Robust fault estimation and fault‐tolerant tracking control for uncertain Takagi–Sugeno fuzzy systems: Application to single link manipulator - Archive ouverte HAL Access content directly
Journal Articles International Journal of Adaptive Control and Signal Processing Year : 2021

Robust fault estimation and fault‐tolerant tracking control for uncertain Takagi–Sugeno fuzzy systems: Application to single link manipulator

Abstract

This article concerns the estimation and tracking control problems for Takagi–Sugeno systems with disturbances and norm bounded uncertainties in presence of sensor and actuator faults (SAF). First, we propose a robust fuzzy observer (RFO) design method to estimate both state and SAF for the considered class of the nonlinear systems. Then, this RFO‐based fault tolerant tracking control is developed not only to compensate the SAF effects but also to ensure the state convergence to desired trajectories in spite of their presence. To reduce the conservatism of design conditions, observer and controller gains are calculated in a single step by solving a set of linear matrix inequality constraints. H∞ criterion is used to attenuate disturbance effects and to reduce the tracking error. Finally, simulation results by considering two types of actuator fault and comparative study on a single link flexible joint manipulator are provided to underline the performances of the mentioned process.

Domains

Automatic
No file

Dates and versions

hal-03175272 , version 1 (19-03-2021)

Identifiers

Cite

Salama Makni, Maha Bouattour, Ahmed El Hajjaji, Mohamed Chaabane. Robust fault estimation and fault‐tolerant tracking control for uncertain Takagi–Sugeno fuzzy systems: Application to single link manipulator. International Journal of Adaptive Control and Signal Processing, 2021, ⟨10.1002/acs.3231⟩. ⟨hal-03175272⟩
68 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More