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Abstract

The MONEE framework endows collective adaptive robotic
systems with the ability to combine environment- and task-
driven selection pressures: it enables distributed onlinealgo-
rithms for learning behaviours that ensure both survival and
accomplishment of user-defined tasks. This paper explores
the trade-off that must be reached between these two (possi-
bly contradictory) requirements, in the case where a foraging
task is defined by the user. In particular, we study the im-
pact of enforcing specialisation (i.e. the collective mustac-
quire two mutually exclusive foraging skills) as well as the
mechanism for tuning the level of specialisation in an on-line
fashion. Results show that the actual behaviour of the col-
lective system can be guided on request during the course of
evolution in order to achieve a particular distribution of spe-
cialisations, albeit within a certain range of values.

Introduction
The work in this paper is inspired by a vision of a collec-
tion of robots that evolve to survive and operate in an en-
vironment where human control can be effected only inter-
mittently. In such circumstances, the robots have to act au-
tonomously, without direct human intervention. They must
therefore survive long periods without any guidance and
when they do receive guidance, it is at a considerable de-
lay. The environment is not completely known at deploy-
ment time and it changes over time, as do the tasks that the
robots have to complete. Therefore, the robots must adapt to
survive the environment and to perform their tasks.

The environment in which robots operate indirectly cir-
cumscribes goals for the population of organisms to survive
and evolve, but does so without specifying objective func-
tions: the robots must for instance move about to spread
their genomes, or they must maintain their energy levels,
but these goals are not defined directly: it is just that ro-
bots that display this behaviour get more opportunities to
procreate. By virtue of its similarly unbounded nature, bio-
logical evolution has resulted in the high levels of adaptabil-
ity and robustness that we see in natural living organisms.
To exploit this creative potential in a system of evolving ro-
bots (or robot controllers), we would want to give evolution

as much freedom as possible, pushing for open-ended, un-
bounded adaptivity, unconstrained by user-defined objective
functions.

On the other hand, if the system is to be of any practi-
cal relevance, the robots must of course also perform user-
defined tasks, pushing for specific, crisply defined task-
related objectives.

Evolution has been employed to achieve both of these
facets. Artificial Life research abounds with examples of
objective-free evolutionary systems since the 1980s (Lang-
ton, 1989, 1995). In such experiments, evolution serves as
a force for adaptation. Evolutionary robotics research typ-
ically employs evolution as a force for optimisation when
it focusses on the task-driven aspect (Nolfi and Floreano,
2000).

Balancing these two aspects of evolution –environment-
driven adaptation and task-driven optimisation– represents a
vital step towards implementing our vision of autonomous,
functional, responsive and self-sufficient robot collectives.

In earlier work, we presented theMONEE (Multi-
Objective aNd open-EndedEvolution) to solve the problem
of combining objective-free and task-driven evolution in a
single algorithmic framework (Haasdijk et al., 2013).

The principal idea behindMONEE is to employ concur-
rently two selection mechanisms in different roles: envi-
ronmental selection for open-ended evolution and parent (or
mate) selection for task-driven adaptation. As the ’Multi-
Objective’ part of the name implies,MONEE accommodates
settings with multiple tasks. Jones and Mataric noted that
collectively tackling multiple tasks also entails a division of
work (2003). If there are multiple tasks, the population of
robots as a whole must tackle all of them, even though in-
dividual robots may specialise in only a subset. To cope
with such cases theMONEE framework uses a market mech-
anism. This mechanism regulates task-based rewards during
mate selection according to the market logic that scarcity in-
creases worth. In our multiple task context this implies that
tasks that only a few robots (can) perform yield relatively
high rewards and therefore higher selection probabilities.

We showed that theMONEE paradigm does indeed allow



the robots to adapt their behaviour to the environment as
well as to multiple tasks. Also,MONEE’s market mecha-
nism is crucial to keep the population from focussing exclu-
sively on easier tasks, even when the environment induces
specialisation in particular tasks at the individual robotlevel
(Haasdijk et al., 2013).

The market mechanism offers an intriguing possibility for
intervention in the adaptive process: users can define premi-
ums for particular tasks to (de-)emphasise their importance
and promote or prevent their take-up by the robots. This
amounts to defining an exchange rate between credits earned
for the various tasks. Such premiums provide a straightfor-
ward and intuitive method for human-on-the-loop interven-
tion in the behaviour of the robot collective.

We perform an experimental analysis of the influence
of premium settings in an implementation of theMONEE

paradigm where a simulated population of robots has two
tasks: it must collect red and green pucks. The experiment
is set up so that controllers for each task must be learned
separately. In particular, our research questions are:

• To what extent can a premium direct the focus of the robot
swarm to a particular task?

• Does a negative premium prevent the robots from display-
ing particular behaviour?

• How does swarm behaviour react to changing premium
settings?

Related Work
Bredeche et al. (2012) describe mEDEA, an open-ended evo-
lutionary algorithm where autonomous robots move around
an arena while continually broadcasting their genome over
a short range. Meanwhile, they also receive genomes from
other robots that come in communication range. When a
robot’s lifetime expires, it randomly selects one of the re-
ceived genomes, modifies that using mutation and starts a
new life of broadcasting this new genome. This set-up pro-
motes, with only environmental selection, robot movement
through the environment: genomes that cause the robot to
move around a lot are spread at a much higher rate than
genomes that cause their host to stand still.

Similar settings have been extended with forms of pa-
rental investment, for instance in Mascaro et al. (2005); Ven-
trella (2005); Schwarzer et al. (2010). In artificial life pa-
rental investment is often used to give the offspring a start-
ing value of (virtual) energy (Menczer and Belew, 1996;
Menczer et al., 1994; Burtsev et al., 2001; Scheutz and
Schermerhorn, 2005) and a parent’s energy level is often
linked to task performance (e.g., agents tasked with eating
grass to gather energy in Burtsev et al. (2001)). Distributed
on-line evolutionary systems such as Watson et al.’s embod-
ied evolution similarly employ task-related (virtual) energy
to determine parent and survivor selection (Watson et al.,

2002; Wischmann et al., 2007), typically considering single
tasks. These experiments showed that task-related virtual
energy (equivalent to credits for appropriate behaviour) is
an effective way to guide evolutionary adaptation to tackle
tasks.

Market-based schemes provide a well-known solution to
the task allocation problem in multi-agent and multi-robot
settings, for instance in (Walsh and Wellman, 1998; Tang
and Parker, 2007).

Fitness sharing is a well-known technique that was intro-
duced to promote genetic diversity and so prevent prema-
ture convergence in evolutionary algorithms. With fitness
sharing, an individual’s fitness is reduced if there are many
similar (in terms of their genetic makeup) individuals in the
population. Traditionally, fitness sharing is not necessarily
associated with multiple objectives, but with maintainingdi-
versity in general – typically, but not exclusively, in single-
objective settings.

MONEE: Multi-Objective & Open-Ended
Evolution

As mentioned above, earlier work showed thatMONEE ef-
fectively combines environment- and task-driven adaptation
(Haasdijk et al., 2013). The population of robots shows sim-
ilar adaptation to the environment withMONEE as it does
with its purely environment-driven counterpart mEDEA. In
addition, the robots learn to perform puck-collecting tasks.
They equitably distribute the collective foraging effort over
different puck types, even when one type is more prevalent
than the other or when the environment inhibits individual
robots gathering multiple types of puck.

The robot –actually, their controllers’– lifecycle in
MONEE consists of two phases: life and rebirth. The robot
controllers have a limited, fixed, lifetime during which they
perform their actions; moving about, foraging, et cetera.
When their lifetime ends, they enter a rebirth phase and be-
come ‘eggs’: stationary receptacles for genomes that are
transmitted by passing live robots. This rebirth phase also
lasts a fixed amount of time, and once this has passed, the
egg selects parents from the received genomes to create a
new controller. The robot then reverts to the ‘life’ role with
this new controller. Thus, robot controllers can procreate
by transmitting their genome to eggs, and the more eggs
a robot inseminates, the more chances it has for procre-
ation. Because the transmission of genomes is continuous
and at close range (e.g. through infrared), the more a robot
moves about the arena, the better its chances of producing
offspring. This aspect ofMONEE is open-ended in the sense
that it is objective-free: there is no calculated performance
measure that defines the chances of being selected as parent,
there is no task. Only the environment and robot behaviour
dictates what robots may or may not become parents.

To add task-driven parent selection to this basic evolu-
tionary process, the robots can, during their lifetime, amass



credits by performing tasks. For instance, a robot could get
one credit for every piece of ore it collects, one for success-
fully solving some puzzle, and so on. If multiple tasks are
defined, the robots maintain separate counts for the cred-
its awarded for each task, for instance one counter for the
pieces of ore collected and another one for the number of
puzzles solved. When a robot inseminates an egg, it passes
the current credit counts along with the genome and the egg
uses that information to select parents when it revives. This
scheme is reminiscent of parental investment, but it differs
subtly yet crucially from most parental investment schemes:
a parent does not actually invest when impregnating an egg
because the credits aren’ttransferredbut copiedat no cost
to the parent.

When a robot’s egg phase finishes, it compares the par-
ents’ credits for each genome it has received. To enable this
comparison across tasks, the egg calculates an exchange rate
between tasks. This ensures that genomes that invest in tasks
for which few credits are found overall (presumably hard
tasks) are not eclipsed by genomes that favour easier tasks.

The credits relate task performance to reproductive suc-
cess: besides the open-ended goal of ‘merely’ transmitting
genomes to eggs, robots must also become proficient at the
defined tasks for these genomes to be selected. The more
proficient a robot is at a task, the higher its chances of pro-
creating. The comparison of credits across multiple tasks
introduces an exchange rate between the earnings per task:
the more common credits are for a particular task, the less
their worth and vice versa. Thus, parent selection becomes
a marketplace for skills and features that the user requires.
This system naturally caters for multi-objective approaches.

MONEE’s market mechanism is similar to fitness sharing
in the sense that it also reappraises fitness, favouring tasks
that are less commonly tackled by robots in the population.
A crucial difference with traditional fitness sharing is that
MONEE considers an individual’sbehaviour, not its genetic
make-up (reminiscent ofsyntacticfitness sharing in genetic
programming (Nguyen et al., 2012)). Hence, it does not pro-
mote genetic, but behavioural diversity: it modifies fitness
not to prevent premature convergence, but to ensure that the
robot population tackles multiple tasks.

It also allows the user to prioritise tasks in a straightfor-
ward manner: the user can influence the credit comparison
by defining a premium for some or all of the tasks. For in-
stance, if she deems collecting ore more important than solv-
ing puzzles, she can define a premium for collecting ore; the
credits earned through this task are then multiplied by the
premium. Compared to not defining a premium (or defin-
ing a premium of1), setting a premium> 1 increases the
payoff for the relevant task, setting it between0 and1 re-
duces it, while setting it to a negative value causes the robot
adaptation to shy away from the task.

The pseudo-code in algorithm 1 details the credit compar-
ison market mechanism with premiums defined.

for every defined taskdo // total credits
for every received genomedo

creditstask ←

creditstask + (premiumtask · genome.creditstask)

end
creditsoverall ← creditsoverall + creditstask

end

for every defined taskdo // exchange rate per task

ratetask ←
credits

overall

credits
task

end

for every received genomedo // credits per genome
for every defined taskdo

genome.rating ← genome.rating + (premiumtask ·

genome.creditstask · ratetask)

end
end

// select, mutate and revive
parent← rank based selection(received genomes)
child← mutate(parent)
reactivate(child)

Algorithm 1: MONEE’s market mechanism

Experimental Set-up
We implemented theMONEE algorithm in a simple 2D sim-
ulator called RoboRobo (?) In our experiments, 100 simu-
lated robots are placed in an environment that contains ob-
stacles and pucks. The sides of the square arena are roughly
330 robot body lengths long (1024 pixels in the simulator),
and it contains a number of obstacles (see Fig. 1). We run
64 repeats of each experiment.

The environment contains two types of puck: green
and red, defining a concurrent foraging scenario. Concur-
rent foraging is a variation of regular foraging where the
arena is populated by multiple types of objects to be col-
lected (Jones and Mataric, 2003), rather than just a sin-
gle resource. In our case, these objects are green and
red pucks and the collection of each different colour is a
different task. The pucks are distributed throughout the
arena, and they are immediately replaced in a random lo-
cation when picked up. The (re-)placement of pucks is
governed by a 2D gaussian distribution centred on the
middle of the arena and withσ of half the arena width.

Figure 1: Experiment arena.

The robots move around
the arena, spreading
their genome as they
encounter eggs and dy-
ing when their allotted
time has passed. They
collect pucks simply
by driving over them
and the more pucks
they gather, the more
likely their genome is
to be selected once an
egg they impregnated
revives.

To detect pucks, the robots have 16 sensors that detect ei-
ther red or green pucks (i.e., 8 sensors per puck-type). Each



set of 8 sensors is laid out so that 6 face forward, 2 face to
the rear (similar to, for instance, obstacle sensors on a khep-
era robot). Because individual sensors only detect a single
type of puck, collecting one type of puck is a task distinct
from (but very similar to) collecting the other type of puck.
Thus, behaviour to collect either type of puck has to evolve
separately.

Each robot is controlled by a single-layer feed forward
neural network which controls its left and right wheels. The
inputs for the neural network are the robot’s puck and obsta-
cle sensors.

The robot’s genome directly encodes the neural network’s
weights (3 types of sensor× 8 sensors× 2 outputs plus 2
bias connections plus 4 feedback (current speed and current
rotation to either output) = 54 weights) as an array of reals.

As mentioned, the robots alternate between periods of ex-
plorative puck gathering and motionless genome reception.
To prevent synchronised cycles among the robots, we add a
small random number to each robot’s fixed lifetime. This
forces desynchronised switching between life and rebirth
even though our runs start with all robots perfectly in sync
at the first time-step of their lifetime.

At the end of the egg phase offspring is created by se-
lecting a parent from the received genomes as shown in al-
gorithm 1 and mutating the weights in that genome using
gaussian perturbation with a single, fixed mutation step size
σ = 1. This single-parent, mutation-only scheme is com-
mon in evolution strategies that are known to perform well
on problems with continuous-valued genomes (Beyer and
Schwefel, 2002).

Note thatMONEE does not prescribe any particular con-
troller implementation nor any choice of variation operator.
The implementation we chose here of an artificial neural net-
work with the weights encoded as real-valued genes provide
a convenient, flexible and well-established representation.

Table 1 summarises the experimental set-up. The para-
graphs below describe our experiment’s variants in detail.
Code for the experiments is available athttp://pages.
isir.upmc.fr/evorob_db/moin.wsgi.

Premium It is straightforward to (de-)emphasise particu-
lar tasks inMONEE by simply putting a premium on credits
earned for that task. To investigate how premiums influence
adaptation, we apply premiums ranging from -1 to 100 to
the task of collecting green pucks, including a number of
runs where the premium is redefined during the run. The
premium for red pucks remains constant at 1.0.

During parent selection, the premium is used as a mul-
tiplication factor for the number of green pucks collected.
Thus, with a premium set to -1, robots collecting green
pucks are penalised. A premium of 0 means that there is
no benefit to collecting green pucks: only red pucks are con-
sidered for parent selection. A premium of 1 means that
red and green pucks contribute equally to the chance of a

Experiment details

Robot group size 100
Simulation length 1,000,000 time-steps
Number of repeats 64
Number of pucks 500, 150 or 50 green, 500 or 150

red
Arena See fig. 1
Premium settings -1,0,1,2,5,10,20,50,100

Controller details

Controller Perceptron neural net
Input nodes 8 obstacle sensors, 16 puck de-

tectors, 2 bias and 2 recurrent
nodes

Output nodes 2 (left and right motor values)

Evolution details

Representation Real valued vectors
Chromosome length 54
Mutation GaussianN(0, 1)
Parent selection Rank-based
Robot lifetime 2000 time-steps
Egg-phase 200 time-steps
Comm. range ca. 9 body lengths

Table 1: Experimental set-up

genome being selected, and higher values increase the im-
portance of collecting green pucks.

Mutually exclusive skills Equitable task distribution is
more challenging when the tasks that the robots must per-
form are to some extent exclusive, for instance because they
require irreconcilable skills. To test how premium settings
affect theMONEE paradigm in such situations, we also run
experiments where the environment constrains multi-skilled
robots so that the robots must specialise in collecting one
type of puck. Without this constraint, robots can collect
green and red pucks equally well without any penalty when
selecting both or merely one colour. In the mono-skill exper-
iments the speed of robots depends on their specialisation
level: the robot’s speed is multiplied by the ratio of most
prevalent pucks it has collected. Thus, if a robot collects
exclusively pucks of one colour, its speed is maximal. If it
collects 75% green (or red) pucks, its speed is reduced by
25% and if it collects red and green pucks in equal amount,
the speed is halved. This penalty is recalculated whenever
a robot picks up a puck. It is important to note that this is
enforced by the environment, not during the parent selection
phase when an egg revives. The environment causes spe-
cialising robots to move faster, so that they perform better
than non-specialised robots: their higher speed allows them



to collect more pucks during their lifetime, but more impor-
tantly, it allows them to impregnate more eggs. This results
in an increase in the proliferation of mono-skilled genomes
without altering the selection process inside the eggs.

Distribution of pucks Another determinant for the diffi-
culty of task distribution in our experiments is the ratio of
puck colours. This can be seen as a proxy for having a dif-
ficult (rare pucks) and an easy (common pucks) task. To
determine the impact of setting premiums with an uneven
distributions of pucks, we run two variants of our experi-
ments: one with 150 pucks of each colour, one with 50 green
and 150 red pucks. We perform additional runs with denser
spreads of pucks where there are 500 pucks of each colour.

Changing premium A last set of experiments explores
the evolutionary dynamics in the context of changing pre-
miums. The rationale is the following: what would be the
effect on the ratio of harvested puck colours if the premium
is reset on-the-fly by a human supervisor? Then, what hap-
pens if the premium is changed back to its initial value after
awhile? The system dynamics would be more predictable if
the harvested pucks ratio matches the original figures, that
is evolutionary dynamics always converge to the same ra-
tio values, independent from the initial conditions. It may,
however, be expected that the evolutionary dynamics are af-
fected by the behaviour from where it already converged (i.e.
the ratio depends from the actual premiumand from where
evolution starts). To explore the influence of changing pre-
miums on-the-fly we use the following set-up: in a setting
with the same number of red and green pucks (150 of each)
the premium is initially set to 10. After 500,000 time steps,
the premium is changed to 1 for 250,000 time steps. It is
then reset to 10 for the remainder of the experiment.

Results and Analysis
The Effect of Premiums Figure 2 shows the mean total
number of pucks collected in the experiments with 150 green
and red pucks. Setting a negative premium predictably de-
creases the total number of pucks collected: the robots learn
to avoid green pucks, in effect halving the number of avail-
able pucks. Setting the premium to 0 in the mono-skilled
(i.e. with specialisation) environment still results in much
lower levels of collected pucks because, again, the robots
learn to keep away from green pucks and so avoid the en-
vironment’s speed penalty for generalist behaviour. This
penalty does not apply in the multi-skilled environment (i.e.
without specialisation), and the number of pucks collected
for premium 0 is markedly higher than with premium -1.
The robots now pick up green pucks accidentally and they
can take more direct paths to red pucks because they do not
have to avoid green pucks. Setting the premium to 1 in-
creases the number of pucks collected: robots now actively

Figure 2: Mean total number of pucks collected over the
whole run for different premium settings with 150 pucks of
each colour. The vertical bars indicate the 99% confidence
interval (over 64 repeats).

seek both types of puck. The mono-skilled environment still
causes individual robots to avoid one type of puck or the
other, therefore the number of pucks is lower than in a multi-
skilled setting. Higher premium values slightly increase the
number of pucks collected, but among these values it does
not change appreciably.

To assess the impact of premium settings on the task dis-
tribution among the robot collective we consider the ratio of
green pucks collected (‘green puck ratio’) over all collected
pucks. Figure 3 shows how this ratio develops over time for
different premium settings in the experiment with 150 pucks
of each colour. Initially, the robot collective always gathers
green and red pucks in a 50-50 ratio. With a premium of 1

Figure 3: Development over time of the green puck ratio for
a subset of the premium settings we considered. The points
indicate the median green puck ratio for 1,000 time step in-
tervals over 64 repeats, the shaded areas indicate lower and
upper quartile.



Figure 4: Mean green puck ratio in the final 1,000 time steps
of runs with 150 pucks of each colour. The vertical bars
indicate the 99% confidence interval over 64 repeats.

red and green pucks are equally valuable and the collective
maintains this ratio. A premium of -1 has a profound impact:
the robots learn to avoid green pucks and almost exclusively
collect red pucks. This setting seems similar to the poi-
sonous food experiment described by?, but the penalty for
collecting ‘poisonous’ green pucks is effected during parent
selection, not by the environment cutting short lifetime or
reducing speed. A premium of 0 also leads to a substantial
decrease in the green puck ratio: robots learn to focus on red
pucks, but green pucks are not avoided and circa 30% of col-
lected pucks is green. A premium of 10 increases the green
puck ratio, which levels off around 0.65. The green puck ra-
tio for premium 0 is in the same range as the red puck ratio
for a premium of 10 (circa 0.3 and 0.35, respectively). This
already indicates that larger premium values will do little
to increase the green puck ratio (a premium of 0 for green
pucks would have the same effect as a very high premium
for red pucks).

This is borne out by the plot in Fig. 4, which shows the
green puck ratio in the final 1,000 time steps of the simu-
lation for varying premiums. We see that the green puck
ratio among premium settings of 10 (or even 5) and higher
barely changes. We also see that mono-skilled environments
increase the impact of defining a premium: obviously, more
robots will specialise in the higher rewarding task.

One reason for the lack of additional impact for higher
premium values might lie in a saturation effect: if the ro-
bots simply cannot gather more green pucks than they do,
the ratio can hardly improve. To test this hypothesis, we
ran another set of experiments where there are 500 pucks of
each colour. Figure 5 shows the results of those experiments.
They show the same levelling off of premium impact, so it
doesn’t seem to result from a saturation effect.

Figure 5: Mean green puck ratio in the final 1,000 time steps
of runs with 500 pucks of each colour. The vertical bars
indicate the 99% confidence interval over 64 repeats.

Uneven Distribution of Pucks We use a setting where
there are more red than green pucks (150 vs. 50) as a proxy
for having easy and hard tasks. In these experiments, the
‘natural’ green puck ratio is 0.25, which is what we see in
Fig. 6 when the premium is set to 1 in a multi-skill environ-
ment. When the environment discourages generalists, the
ratio is slightly lower because robots tend to specialise in
the simpler task (earlier work showed thatMONEE’s market
mechanism plays a crucial role here (Haasdijk et al., 2013)).
As was the case in the two scenarios where the puck distri-
bution is balanced, increasing the premium past 5 or so has
little further effect. The green puck ratio levels off between
0.3 and 0.4 for all premium values of 5 and greater.

Figure 6: Mean green puck ratio in the final 1,000 time steps
of runs with 50 green and 150 red pucks. The vertical bars
indicate the 99% confidence interval over 64 repeats.



Figure 7: Development over time of the green puck ratio
with changing premium with specialisation. The vertical red
lines indicate when the premium is reset from 10 to 1 and
back to 10. The points indicate the median green puck ratio
for 1,000 time step intervals over 64 repeats, the shaded ar-
eas indicate lower and upper quartile. Green puck ratio for a
constant premium of 10 shown for reference.

Figure 8: Development over time of the green puck ratio
with changing premium without specialisation. The vertical
red lines indicate when the premium is reset from 10 to 1
and back to 10. The points indicate the median green puck
ratio for 1,000 time step intervals over 64 repeats, the shaded
areas indicate lower and upper quartile. Green puck ratio for
a constant premium of 10 shown for reference.

Varying Premium Settings Figures 7 and 8 show the
puck ratio over time with changing premium with specialisa-
tion enforced and a multi-skilled setting, respectively. Note
that we ran the experiment with changing premium for a fur-
ther 1 million time steps to gauge long-term effects of chang-
ing premiums. With or without specialisation enforced, the
green puck ratio initially develops unsurprisingly similar to

the control experiment (using a constant premium of 10).
Then, as soon as the premium is set to 1 after 500,000 time
steps, the green puck ratio drops to reflect the new priori-
tisation of tasks. When the initial premium is restored at
750,000 time steps, with or without enforced specialisation,
the green puck ratio starts to rise again quickly and levels
off where it was before the premium was changed. Hence,
there is no memory effect when we change the premium in
the course of a run, advocating for stable attractors that de-
pend only from the premium value at hand. The change in
puck ratio as a reaction to varying the premium is consider-
ably more pronounced in the single-skill setting than when
robots can collect both types of puck.

Conclusions and Future Work
Experimental results on the effects of premium settings with
the MONEE algorithm showed that setting premium values
stand as an efficient mechanism to allow the user to control
the prioritisation of tasks. On the one hand, setting negative
premiums dramatically decreases the take-up of tasks. One
the other hand, positive premiums enable to promote tasks,
at least to some extent. Indeed, the relation between premi-
ums and task distribution is not linear as the influence of in-
creasing premium values is dampened after an environment-
dependent threshold.

In the particular case of foraging with two kind of pucks,
further experiments showed that controlling the evolutionof
a particular foraging behaviour is sensitive to the distribution
of resources. Enforcing specialisation (i.e. penalising robots
that forage both resources) can greatly increase controllabil-
ity whenever both resources are available in equal amount,
while dramatically decreasing controllability whenever an
uneven distribution of resources is considered.

Lastly, controllability was also tested from the perspective
of on-line tuning, i.e. changing premium values during the
course of evolution to match user requests. Results revealed
that premium values actually matched very stable attractors
towards (expected) foraging behaviours.

Although the work presented here shows that collective
foraging behaviour can be controlled to some extent through
setting premium values, the non-linear (and thresholded) re-
lation between premium values and task distribution remains
to be further explored. We are indeed currently investigat-
ing the thresholding of the premium effect. Also, we are
addressing the problem how to actually use premiums to au-
tomatically achieve a particular state of task distribution. To
some extent, this is an inverse problem: while the desired
task distribution may be known before hand, the method for
tuning the premium values may well depend on the environ-
ment and the task at hand.
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