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Abstract

Predicting the evolution of mortality rates plays a central role for life insurance and pen-
sion funds. Various stochastic frameworks have been developed to model mortality patterns
taking into account the main stylized facts driving these patterns. However, relying on the
prediction of one specific model can be too restrictive and lead to some well documented
drawbacks including model misspecification, parameter uncertainty and overfitting. To ad-
dress these issues we first consider mortality modelling in a Bayesian Negative-Binomial
framework to account for overdispersion and the uncertainty about the parameter estimates
in a natural and coherent way. Model averaging techniques are then considered as a re-
sponse to model misspecifications. In this paper, we propose two methods based on leave-
future-out validation which are compared to the standard Bayesian model averaging (BMA)
based on marginal likelihood. An intensive numerical study is carried out over a large range
of simulation setups to compare the performances of the proposed methodologies. An illus-
tration is then proposed on real-life mortality datasets which includes a sensitivity analysis
to a Covid-type scenario. Overall, we found that both methods based on out-of-sample
criterion outperform the standard BMA approach in terms of prediction performance and
robustness.
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1 Introduction

Apart from short epidemic shocks, most developed countries face unprecedented improvements
in longevity that contribute to the aging of the population. As a consequence, pension funds,
social security systems and life insurers face longevity risk, namely the risk that policyholders
live longer than expected. These concerns have led to an extensive development of stochastic
mortality models in the actuarial, demographic and statistical literature. The selection of a
specific model is naturally subject to model risk, that is the risk of picking the wrong model.
This paper considers a full Bayesian model averaging approach to mitigate this risk while taking
into account the uncertainty in the value of the parameters due to the potential lack of fit of the
mortality models to the data.

A major part of the literature on stochastic mortality modelling has developed from the sem-
inal work of Lee and Carter (1992). It introduced a factor-based framework on which the mor-
tality surface (on the logarithmic scale) is decomposed into the sum of an age-specific term rep-
resenting the average mortality rate per age and a bilinear term including a single time-varying
index, which represent the mortality trend and an age-specific component that characterizes the
sensitivity to this trend at different ages. Several extensions were proposed in the literature. For
example, Renshaw and Haberman (2006) proposed an extension of the Lee-Carter model with
a cohort effect and Cairns et al. (2006) proposed a two-factor model for pensioners mortality
often abbreviated as CBD. The CBD model was then extended by incorporating combinations
of a quadratic age term and a cohort effect term in Cairns et al. (2009). Plat (2009) combined the
features of existing models to come up with a model that covers the entire age range and takes
into account cohort effects. For an overview of existing models, we refer to Hunt and Blake
(2020). Mortality forecasts are usually obtained in a frequentist two-step procedure. In a first
step, estimates of the parameters are obtained by Singular Value Decomposition or Maximum
Likelihood Estimation, noticing that standard mortality models can be expressed as a general-
ized non-linear or linear model, see Currie (2016). In a second step, parameters are projected
using time-series techniques.

In this paper, we consider mortality modelling in a Bayesian framework. When compared
to the classical framework, the Bayesian approach offers two notable advantages. First, the
estimation and forecasting steps go hand in hand, which leads to more consistent estimates, see
Cairns et al. (2011b) and Wong et al. (2018) among others. Second, it better accounts for the
different sources of uncertainty in a natural and coherent way. Within the literature on Bayesian
mortality modeling, Czado et al. (2005) proposed a fully integrated Bayesian approach tailored
to the Poisson Lee-Carter (LC) model. It was extended to the multi-population setting in Anto-
nio et al. (2015). Pedroza (2006) performed mortality forecasting using a Bayesian state-space
model using Kalman filters, that handle missing data. Kogure and Kurachi (2010) presented a
Bayesian approach to pricing longevity risk under the LC framework. Finally, Venter and Şahın
(2018) considered Bayesian shrinkage to obtain a parsimonious parameterization of mortality
models.

To account for model uncertainty, we consider model averaging. Compared to using the
predictions of one specific model, combining the forecasts of various models is more robust
toward model mis-specification and is more likely to produce reliable point and interval fore-
casts. There are two standard approaches to model averaging: a frequentist approach based
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on the Akaike Information Criterion (AIC) by Buckland et al. (1997) and a Bayesian approach
known as Bayesian model averaging, see Hoeting et al. (1999), relying on the Bayes factor, see
Kass and Raftery (1995). While both approaches received much attention in several areas such
as ecology (Cade (2015)) or finance (Koop and Korobilis (2012)), there are only few papers in
the context of demography and actuarial science. Shang (2012) combined mortality forecasts
based on two weighting schemes, the first is based on out-of-sample forecast accuracy and the
other relies on in-sample goodness-of-fit. Instead of choosing the optimal weights, Shang and
Haberman (2018) considered selecting a subset of superior models before equally averaging
forecasts from these selected models. In the Bayesian setting, we only found Benchimol et al.
(2018) who applied Bayesian Model Averaging (BMA) to combine four popular mortality mod-
els via their posterior probability. However, they did not show the mathematical details nor did
they compare the BMA with the single-model forecasts.

In this paper, we propose a full Bayesian approach for mortality forecasting. We first sample
from the posterior distribution of the mortality model parameters using Markov Chain Monte
Carlo (MCMC) techniques. We then derive weights for each mortality model. The standard
method for calculating the Bayesian model weights uses a marginal likelihood approximation.
The latter characterizes the suitability of the model to the data used to train this very model. We
therefore introduce two alternative model averaging methods based on the forecast accuracy
measured on a validation data set (different from the training one). The validation set is made
of the most recent years, hence the name leave-future-out validation. We refer to these method
as stacking and pseudo-BMA because they follow from an adaptation of the model averaging
strategies described in the work of Yao et al. (2018) based on leave-one-out validation. We
show that stacking and pseudo-BMA outperform the standard averaging approach in terms of
forecasting accuracy when applied to real as well as simulated mortality data. To the best of
our knowledge, this is the first time that a Bayesian model averaging approach based on out-of-
sample performance is considered for mortality forecasting.

The remainder of the paper is organized as follows. In Section 2, we introduce the Bayesian
mortality modeling framework which accommodates a wide range of well-known mortality
models. In Section 3, we discuss model aggregation strategies, starting with the standard
method before moving on to the alternative methods designed to make predictions. In Sec-
tion 4, an intensive numerical study is carried out accross a large range of simulation setups to
provide a fair comparison of the proposed methodologies. Section 5 compares the prediction
performance of the model averaging methodologies on real-life mortality datasets. Section 6
investigates the impact of a COVID-type effect on the mortality rate projections and Section 7
provides some concluding remarks and perspectives for future research work.

2 Bayesian Mortality Modeling

When studying human mortality, the data at hand consist of death counts dx,t and central expo-
sures ex,t, where x = x1, x2, . . . , xA and t = t1, t2, . . . , tN represent a set of A age groups and
N calendar years respectively. We denote by µx,t the force of mortality at age x and calendar
year t. A stochastic mortality model commonly relies on two assumptions:
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1. The number of deaths is modelled by a counting random variable Dx,t following either a
Poisson, binomial, or negative binomial distribution.

2. The force of mortality has a log or logit link to the age and calendar year variables.

2.1 Negative-Binomial model

The data provided to mortality models are generally at the country level. Empirical studies
have shown that life expectancy depends on socioeconomic status, individual income, educa-
tion, marital status, among other factors. This heterogeneity within a given population tends to
increase the variability of the underlying death counts, leading to overdispersion. To tackle this
issue, we consider a classic extension of the Poisson distribution, namely a gamma mixture of
Poisson distributions, which assumes that

Dx,t | µx,t
ind∼ Poisson(µx,tex,t) (2.1)

log µx,t = αx +

p∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x + log νx,t (2.2)

νx,t | φ
ind∼ Gamma(φ, φ), (2.3)

where the average mortality rate within each age group relates to the αx coefficient, while age
specific patterns of mortality improvement over time are captured through the β(i)

x and κ(i)
t for

i = 1, . . . , p. The model can accomodate for an age-specific cohort effect with the product of
β

(0)
x by γt−x while overdispersion relates to the parameter φ. The expectation and variance of

this model are given by

E [Dx,t] = ex,t exp

(
αx +

p∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x

)
(2.4)

Var [Dx,t] = E [Dx,t]×
[
1 +

E [Dx,t]

φ

]
> E [Dx,t] . (2.5)

This model has the same mean as the standard Poisson model but possesses a larger variance
which depends on the value of φ. When φ → ∞, we recover the standard Poisson model. An
important feature of this model is its equivalence to a Negative-Binomial (NB) model, in the
sense that

Dx,t | αx, βx, κt, γt−x, φ ∼ Neg−Bin

(
ex,t exp

(
αx +

p∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x

)
, φ

)
.

The NB model was considered in a frequentist framework by Delwarde et al. (2007) and in a
Bayesian setting by Wong et al. (2018). We remark that Wong et al. (2018) compared the NB
model with a Poisson model with normal random error νx,t, and found that both specifications
provide similar fits.
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Under the NB assumption, the full likelihood of the death records is given by

l(y | α,β,κ,γ, φ) =
∏
x,t

{
Γ (dxt + φ)

Γ(φ)Γ (dxt + 1)

[
ext exp (ηx,t)

ext exp (ηx,t) + φ

]dxt [ φ

ext exp (ηx,t) + φ

]φ}
,

(2.6)
with

ηx,t = αx +

p∑
i=1

β(i)
x κ

(i)
t + β(0)

x γt−x. (2.7)

In this section we are concerned with finding the parameters

θ = (αx, β
(0)
x , . . . , β(p)

x , κ
(1)
t , . . . , κ(p)

x , γt−x, φ),

in the set of possible parameters Θ, that best explains our data y = (dx,t, ex,t), for x =
x1, . . . , xA and t = t1, . . . , tN .

2.2 Bayesian analysis

Bayesian inference is based on the idea of updating our prior beliefs p(θ) over θ with the ob-
served data at hand y to come up with posterior beliefs p(θ|y), see Gelman et al. (1995). By
Bayes’ theorem, we can determine the posterior distribution of the parameters given the data as
follows

p(θ|y) =
p(y|θ)p(θ)∫
Θ
p(y|θ)p(θ)

, (2.8)

which in turn allows us to build credible intervals as well as point estimates of the parameters
by taking the mean or the mode of the posterior. The integral in the denominator of (2.8) is
often analytically intractable due to the high dimension of the parameter space Θ. The usual
workaround consists in sampling from the posterior distribution using a Markov Chain Monte
Carlo (MCMC) simulation scheme:

θ(1), θ(2), . . . , θ(M) ∼ p(θ|y) ∝ p(y|θ)p(θ).

In this paper, we consider five standard mortality models, each implemented in the Negative-
Binomial setting with the likelihood (2.6). In Table 1, we specify the predictor ηx,t entering
in the likelihood through (2.7). Hereafter, we discuss the prior distributions of the different
parameters.

2.3 Prior distributions

For the choice of the prior distributions, there are essentially two common approaches. The first
one specifies diffuse or weakly informative priors such that the posterior inference is dominated
by the likelihood of the data, see e.g. Wong et al. (2018). The second one specifies prior
distributions which depend on hyperparameters which are estimated by an empirical frequentist
approach, see e.g. Czado et al. (2005) and Kogure and Kurachi (2010). In this paper, we follow
the first approach.
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Table 1: Model structures considered in this paper.

Mortality model Predictor ηx,t

Lee-Carter (LC) ηx,t = αx + βxκ
(1)
t

Renshaw-Haberman (RH) ηx,t = αx + βxκ
(1)
t + γt−x

Age-Period-Cohort (APC) ηx,t = αx + κ
(1)
t + γt−x

Cairns-Blake-Dowd (CBD) ηx,t = κ
(1)
t + (x− x̄)κ

(2)
t

M6 ηx,t = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x

2.3.1 Prior distribution for αx, βx and φ

Similar to Wong et al. (2018), we assign independent normal priors on αx, i.e.

αx ∼ N(α0, σ
2
α),

with α0 = 0 and σ2
α = 100. Because of the constraint

∑
x βx = 1, we let the βx’s be Dirichlet

distributed with
βx ∼ Dirichlet(1, . . . , 1).

Since the model variance is measured by 1/φ, see Equation (2.5), the parameter φ is actually a
concentration parameter for which a standard prior assumption is the half-normal distribution,

1

φ
∼ Half-Normal(0, 1),

see for instance Gelman et al. (2006).

2.3.2 Prior distributions for κt

For the period indexes we follow the standard actuarial science practice (Cairns et al. (2011b),
Cairns et al. (2006), Haberman and Renshaw (2011), Lovász (2011)) and assume that the period
indexes follow a multivariate random walk with drift. That is,

κt = c+ κt−1 + εκt , κt =

(
κ

(1)
t

κ
(2)
t

)
, εκt ∼ N (0,Σ) , (2.9)

where c is a 2-dimensional vector of trend parameters and Σ is a 2 × 2 variance-covariance
matrix of the multivariate white noise εκt . For models with a single period effect like LC, RH
and APC, the dimension of Equation (2.9) shrinks to one. For the sake of identifiability, we
impose κ1 = 0 similar to Haberman and Renshaw (2011) and Wong et al. (2018). Under
this constraint, the remaining κt quantify the mortality improvements relative to the first year
while the first year log mortality rates are determined by the αx’s. To complete the model
specifications on the κt’s, we set independent normal priors over the regression coefficients
c ∼ N(0, 10). The variance-covariance matrix of the error term is defined by

Σ =

(
σ2

1 ρΣσ1σ2

ρΣσ1σY σ2
2

)
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where the variance coefficients are independent exponentials σ1, σ2 ∼ Exp(0.1) and the corre-
lation parameter is uniform ρΣ ∼ U [−1, 1].

2.3.3 Prior distributions for γc

For the cohort effect, we consider a second order autoregressive process (AR(2)):

γc = ψ1γc−1 + ψ2γc−2 + εγt , εγt ∼ N(0, σγ), (2.10)

which is in line with previous study conducted by Cairns et al. (2011a) and Lovász (2011).
Several model specifications such as AR(1) or ARIMA(1, 1, 0) can be seen as special cases of
Equation (2.10). To ensure identifiability, the cohort component is constrained so that the first
and last components are equal to 0:

γ1 = 0, γC = 0.

For the RH model, we also impose that the sum of effects over the whole range of cohorts is
zero:

C∑
i=1

γi = 0,

where C corresponds to the most recent cohort. These constraints ensure that γ truly represents
a cohort effect. Indeed, if the cohort effect presents a trend, this can be compensated by an
adjustement to the age and period effects. We close the model specification by imposing some
vague priors assumptions on the hyperparameters:

ψ1, ψ2 ∼ N(0, 10), σγ ∼ Exp(0.1).

Remark 2.1 It is well-known that the RH model may have convergence issues (Currie, 2016,
Hunt and Villegas, 2015). Following Cairns et al. (2011b), we first started our analysis with
a stationary AR(2) process with constraints on the first and last component but found conver-
gence issues during our simulation study (in 80 simulations, around 20 calls were not conver-
gent). Adding the sum-to-zero constraint by imposing γ2 = −

∑C−1
i=3 γi solved the convergence

problem.

2.4 Hamiltonian Monte Carlo and Stan

To produce samples from the posterior distribution, we have implemented our stochastic mor-
tality models using a programming language called Stan, see Carpenter et al. (2017). Stan per-
forms an Hamiltonian Monte Carlo (HMC) sampling scheme through the No-U-TurnS (NUTS)
algorithm. Compared with the random-walk Metropolis algorithm, where a proposed value is
not related to the target distribution, HMC proposes a value that uses the derivatives of the
density function being sampled to generate efficient transitions spanning the posterior (see e.g.
Neal (2011) for details). It uses an approximate Hamiltonian dynamics simulation based on nu-
merical integration which is then corrected by performing a Metropolis acceptance step. HMC
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enhances the sampling efficiency and robustness for models with complex posteriors compared
to the widely used Metropolis-Hasting within Gibbs sampling scheme.1 The NUTS algorithm,
introduced by Hoffman and Gelman (2014), cope with the difficult choice of the tuning param-
eters and makes possible the incorporation of the HMC routine into inferencial engines such
as Stan. The latter software is gaining popularity among Bayesian statistics practitionners and
actuarial scientists, see for instance the work of Gao et al. (2019) and Hilton et al. (2019) where
Stan is used for claim reserving and mortality modeling, respectively.

Implementation in R We have built our own R package StanMoMo which implements the
mortality models of Table 1 under the Poisson and the Negative-Binomial setting. It can be
downloaded from https://CRAN.R-project.org/package=StanMoMo. The pack-
age provides high-level R functions to perform Bayesian mortality inference, model selection
and model averaging while using Stan and HMC sampling in the background.

HMC sampling For each model, four parallel chains are constructed, each of length 4000.
The first half of each chain is used as a warm-up round (during which stan tunes the algorithm
to reflect the characteristics of the posterior) and discarded. Parallel chains are used to better
assess the convergence toward the posterior distribution. During our analysis, we carefully
checked that there were no diverging transitions and we also followed the diagnostic measure
R̂ that was advocated by Vehtari et al. (2020). We checked that R̂ < 1.01 as recommended by
the authors, which indicates that all parameters have converged to an acceptable degree. The
remainder of all the chains are then gathered and used for inference.

3 Bayesian mortality model averaging

Instead of choosing one model, model averaging stems from the idea that a combination of
candidate models among a model listM = (M1, . . . ,MK) may perform better than one single
model. The standard Bayesian approach, called Bayesian model averaging (BMA), consists in
weighing each model by its posterior model evidence. This approach is discussed in subsec-
tion 3.1 but should be avoided for mortality forecasting for several reasons. Among them, BMA
is very sensitive to prior choices and tends to select only one model asymptotically. Moreover,
like the Bayes Information Criterion (BIC), BMA measures how well the model fits the past but
not how well the model predicts the future.

We propose two alternative model averaging approaches, called stacking and Pseudo-BMA,
based on leave-future-out and inspired from the work of Yao et al. (2018). These approaches,
seemingly more suited for forecasting, are described in subsection 3.2.

1Neal (2011) analyzes the scaling benefit of HMC with dimensionality. Hoffman and Gelman (2014) provide
practical comparisons of Stan’s adaptive HMC algorithm with Gibbs, Metropolis, and standard HMC sample.
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3.1 Bayesian model averaging by marginal likelihoods

In the standard BMA approach, each model is weighted by its posterior probability

p (Mk | y) =
p (y |Mk) p (Mk)∑K
k=1 p (y |Mk) p (Mk)

, (3.1)

where
p (y |Mk) =

∫
Θ

p (y | θk,Mk) p (θk |Mk) dθk, (3.2)

for k ∈ {1, . . . , K}, is called the Marginal Likelihood (ML). The posterior distribution for any
quantity of interest ∆ (e.g. mortality forecasts) is then given by

p(∆ | y) =
K∑
k=1

p (∆ |Mk, y) p (Mk | y) .

Since we typically assume equal prior model probabilities, i.e. p (Mk) = 1
K

, it remains to
compute the MLs for each model. To do so, we use an importance sampling technique known
as bridge sampling. The underlying principle is briefly recalled hereafter Let

pi(θ) =
ηi(θ)

Zi
, i ∈ {1, 2}.

be two probability distributions known up to a normalizing constant Zi, i ∈ {1, 2} and let
θ 7→ h(θ) be a “bridge” function. The normalizing constant ratio Z1/Z2 may be written as

r =
Z1

Z2

=
Ep2(η1 · h)

Ep1(η2 · h)
,

where Epi stands for the expectation under pi(θ), i ∈ {1, 2}, and be approximated by

Z1

Z2

≈

∑N
j=1 η1

(
θ

(2)
j

)
h
(
θ

(2)
j

)
∑N

j=1 η2

(
θ

(1)
j

)
h
(
θ

(1)
j

) , (3.3)

where θ(i)
1 , . . . θ

(i)
N ∼ pi(θ), i ∈ {1, 2}. The optimal bridge function from the quadratic error

point of view is given by

h(θ) ∝ 2

η1(θ) + rη2(θ)
, (3.4)

see (Meng and Wong, 1996, Theorem 1). Of course, the fact that r appears in the bridge function
expression is problematic. A practical solution is to define a sequence (rl)l≥0 recursively as

rl =
N∑
j=1

η1

(
θ

(2)
j

)
η1(θ

(2)
j ) + rl−1η2(θ

(2)
j )

/ N∑
j=1

η2

(
θ

(1)
j

)
η1(θ

(1)
j ) + rl−1η2(θ

(1)
j )

, l ≥ 1,

with some initial value r0. The algorithm stops as soon as the difference between two con-
secutive r is smaller than some threshold. For our purpose, we set p1(θ) = p (θ | y,Mk) for
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k ∈ {1, . . . , K} and therefore Z1 = p (y |Mk). A sample θ(1)
1 , . . . , θ

(1)
N ∼ p (θ | y,Mk) is

readily available from HMC sampling. A common choice for the second distribution p2(θ) is
the multivariate normal distribution with mean and covariance matrix estimated from the pos-
terior draws, see Overstall and Forster (2010) and Gronau et al. (2017). The bridge sampling
algorithm has been implemented in the R package bridgesampling, see Gronau et al. (2020).
Among several importance sampling estimators, Meng and Wong (1996) showed that the bridge
sampler minimizes the mean-squared error and is more robust to the tail behavior of the pro-
posal distribution relative to the posterior distribution (Gronau et al., 2017). Once the MLs are
obtained for each model, weights are given by the posterior model probabilities in Equation
(3.1).

3.2 Bayesian model averaging by stacking and Pseudo-BMA

Bayesian model averaging is flawed in a setting where the “true” data-generating process is not
part of the model candidates, see Yao et al. (2018). Indeed, in this setting, BMA asymptotically
selects the model in the list which is closest to the real model in the sense of Kullback - Leibler
(KL) divergence. More importantly, as we can see from Equation (3.2), that the marginal likeli-
hood is strongly sensitive to the specific prior choice p (θk |Mk) in each model, see Fernandez
et al. (2001).

As an alternative approach, different authors considered model selection and averaging
based on prediction performance on hold-out data. For instance, Geisser and Eddy (1979)
proposed to replace marginal likelihoods p (y |Mk) with a product of Bayesian leave-one-
out cross-validation (LOO-CV) predictive densities

∏n
i=1 p (yi | y−i,Mk) where y−i is the data

without the i-th-point. More recently, Yao et al. (2018) proposed Bayesian model averaging
approaches based on LOO-CV. Roughly speaking, weights are chosen such that the averaged
model has the best prediction performance according to a logarithm scoring rule.

In this section, we consider two Bayesian model averaging techniques from Yao et al.
(2018), namely stacking and Pseudo-BMA, but adapted to the problem of forecasting mortal-
ity. As pointed out by Burkner et al. (2020), LOO-CV is problematic if the goal is to estimate
the predictive performance for future time points. Leaving out only one observation at a time
will allow information from the future to influence predictions of the past (i.e., data from times
t + 1, t + 2, . . . , would inform predictions for time t). Instead, it is more appropriate to use
leave-future-out validation. In our context of mortality forecasting, instead of leaving one point
out, we leave the last M years of data out and evaluate the prediction performance over these
M years.

More precisely, assume that the data for T years is split into a training set and a validation
set as follows:

• y1:N = (dx,t, ex,t) for all x’s and t = t1, . . . , tN are the death and exposure counts of the
first N years, used to fit the model.

• yN+1:N+M = (dx,t, ex,t) for all x’s and t = tN+1, . . . , tN+M are the death and exposure
counts associated to the remaining M years, used to validate the model.
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After fitting the NB model to y1:N , we can obtain an empirical distribution of future µx,t for
t = tN+1, . . . , tN+M based on MCMC samples. Combined with the exposures of the validation
set, we can then obtain an empirical distribution of future deaths for each model Mk:

Dx,t ∼ Poisson(µkx,t · ex,t)

where µkx,t are the forecasted mortality rates under model Mk and ex,t, for t = tN+1, . . . , tN+M ,
are the exposures of the validation set. A good averaging approach should aggregate the models
such that the resulting model maximizes the likelihood of the observed number of deaths on the
validation set. This is the key idea of the stacking of predictive distributions.

3.2.1 Stacking of predictive distributions

The first quantity to determine is the posterior predictive density of future deaths given the
training data, i.e. p(dx,j|y1:N) for all validation years j = tN+1, . . . , tN+M . These quantities
can be computed with the help of the posterior distribution p (θ | y1:N) of the parameters θ
conditionally to the training dataset for each model Mk. Formally, we have

p (dx,j | y1:N ,Mk) =

∫
p (dx,j | y1:N , θ,Mk) p (θ | y1:N ,Mk) dθ. (3.5)

The density (3.5) is analytically intractable but can be approximated based on MCMC samples.
Having obtained S draws

(
θ(1), . . . , θ(S)

)
from the posterior distribution p (θ | y1:N ,Mk), we

simply approximate p (dx,j | y1:N ,Mk) by

p (dx,j | y1:N ,Mk) ≈
1

S

S∑
s=1

p
(
dx,j | y1:N , θ

(s),Mk

)
.

The goal of stacking a set ofK predictive distributions built from the modelsM = (M1, . . . ,MK)

is to find the distribution in the convex hull C =
{∑K

k=1 wk × p (· |Mk) :
∑

k wk = 1, wk ≥ 0
}

that is optimal according to some given criterion. In this paper, we follow the approach of Yao
et al. (2018) and use a logarithm scoring rule to define the optimality criterion. The weights
wk, k = 1, . . . , K, associated to each mortality model Mk ∈ M follows from solving the
optimization problem

max
w∈SK1

xn∑
x=x1

tN+M∑
j=tN+1

log
K∑
k=1

wkp (dx,j | y1:N ,Mk) ,

where

SK1 =

{
w ∈ [0, 1]K :

K∑
k=1

wk = 1

}
.

The combined predictive distribution is then given by

p (dx,j | y1:N) =
K∑
k=1

wkp (dx,j | y1:N ,Mk) .

By construction, this averaged distribution maximizes the log likelihood of the observed number
of deaths in the validation set among all distributions in the convex hull C.
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3.2.2 Pseudo-BMA

As an alternative approach, we consider an AIC-type weighting scheme using leave-future-out
validation. To compare the different models, we use the expected log predictive density for each
model Mk (elpdk) as a measure of predictive accuracy, see Vehtari et al. (2017). The elpdk is
defined as follows:

elpdk =
xn∑
x=x1

tN+M∑
j=tN+1

log p (dx,j | y1:N ,Mk) . (3.6)

Hence, elpdk is the sum of the point-wise posterior predictive densities over all held-out data
points, namely observed deaths for all ages x and all validation years j = tN+1, . . . , tN+M . We
can interpret elpdk as an aggregate measure of how well the model Mk predicts the observed
deaths in the validation set. The Pseudo-BMA weight for model Mk is given by

wk =
exp

(
elpdk

)∑K
k=1 exp

(
elpdk

) .
4 Simulation study

A simulation experiment is carried out in order to better understand the behaviour of the se-
lection methods described in Section 3. We take the Belgian mortality data for calendar years
from 1959 to 2019 and people aged 50 to 90. A mortality model is fitted to these data and the
draws from the posterior distribution are then used to generate 80 synthetic mortality data sets.
The dimensions of the synthetic data corresponds exactly to the original mortality data. The
various mortality models are fitted to the synthetic datasets, the last ten calendar years of which
have been set aside for the evaluation of the out-of-sample forecast error. We want to measure
the ability of the selection method to choose the most suitable model. We do this by inspecting
the value of the weights returned by each method. We assess the predictive power of the model
averaging strategies by examining how well the predicted mortality rates µx,t overlap with the
mortality rates of the test set

y = (dx,t, ex,t), for x = 50, . . . , 90 and t = 2010, . . . , 2019.

Because we use Bayesian inference, we have a probability distribution Fx,t around each mor-
tality rate µx,t. The accuracy of this family of forecast distributions F = (Fx,t) is measured via
two scoring rules. The logarithmic score is defined as

LogS(F, y) = − 1

40

90∑
x=50

1

10

2019∑
t=2010

log

[
fx,t

(
dx,t
ex,t

)]
, (4.1)

where fx,t is the PDF of Fx,t. The continuous ranked probability score (CRPS) is given by

CRPS(F, y) =
1

40

90∑
x=50

1

10

2019∑
t=2010

∫
R
(Fx,t(µ)− 1{dx,t/ex,t ≤ µ})2 dµ. (4.2)
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The evaluation of the criteria (4.1) and (4.2) requires to replace the CDFs Fx,t and the PDFs fx,t
by their empirical counterparts recovered from our HMC samples. The forecast distributions
associated to the averaging methods correspond to a mixture of the forecast distributions asso-
ciated to the single mortality models. The use of such scoring rules to compare probabilistic
population forecasts is discussed in the work of (Keilman, 2020). The concrete evaluation of
the score is done using the R package scoringRules (Jordan et al., 2019). Finally, the pointwise
accuracy of the model averaging strategies is measured by the mean absolute error (MAE) of
the posterior means µ̂x,t, based on the test dataset, averaged over all ages as

MAE =
1

40

90∑
x=50

1

10

2019∑
t=2010

|dx,t − ex,tµ̂x,t|. (4.3)

The depth of the data history ranges from 20 up to 50 calendar years. For the pseudo-BMA and
stacking approach, we have considered validation sets containing 1, 5 and 10 calendar years.
The split of the data between training, validation and test sets is summarized in Table 2. We

Fitting Validation Prediction

BMA 1989-2009 2010-2019
1979-2009 -
1969-2009 -
1959-2009 -

pseudo-BMA / Stacking 1989-2008 2009 2010-2019
1989-2004 2005-2009 -
1989-1999 2000-2009 -

1979-2008 2009 2010-2019
1979-2004 2005-2009 -
1979-1999 2000-2009 -

1969-2008 2009 2010-2019
1969-2004 2005-2009 -
1969-1999 2000-2009 -

1959-2008 2009 2010-2019
1959-2004 2005-2009 -
1959-1999 2000-2009 -

Table 2: Simulation experiments and time-line assumptions

have noticed that a validation set containing only one calendar year is insufficient, hence the
results are not reported for brevity. The difference between having 5 or 10 years in the validation
set is so small that we only report the results associated with a validation set containing 10 years
of data. Note that it is consistent with the size of the test dataset. We consider two cases:

• In the first one, the data is generated by an Age-Period-Cohort model. The true model is
among the competing models and the results are given in subsection 4.1.
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• In the second case, the numbers of death result from taking the average of death counts
drawn from a Cairns-Blake-Dowd model and from a Renshaw-Haberman model. The
true model is not among the competing models, which brings us closer to a real situation.
The results are discussed in subsection 4.2.

4.1 Data generated by an Age-Period-Cohort model

The APC model is fitted to the Belgian mortality data for calendar years from 1959 to 2019
and people aged 50 to 90, the posterior distribution of the parameters is provided on Figure
Figure 1. Based on the posterior draws, 80 synthetic mortality datasets are generated to which
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50 55 60 65 70 75 80 85 90
Ages

(a) αx, x = 50 . . . , 90

−0.75

−0.50

−0.25

0.00

1960 1970 1980 1990 2000 2010
Calendar years

(b) κt, t = 1960 . . . , 2019
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(c) γt−x, x = 50 . . . , 90; t = 1960 . . . , 2019
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1100

1200

1300

1400

1500

(d) φ

Figure 1: Posterior distribution of the parameters of the APC model that generated the synthetic
data.

are fitted the mortality models including LC, CBD, APC, RH and M6. The synthetic data pro-
vided to the mortality models only contain the calendar years from 1959 to 2009, the remaining
ten years are kept as a test set to assess the predictive power through the scoring rules and the
mean absolute error defined in (4.1), (4.2), and (4.3). The validation set for the pseudo-BMA
and stacking methods contains 10 years of data. Figure 2 shows the distribution of the weights
assigned to each mortality model depending on the averaging method and the number of calen-
dar years in the training dataset. We note that all the methods discard the CBD and LC models
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Figure 2: Weights assigned to each mortality model, depending on the method and the number
of calendar years in the training set for 80 synthetic data sets generated by an Age-Period-
Cohort model.

as they do not account for the cohort effect. The pseudo-BMA and stacking methods clearly
favor the APC model. The standard BMA approach favors the M6 model when 20 years are
included in the training data set before clearly siding for the APC model. Figure 3 displays the
logarithmic score, the CRP score, and the mean absolute error of the prediction resulting from
the mortality models and their combination via the different methods of model aggregation as
a function of the number of calendar years in the training dataset. As expected, the best pre-
diction is provided by the APC model while the predictions made by the CBD and LC models
are quite flawed. Since stacking and pseudo-BMA tend to always choose the APC model, their
use leads to a slight improvement in predictions over the BMA approach. We note that the
prediction error is slightly higher when 50 calendar years are included in the training data set.
This might seem counter-intuitive as one would expect that the more data there is, the better the
prediction. This is not generally true when studying mortality. Years too far from the projection
horizon may degrade the forecast, especially if the period effect κt presents structural changes
(Van Berkum et al., 2016). In particular, Figure 1 shows that κt is rather constant between 1960
and 1970 and then decreases after 1970, representing the improvement in longevity from 1970.
This, together with Figure 3, suggests that including the data from 1960 to 1970 deteriorates
the mortality predictions. If 20 calendar years seem sufficient to make reasonable predictions,
taking 30 or 40 calendar years widens the gap between the prediction errors resulting from
models that encapsulate a cohort effect and those that do not. The case studied in this section
corresponds to a situation where the model is well specified because the APC model belongs to
the competing models. The next section will allow us to see whether these results are also valid
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Figure 3: Logarithmic score, CRP score and mean absolute errors calculated over 80 simulated
datasets from an APC model depending on the number of calendar years in the training dataset.

in a misspecified case.

4.2 Data generated by a mixture between a CBD and RH model

The same Belgian mortality data set is used to fit the CBD and RH models. Each model is used
to generate 80 synthetic mortality data sets. The synthetic data sets are combined in pairs
by taking the average number of deaths. We then fit the mortality models to these hybrid
mortality data (without the last ten years that will be used to measure the out-of-sample error)
and apply the different models averaging strategies. Figure 4 shows the distribution of the
weights assigned to each mortality model depending on the averaging method and the number of
calendar years in the training dataset. The BMA approach favors the M6 model but also chooses
from time to time the RH and APC models. The stacking and pseudo-BMA techniques clearly
side for the APC model. Let us see what it means in terms of the prediction errors. Figure 5
displays the logarithmic score, the CRP score, and the mean absolute error of the prediction
resulting from the mortality models and their combination via the different methods of model
aggregation depending on the number of calendar years in the training datasets. The APC
model returns the smallest prediction error and the same goes for stacking and pseudo-BMA
approaches which tend to give the APC model a lot of credibility. Again, taking 50 calendar
years is detrimental to the accuracy of the forecast. This study demonstrates the good behavior
of the Bayesian model averaging methods in a controlled environment (the data generation
process being specified by us). Due to the good performances of the APC model, and the
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Figure 4: Weights assigned to each mortality model, depending on the method and the number
of calendar years in the training set for 80 synthetic datasets generated by a mixture of a CBD
model and a RH model.

fact that the selection methods allocate a weight close to 1 to it prevents the model averaging
methods from making better prediction than that the APC model. The following section is
devoted to the application to actual mortality data sets.

5 Application to real mortality data

In this section we apply the three model averaging approaches discussed in Section 3 to mortal-
ity data from France, UK, USA and Japan. The data chosen for illustrative purposes are the male
death data and the corresponding exposures of these four countries, for ages 50−90 and the last
40 years of data available (1979-2018) extracted from the Human Mortality Database (HMD)2.
To assess the prediction performance, we split the data into two parts: the first 30 years are used
for the weights selection (1979-2008) and the last 10 years (2009-2018) are used to compare
the weighted forecasts. For the calculation of the stacking and pseudo-BMA weights, the data
is then divided into two parts: the first 20 years are used as a training set while the remaining 10
years are used for validation. The size of the leave-future-out validation set is consistent with
the findings of Section 4. The data partitions associated to each model averaging method are
given in Table 3.

2See www.mortality.org.
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Figure 5: Logarithmic score, CRP score and mean absolute errors calculated over 80 data sets
simulated from a mixture of a CBD model and a RH model depending on the number of calendar
years in the training data set.

Table 3: Fitting, validation and prediction periods for the three model averaging approaches.

1979-1998 1999-2008 2009-2018

BMA Fitting
PredictionStacking Fitting Validation

Pseudo-BMA Fitting Validation

5.1 Model Weights

Table 4 provides the weights obtained via standard BMA (marginal likelihood), stacking and
pseudo-BMA for France, UK, USA and Japan. The BMA and pseudo-BMA approaches tend to
only select one model. This was expected given the size of the dataset (see Yao et al. (2018) and
the references therein). On the other hand, the stacking approach selects two models for UK and
USA and three models for France and Japan. Overall, we observe a certain agreement between
the stacking and pseudo-BMA approaches based on validation while the BMA and pseudo-
BMA do not always select the same model. We also note that the standard BMA approach
favors either the RH model or the M6 model3; this is in agreement with the frequentist literature
in which the RH model or the CBD with cohort effect have been often identified as the best

3We note that the model selection via BMA is sensitive to the sample period used to fit the models. For a
20-year fitting period (1979-2008), we found that the M6 model was selected for France and UK, and the APC
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Table 4: Model Weights for France, UK, USA and Japan via BMA, stacking and pseudo-BMA.

France UK

BMA Stacking Pseudo-BMA BMA Stacking Pseudo-BMA

LC 0 0.093 0 0 0 0
RH 1 0.750 1 0 0.298 0
APC 0 0.157 0 0 0 0
CBD 0 0 0 0 0 0
M6 0 0 0 1 0.702 1

USA Japan

BMA Stacking Pseudo-BMA BMA Stacking Pseudo-BMA

LC 0 0 0 0 0.367 0
RH 1 0.71 0.982 1 0.174 0
APC 0 0.29 0.018 0 0.458 1
CBD 0 0 0 0 0 0
M6 0 0 0 0 0 0

candidate model when model selection is based on the BIC or AIC criterion, see Cairns et al.
(2009) and Haberman and Renshaw (2011) among others.

5.2 Prediction performance

To assess the prediction performance of the three Bayesian model averaging approaches, we first
compute the 95% credible intervals of the projected log death rates for age x = 65, 75, 85 as a
function of time, 10 years into the future, along with the observed crude death rates as shown
in Figure 6. An ideal credible interval should be sufficiently large to contain the observed death
rates of the next 10 years but not too wide to avoid overconservative credible intervals. We note
the following:

• For France, the three methods provide reasonable and similar credible intervals at age
85. However, at age 75 and age 65, whatever the approach, the intervals seem to be too
narrow as the last death rates tend to fall outside the confidence bands.

• For the UK, we also observe that the intervals are too narrow at age 85 while the observed
death rates fall right inside the intervals at age 65 and 75.

• For the USA, the model averaging methods fail to match the observed death rates at age
75 as they lie outside the confidence interval.

model for USA and Japan. The sensitivity of mortality models to the sample period has been extensively studied
and we refer to Cairns et al. (2011a) among others.
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• For Japan, we observe that for the ages 65 and 75, the observed death rates are more cen-
tered for the stacking approach while standard BMA better projects at age 85 as credible
intervals encompass the observed death rates at that age.

We now study the performance of the models when estimating mortality indicators that
aggregate all ages. A common quantity is the life expectancy at birth but it would require the
full age range. Since we focus on the age range 50 − 90, we instead compute a 40-year period
survival probability of a person of age x = 50 for any year t:

40p50,t =
39∏
i=0

p50+i,t =
39∏
i=0

exp (−µ50+i,t) . (5.1)

It corresponds to the probability that a 50 years old person to live for more than 40 additional
years given the mortality conditions at year t. On Figure 7, we have plotted the 95% credible
intervals of the period survival probabilities for the 10-year period 2009− 2018, along with the
observed quantities. For France, the holdout survival probabilities lie within the 95% prediction
intervals of the three model averaging approaches. However, for the UK, the stacking approach
overestimates the survival probabilities while the BMA and Pseudo-BMA approaches manage
to get the observed quantities in their prediction intervals. For Japan, the intervals obtained
by stacking seem to be slightly too narrow as the first holdout points lie outside the prediction
intervals. For the four countries considered, the BMA and Pseudo-BMA slightly outperforms
the stacking approach by providing wider confidence intervals for the survival probability.

To close, we also assess the predictive performance by age for each country through the
Mean Absolute Error (MAE) over the years in the test set:

MAEx =
1

10

2018∑
t=2009

|dx,t − ex,tµ̂xt|, x = 50, . . . , 90,

where µ̂xt is the posterior mean of the forecasted death rates. Figure 8 shows the MAE by age
for France, the UK, the USA and Japan according to the standard BMA, stacking and pseudo-
BMA. Shifting from BMA to stacking or pseudo-BMA, a large improvement in the forecasts
accuracy is obtained, especially for the ages 70 to 90. In particular, for France and USA, the
MAE levels clearly for the stacking approach lie below the MAE levels of BMA and Pseudo-
BMA. For the UK, the performances of the three methods are close for the ages 50 to 80 but the
stacking approach leads to better MAEs after age 80. For Japan, the comparison is not obvious.
However, we did compute the overall MAE across ages and years and found for Japan:

MAE (BMA) = 579.30, MAE (stacking) = 489.74, MAE (Pseudo-BMA) = 758.76

Hence, at the aggregate level, stacking still provides a better forecast performance than BMA,
even for Japan.

Finally, to assess the accuracy of the predictive forecast distribution for future death rates,
we study scoring rules as considered in Equation 4.1 and Equation 4.2 in the simulation study.
Table 5 presents the log score and the CRPS for France, UK, USA and Japan for the three model
averaging approaches and all single models. First, we observe that stacking outperforms BMA
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and pseudo-BMA for France and USA while for Japan, BMA is the best aggregation model.
For UK, the result is not clear: stacking is better in terms of CRPS but not in terms of log score.
Concerning single models, there is no evidence of a best single model across countries and the
‘optimal’ model depends on the country and the scoring rule studied. We also note that stacking
does not outperform all single models but tends to consistently rank among the top three. In
this sense, stacking allows to reduce partially the model risk.

Table 5: Log score and CRPS for France, UK, USA and Japan via BMA, stacking and pseudo-
BMA, and all single models averaged over forecast years and ages. We indicate in bolds the
best performance by model averaging approach and by single model. CRPS are multiplied by a
factor 1000 for clarity.

France UK

Log score CRPS Log Score CRPS

BMA -4.585 0.988 -5.275 2.109
Stacking -4.748 0.848 -5.006 1.965
Pseudo-BMA -4.585 0.988 -5.275 2.109

LC -4.943 1.050 -4.701 1.840
RH -4.585 0.988 -4.743 1.854
APC -5.402 1.441 -5.019 2.256
CBD -4.183 3.860 -4.401 1.539
M6 -3.799 3.298 -5.275 2.109

USA Japan

Log score CRPS Log Score CRPS

BMA -3.815 1.793 -5.166 1.084
Stacking -3.956 1.441 -4.972 1.430
Pseudo-BMA -3.804 1.771 -5.158 2.035

LC -3.168 4.166 -5.276 1.164
RH -3.815 1.793 -5.166 1.084
APC -5.551 0.938 -5.158 2.035
CBD -3.703 2.165 -4.972 2.577
M6 -5.151 1.404 -4.539 2.068

Overall, this validation exercise shows that stacking tends to outperform Pseudo-BMA and
standard BMA in terms of the ability to predict 10-year ahead for the four countries considered
here. We remark that for Japan, the situation is not evident: the MAE is better for stacking but
the scoring rules give the best performance to the standard BMA. Moreover, the performance
of standard BMA and Pseudo-BMA appears similar except that standard BMA performs better
for Japanese mortality data. In summary, this section shows that a model which provided good
forecasts for the last 10 years has a good chance to perform well for the following 10 years.
On the other hand, a model that fits well the mortality data has no a priori reason to be good at
forecasting future mortality data. We therefore recommend stacking based on leave-future-out
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validation to methods based on goodness-of-fit (standard BMA) for forecasting purposes.

6 Impact of Covid-type effect on mortality forecasting

In the context of the recent Covid-19 pandemic, it is important to determine how mortality mod-
els and forecasts react to a pandemic shock. In the following, we have perturbed the French male
data with two years of excess mortality followed by one year of lower mortality, and assessed
the impact in terms of model averaging weights and life expectancy. This pandemic scenario
is in the spirit of Cairns et al. (2020) who proposed an accelerated deaths model to explore the
impacts of the pandemic on life expectancy. The authors argue that “many of those who die from
coronavirus would have died anyway in the relatively near future due to their existing frailties
or co-morbidities. Therefore, the life expectancy of the surviving population might slightly in-
crease compared to their pre-pandemic levels”. For this reason, we do compensate two years
of excess mortality by a slight decrease in mortality in the third year.

We take the male death data for France until year 2018 from the Human Mortality Database,
and perturb the death counts associated to the remaining three years as follows:

• For the years 2016 and 2017, we assume that there is a uniform death increase of 5%
across all ages:

dnew
x,t = (1 + β)dx,t,

with β = 0.05 for t = 2016, 2017.

• The increase in deaths is then compensated with a year of lower mortality. We assume a
death decrease of 2% across ages:

dnew
x,t = (1− β)dx,t,

with β = 0.02 for t = 2018.

First, we derive the weights associated to the standard BMA (marginal likelihood), stacking
and pseudo-BMA approaches based on 40 years of data (1979-2018) including 10 validation
years (2009-2018) with and without perturbations. Different observations can be drawn from
the results in Table 6. For BMA and Pseudo-BMA, the perturbations do not affect the weights:
the Renshaw-Haberman model is chosen by the BMA approach and the APC model is favored
by the Pseudo-BMA approach. For the stacking approach, we observe some slight changes
in the weights. With the perturbations, some weight is given to the Lee-Carter model and the
stacking approach therefore averages over three models (LC, RH and APC). Moreover, we
note that the weights obtained in Table 6 are different from the ones obtained in Table 4 in
the previous section since the validation and calibration periods are different. For instance, for
Pseudo-BMA, RH was chosen for the validation period 1999-2008 while APC was the selected
model for the validation period 2009-2018.

To measure the effect on life expectancy, and since we focus on the age range 50 − 90, we
compute the life expectancy at age 50 truncated at age 90 for the next 10 years (2019-2028),
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Table 6: Model Weights for France with and without Covid-type effect.

BMA Stacking Pseudo-BMA

Perturbations Without With Without With Without With

LC 0 0 0 0.147 0 0
RH 1 1 0.21 0.170 0 0

APC 0 0 0.79 0.682 1 1
CBD 0 0 0 0 0 0
M6 0 0 0 0 0 0

that is

e50:40 ,t =
40∑
k=1

kp50,t (6.1)

where kp50,t is the k-year survival probability at year t just like in Equation (5.1). We note that
(6.1) can be interpreted as the average number of payments of a life annuity at age 50 that ends
at age 90 since

e50:40 = E [min (K50, 40)] (6.2)

where K50 is the number of years lived by a person aged 50 (see for instance Section 2.6 in
Dickson et al. (2013)). In Figure 9, we plot the life expectancies, observed and predicted, from
2009 to 2018, according to each model averaging method. In order to better assess the impact
of the perturbations on the overall uncertainty, we show the predictions of the Lee-Carter model
without perturbations. In particular, we observe that the perturbed data via all three approaches
produce larger confidence intervals compared to the baseline LC model without perturbations
as one would expect. Indeed, the perturbations increase the volatility of the period effects κt
and therefore the uncertainty in future life expectancy.

The median life expectancy with and without Covid-type effect is plotted on Table 7. With
the perturbations, the median life expectancy increases between the years 2019 and 2028, and
this increase is more important than the situation without Covid-type effect. Hence, we do
observe a compensation effect of the pandemic.

Overall, we find that the three model averaging approaches predict an increase in life ex-
pectancy which is consistent with the historical trend and the 5% decrease in the number of
deaths associated to the compensation effect of the pandemic. We also note that the BMA ap-
proach which selects, in this case, the RH model provides wider prediction intervals due to the
cohort effect as depicted in Figure 10.

7 Conclusion

In this work, we address the problem of stochastic mortality model averaging. We start by
setting up an attractive Bayesian modeling framework because it allows us to consider several
mortality models and to account for the uncertainty around the parameter estimates. Model
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Figure 9: 95% prediction intervals for the life expectancy at age 50 (truncated at age 90) for
the 10-year period 2019-2028 via the three model averaging approaches with perturbed data.
For comparison, we also provide the 95% prediction intervals via the Lee-Carter (LC) model
without perturbations.

averaging strategies are then applied to mitigate the risk of selecting the wrong model. The
standard Bayesian model averaging, based on how well the model fits the training dataset is
challenged by two other model averaging strategies, referred to as stacking and pseudo-BMA,
that focus on the out-of-sample error.

We recommend the use of the leave-future-out based model averaging approaches for the pur-
pose of forecasting mortality trends. Our study draws on extensive simulation study and appli-
cations to real-world mortality data sets (with and without COVID-like disruption).

This work could be extended in many interesting ways. First, the validation technique could be
adapted to the case where the mortality patterns exhibit a change of regime. In fact, as discussed
with the COVID-type impact, the model averaging approach should assign more weights to
models that are not only good at representing the past but also at forecasting the future. Here,
we should introduce some potential regime switching techniques into the considered models in
order to tackle such a problem. However, this interesting problem is beyond the scope of the
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Table 7: Median Life Expectancy at age 50 (truncated at age 90) for French Male with and
without Covid-type effect.

BMA Stacking Pseudo-BMA

Perturbations Without With Without With Without With

2019 30.59 30.97 30.57 30.89 30.57 30.95
2020 30.70 31.11 30.71 31.04 30.72 31.10
2021 30.80 31.23 30.84 31.19 30.86 31.26
2022 30.89 31.33 30.98 31.33 31.00 31.42
2023 30.97 31.43 31.10 31.47 31.12 31.55
2024 31.05 31.52 31.22 31.60 31.27 31.71
2025 31.10 31.61 31.32 31.73 31.39 31.84
2026 31.19 31.70 31.43 31.86 31.49 31.99
2027 31.22 31.80 31.52 31.99 31.62 32.11
2028 31.30 31.91 31.62 32.10 31.73 32.23

Renshaw−Haberman (RH) Age−Period−Cohort (APC)

1900 1920 1940 1960 1980 1900 1920 1940 1960 1980
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Figure 10: 95% prediction intervals for the cohort parameter γt in the RH and APC models.

current paper and will be investigated in a future work. Finally, given the ability of the averaging
techniques to accommodate classic and most used models, an R package implementing the three
model averaging approaches is available for download to researchers as well as practitioners at
https://CRAN.R-project.org/package=StanMoMo.
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