10. Figure 7-
Right depicts the values of the functional Jε for the constant curves γ ≡ x0 used to determine the best cylindrical
domain and highlights the low variation of the cost with respect to the position of such domains.

This second example allows to emphasize the sensitivity of the optimal curve with respect to the initial
condition. For any δ, consider the initial condition (yδ0, y

δ
1) = (y0, y1) + δ(w0, w1), where (y0, y1) is given by

(EX2) and supported in the interval [0.4, 0.6], and where (w0, w1) is any initial condition supported for instance
in [0.8, 0.9]. For δ = 0 and any T > 0, the optimal curve γopt follows the travelling wave starting in the interval
[0.4, 0.6]. On the other hand, for any δ 6= 0, the optimal curve γδopt will also have to cross the travelling waves
generated by the initial condition (w0, w1) starting in [0.8, 0.9]. If the controllability time T is small enough,
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Figure 10. (EX2) – Evolution of the cost Jnε (left) and the derivative dJnε (right) for the
initial curve γ0 ≡ 1/2.

Table 3. (EX3) – Evolution of the optimal cost Jε(γopt) w.r.t. the controllability time T .

T 2 1.5 1 0.5

Jε(γopt) 41.02 58.02 94.78 239

these additional travelling waves remain far from the initial wave. It follows that, for any δ 6= 0, the resulting
optimal curve γδopt will be not arbitrarily close to γopt.

– We now consider the initial datum (y0, y1) given by

y0(x) = (10x− 4)2(10x− 6)2
1[0.4,0.6](x), y1(x) = 0, for x ∈ (0, 1). (EX3)

This initial condition generates two waves travelling waves in opposite directions, as can be seen in Figure 11.3.
For T = 2, ε = 10−2 and ρ = 10−4, we initialize the algorithm with the initial curve γ0 ≡ 1/2. The convergence
is observed after 111 iterations leading to Jε(γopt) ≈ 41.02. Moreover, the minimal cost for cylindrical domains
is minx0

Jε(x0) ≈ 85.08 leading to a performance index Π(γopt) ≈ 51.79%. Once again, our non-cylindrical setup
is much more efficient than the cylindrical one. It is still due to the fact that the domains we consider can follow
the propagation of the travelling waves. This can be noticed in Figure 11, where we display the optimal control
domain, the corresponding adjoint state ϕ, the uncontrolled and the controlled wave over the optimal domain.

In order to emphasize the influence of the controllability time on the optimal domain, for ε = 10−2 and
γ0 ≡ 1/2, we use the descent algorithm with T = 1 and ρ = 2.5 × 10−5, initialized with the curve γ0 ≡ 1/2.
Remark that the corresponding domain satisfies the geometric optic condition. The convergence is observed
after 213 iterations and the optimal cost is Jε(γopt) ≈ 94.78. Moreover, the minimal cost for cylindrical domains
is minx0

Jε(x0) ≈ 183.98 and the performance index is Π(γopt) ≈ 48.48%. Observe that the cylindrical domains
associated with x0 /∈ (0.25, 0.75) do not verify the geometric optic condition. This highlights the necessity to use
non-cylindrical domains. Compared to the simulation for T = 2, the optimal cost increases by a factor around
2.3. Figure 12 displays the optimal control domain, the corresponding adjoint state ϕ, the uncontrolled and
controlled wave over the optimal domain. We remark that the projection of the optimal domain on the x-axis
covers the whole domain Ω, in contrast with the domain associated with T = 2.

In Table 3, we illustrate the influence of the controllability time T on the optimal cost Jε(γopt). More exactly,
we remark that the cost is of order O(T−1.27).
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Figure 11. (EX3) – From left to right, optimal control domain, isovalues of the corresponding
adjoint state ϕ, isovalues of the uncontrolled and controlled wave over the optimal domain, for
T = 2, for the initial curve γ0 ≡ 1/2.

Figure 12. (EX3) – From left to right, optimal control domain, isovalues of the corresponding
adjoint state ϕ, isovalues of the uncontrolled and controlled wave over the optimal domain, for
T = 1, for the initial curve γ0 ≡ 1/2.

– Eventually, in order to highlight the influence of the regularization parameter ε on the optimal domain, we
now consider the initial datum (y0, y1) given by

y0(x) =

 3x if 0 ≤ x ≤ 1/3,
3(1− 2x) if 1/3 ≤ x ≤ 2/3,
−3(1− x) if 2/3 ≤ x ≤ 1,

y1(x) = 0, for x ∈ (0, 1). (EX4)

For T = 2 and ρ = 10−5, we initialize the descent algorithm with the curve γ ≡ 1/2 and consider ε = 10−2 and
ε = 0. The numbers of iterations until convergence, the values of the functional Jε evaluated at the optimal
curve γopt and the performance indices of γopt are listed in Table 4. For the initial datum (EX4), the minimal
cost for cylindrical domains is minx0 Jε(x0) ≈ 47.71.

In Figure 13, we clearly see the regularizing effect of ε and the need of regularization in this case, as the
optimal domain obtained when ε = 0 is very oscillating. Actually, since the initial position y0 is supported on
the whole domain, the corresponding uncontrolled solution is not localized on a small part of QT (in contrast
for instance to the second example, see (EX2)). The optimal domain is very likely composed of many parts
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Table 4. (EX4) – Number of iterations, optimal value of the functional Jε and performance
index, for ε ∈ {0, 10−2}, for the initial curve γ0 ≡ 1/2.

ε 0 10−2

Number of iterations 247 389
Jε(γopt) 60.35 43.23
Π(γopt) −26.51% 9.38%

Figure 13. (EX4) – Optimal control domain and isovalues of the adjoint state for ε = 10−2

(left), ε = 0 (right), for the initial curve γ0 ≡ 1/2.

distributed in QT leading an homogenization phenomenon. Consequently, when ε = 0, the algorithm tends to
reach these parts leads to large oscillations of the curve γ. The ε-term aims to reduces these oscillation by
imposing regularity property of the curves γ describing the domains qγ . In this topic, we refer to the seminal
work of Chenais [7]. Let us also mention that a well posedness result is achieved in [29] by introducing a
relaxation of the problem 1.4, i.e. by replacing characteristic functions by densities (see also [26] in the context
of stabilization of the wave equation).

4.2. Approximation of the observability constant by an iterative method

In this last part, we formally describe and use an algorithm allowing to approximate the observability constant
appearing in (1.2), associated with any domain q ⊂ QT . The algorithm is based on the following characterization:

Cobs(q) = sup
y0∈V

〈RΛqy0,y0〉V
‖y0‖2V

(4.2)

where Λq and R are respectively the control operator associated with the domain q and the duality operator
between the space W and V:

Λq :

{
V → W
y0 7→ ϕ̂0

, R :

{
W → V

(ϕ0, ϕ1) 7→ ((−∂2
x)−1ϕ1,−ϕ0)

.
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Figure 14. Most expensive initial data y0 (left) and y1 (right) to be controlled.

In the definition of Λq, ϕ̂0 ∈W is the minimum of the functional J ? (see (3.4)) associated with y0 ∈ V. The
characterization (4.2) can be obtained by following the steps of Section 2 in [25] and Remark 2.98 in [10].
The main consequence of this characterization is that Cobs(q) can be viewed as the largest eigenvalue of the
operator RΛq in V. Consequently, we can formally adapt the power iteration method to our infinite-dimensional
setting. The algorithm reads as follows. Let y0

0 ∈ V be given such that ‖y0
0‖V = 1. For n ≥ 0, using the space-

time finite element method described in Section 3–4 of [6], we compute ϕ̂n0 = Λqy
n
0 then set zn0 = Rϕ̂n0 and

yn+1
0 = zn0/‖zn0‖V. We finally have Cobs(q) = limn→∞ ‖zn0‖V while yn0 converges in V to the most expensive

initial datum to control. For the control domain of Figure 3, this algorithm initialized with y0
0 = K(x(1− x), 0),

K such that ‖y0
0‖V = 1, produces the following sequence {‖zn0‖V}n≥0 = {2.689, 3.829, 3.981, 3.994, 3.997, · · · }

converging toward the value 4, in agreement with the result of Section 2.2 based on a graph argument. The
most expensive initial datum to be controlled is displayed in Figure 14. Remark that the initial datum solution
of (4.2) is not unique.

5. Conclusion and perspectives

Making use of the d’Alembert formula for the solutions of the one dimensional wave equation, we have shown
a uniform observability inequality with respect to a class of non cylindrical observation domains satisfying the
geometric optic condition. The proof based on arguments from graph theory allows notably to relate the value
of the observability constant to the spectrum of the Laplacian matrix, defined in term of the graph associated
to any domain q ⊂ QT . The uniform observability property then allows to consider and analyze the problem
of the control’s optimal support associated to fixed initial conditions. For simplicity, the optimization is made
over connected domains defined by regular curves. As expected, the optimal domains (approximated within a
space-time finite element method) are closely related to the travelling waves generated by the initial conditions.

This work may be extended to several directions. First, the characterization of the observability constant in
term of a computable eigenvalue problem in Section 4.2 may allow to consider the optimization of such constant
with respect to the domain of observation, i.e. infq∈Qεad Cobs(q) (as done in [31]). The domain providing the
smallest observability constant is nothing else than the trajectory minimizing the cost of control, i.e. the norm
of the control corresponding to the worst controllable initial datum. Moreover, from an approximation point
of view, we may also consider more general domains (than connected ones) and use, for instance, a level-set
method to describe the geometry (as done in [23]). Eventually, this work may be adapted to the case of controls
supported on single curves of QT , using the uniform observability property given in [5]. We refer to [3] for a
numerical study in this case. The extension of this work to the multi-dimensional case studied in [17, 32] is also
a challenge.
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