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Abstract

In models of games, the indirect interactions between play-
ers, such as body language or knowledge about the other’s
playstyle, are often omitted. They are, however, a rich source
of information in real life, and increase the complexity of pos-
sible strategies. In the game of rock-paper-scissors, the sim-
ple monitoring of the opponent’s move before it was played
is a sufficient condition to trigger an arms race of detection
and misinformation among evolved individuals. The most
interesting aspect of those results is that they were obtained
by evolving purely chemical reaction networks thanks to an
adapted version of the famous NEAT algorithm. More specif-
ically, those individuals were represented as biochemical sys-
tems built on the DNA toolbox, a paradigm that allows both
easy in-vitro implementation and predictive in-silico simula-
tion. This guarantees that the specific motives that emerged in
this competition would behave identically in a test tube, and
thus can be used in a more generic context than the current
game.

Introduction
The game of rock-paper-scissors, while being simple, can
actually lead to interesting dynamics when it is played mul-
tiple times in a row. In particular, each player will try to
“read” their opponents in the hope of getting the upper hand.
However, if psychological factors are not taken into account,
that is, if players are purely logical, game theory predicts
that after a while, the optimal strategy becomes to play ran-
domly with no bias among the three possible moves (Smith,
1993). Variations of the basic rules exist, but are expected to
display the same kind of behaviors (from the point of view
of game theory) as the classic three moves.

Interestingly, this game can be a good description of many
mechanisms ranging from reproductive strategies of some
species of lizards (Sinervo and Lively, 1996) or bacteria
(Kerr et al., 2002) to oscillations in a gene regulatory circuit
(Elowitz and Leibler, 2000). In all cases, there are three pos-
sible moves, each strong against another and weak against
the remaining one. This usually leads to dynamical behav-
iors where the different players are constantly invading each
other, forming complex spiral structures in two dimensional
systems(Kerr et al., 2002; Reichenbach et al., 2007). Even

real life examples, such as the lizard example, display oscil-
lations in population size, with a turnover of approximately
six years, based on the field data of (Sinervo and Lively,
1996). Those dynamics may degenerate into a uniform pop-
ulation depending on the initial conditions, or such parame-
ters as the mobility of the players. On the other hand, they
may also occur even in a well-mixed system, where there
is no spatial compartmentalization to protect diversity, if a
given move gets stronger when it is less frequent (Frean and
Abraham, 2001) or if the system never stalls, like in the re-
pressilator (Elowitz and Leibler, 2000).

However, all those examples either suppose or require
that a given individual will always “play” the same move.
Indeed, the lizard will always have the same size and col-
oration, bacteria the same genotype and genes in the repres-
silator are not expected to arbitrarily change which target
genes they inhibit. From a strategic point of view, more pos-
sibilities open when each agent can decide, at each time,
which move he wants to put forward. In such a case, some
form of knowledge of the opponent becomes necessary in
order to infer his probable next move and play accordingly.
This knowledge is obtained from two sources: cheating and
analysis of the opponent previous moves. “Cheating” here
designates the fact of obtaining clues about an opponent
from its behavior just prior to the game, not in the nega-
tive sense of making a game uninteresting by bypassing the
rules. Note that cheating in this sense is both an integral
part of most human plays and of biological strategies, and
in any way is an essential ingredient of any physically in-
stantiated game. In fact, instantaneous moves and decisions
are not possible in a physical world, which means that in-
formation is always leaked somehow. This fact was used by
the Ishikawa laboratory in Japan to program a robot hand
(Namiki et al., 2003) reacting fast enough to hand gestures
to be able to always win against a human (video online).

While both cheating and strategic analysis requires sig-
nificant abilities and are generally associated with intelli-
gent players (or at least, players with intents), we wanted to
demonstrate in this paper that purely molecular systems are
also capable of intricate strategies, whose complexity can



be comparable to that of real players. Indeed it has been re-
cently demonstrated that Turing universality can be achieved
through the sole use of chemical reactions (Magnasco, 1997;
Soloveichik et al., 2010; Cardelli, 2011). Moreover, practi-
cal bottom-up approaches have been proposed to actually
instantiate arbitrary reaction networks (Seelig et al., 2006;
Qian and Winfree, 2011). However, experimentally, only
relatively simple tasks (equivalent in complexity to those
performed by the most basic electronic circuits) have been
demonstrated. Even from a theoretical standpoint only quite
simple systems have been proposed, very far from the in-
tricacy observed in the case of cellular regulation maps, or
even bacterial behaviors.

The individuals we evolved were defined as entities from
the DNA toolbox (Montagne et al., 2011), a particular
paradigm to define DNA-based computing systems. In par-
ticular, we build on a unique feature of the DNA toolbox,
which is to couple a generalized experimental strategy for
the in vitro building of reaction networks to the availability
of straightforward (if large, from the point of view of equa-
tion solving) quantitative models. These models allows ex-
act mathematical predictions and thus allow to perform both
in vitro and in silico designs in parallel.

Individuals were evolved through an adapted version of
NeuroEvolution of Augmenting Topologies (NEAT) (Stan-
ley and Miikkulainen, 2002), dubbed bioNEAT, using a fit-
ness function based on how well they fared in a population-
wide tournament. To our surprise, the apparition of a ba-
sic memory was not hard, but was almost immediately dis-
carded, as it was not able to compete against cheating. Due
to the necessity of having both players in the same well-
mixed environment, it was much more efficient for an indi-
vidual to actually develop a way to monitor the actions of its
opponent while hiding its own move. When pushed to the
extreme, this strategy produced interesting dynamics where
individuals went through multiple moves before the end
of the countdown, trying to settle into a winning position,
eventually leading to some fashion of oscillatory systems.
The mechanisms used for those purpose were interesting in
themselves, including concentration comparators or system
with multiple levels of activation, giving, through motif min-
ing, insight into the possibilities of the DNA-toolbox. This
showed that indeed, the behavior of purely molecular sys-
tems, corresponding to a realistic, directly implementable
chemistry, can be interpreted in terms of complex strategic
planning.

Related Work and Current Contributions

Our work builds on multiple sources since it mixes design
by genetic algorithm with molecular programming. Game
theory was also an important source of inspiration, and was
useful to check that our evolved individuals are playing in a
way that differs from hypothetical “perfect” players.

Rock-paper-scissors
There are also many previous works related to the game of
rock-paper-scissors. However, to the best of our knowledge,
they either use individuals which are only capable of play-
ing one move, or link existing dynamics to an instance of the
game. The evolution game theory study in (Smith, 1993)
is the closest to our work, but lacks the added dimension
that comes with dealing with cheating or leak of information
(Cook et al., 2012). While DNA-based systems can hardly
be described as having any form of intelligence, it is easy to
rationalize their behavior as cheating, a very real possibili-
ties among human players that is not taken into account in
(Smith, 1993).

Motif Mining
The idea of using DNA computing to play games has been
previously introduced (Macdonald et al., 2008). Finding
systems able to play a game is in itself a challenge that leads
to developing new structures, and potentially solve issues re-
lated to real life problems. However, the use of evolutionary
algorithms (Eiben and Smith, 2003) stand as a promising
candidate to search for interesting reaction circuits. From
the structural point of view, the analysis of the fittest indi-
viduals of specific runs revealed common functional motifs,
which may help build new systems. This is the fundamen-
tal approach of synthetic biology, in which biological mod-
ules are recombined to perform engineered operations (Pur-
nick and Weiss, 2009). In particular, it was interesting to
note that, although actual patterns may vary from individu-
als to individuals, it was possible to classify them into rough
generic categories. This could be used to create minimal
libraries of structures for dynamic systems, that is, off-the-
shelves building blocks like those defined in (Rodrigo et al.,
2011). Such libraries would in turn allow the fast and reli-
able development of complex DNA-based systems. While,
in our case, the structures evolved by the algorithm are pos-
sibly not generic enough to be useful in any given context,
they still have potential applications for the design of a vari-
ety of such systems.

Model
The DNA toolbox
The DNA toolbox (Montagne et al., 2011; Padirac et al.,
2012) is a set of three modules designed to reproduce gene
regulation networks dynamics with a simple framework.
Those modules, namely activation, autocatalysis and inhi-
bition, use solely DNA strands and enzymes, making both
modelization and implementation of systems straightfor-
ward (at least when compared to the in-vivo lego networks of
synthetic biology). DNA sequences have two possible roles:
either signal (simply designated as sequences in the follow-
ing) or templates. The templates are the backbone of DNA
toolbox systems, and are used to generate a specific signal



Figure 1: Graphical representation of systems from the DNA
toolbox. Nodes represent sequences while arrows represent
templates. The Oligator (left) can be mutated into a bistable
in two steps. First, an autocatalysis connection B to B with
an inhibition from A is added. Then, the activation from A
to B is removed. Note that those two operations may happen
in any order.

from another signal. Specific sequences can also be gen-
erated to inhibit a given template. Since they represent the
“code”, templates are kept stable over time, and are chem-
ically protected against enzymatic activity that could affect
them. Signal sequences, on the other hand, are continuously
degraded to keep the system dynamic.

The important feature of the DNA toolbox activatory and
inhibitory modules is that they are arbitrarily connectable
to each other. The designer of the network freely defines the
pattern of interactions by assigning the sequences of the tem-
plate through Watson-Crick complementarity. For example,
a cascade of activation reaction is obtained by mixing a num-
ber of bidomain templates such as AB, BC or CD, where A,
B, C, D, and so on represent orthogonal 11mers. The Oli-
gator from (Montagne et al., 2011), a simple oscillator, is
obtained by combining the three templates AA, AB and BIaa
(where Iaa represent the inhibitor of AA). The graph of this
system can be seen in Figure 1, left.

One interest of the toolbox in the scope of genetic algo-
rithms is that any modification of the “genome” of an indi-
vidual (that is, the sequences and templates it is made of,
not to be confused with the hypothetical genome their ac-
tual DNA strings are encoding) still yields a valid individual
(albeit a possibly uninteresting one), and that a wide range
of possible behaviors are very few modifications apart. For
instance, bioNEAT (see next Section) can jump in two steps
from the Oligator (Montagne et al., 2011) to Padirac et al.’s
bistable system (Padirac et al., 2012), as shown in Figure 1.
This helps the algorithm navigating the search space more
efficiently, as well as preventing, to some degree, the trap of
local optima.

Individuals and encoding The individuals we consider
are chemical reaction networks playing rock-paper-scissors.
Each possible move (rock, paper or scissors) is mapped to
a specific chemical species (DNA sequences, more specif-
ically signal sequences from the DNA toolbox). Those
species are fixed in advance, so that they are always present.
Individuals also have references linking to potential oppo-

Figure 2: Simple cheating individual displaying both direct
and indirect monitoring. Nodes in the dashed box are refer-
ences to the opponent’s sequence (up) or to the clock (right).
By default, this individual will play rock (R). If its opponent
plays rock or paper (P), it will update to play the winning
move. Note that this individual does not use the clock.

nents’ corresponding sequences. The main goal of this inter-
face is to allow individuals to react to the opponent’s moves
and adapt their strategy over time. Finally, all individuals
have a reference to a common clock species, giving them a
sense of time. An example of individual is shown in Fig-
ure 2.

Individuals are pitted against each other in matches made
of ten rounds. The beginning of a round is marked by a spike
from the clock sequence. At the end of a round, roughly 20
times the clock’s half-life later, an individual’s move is de-
cided by which of its move sequences has the highest con-
centration. If the two highest or all such concentration are
not different by at least a given threshold, the move is con-
sidered invalid, granting the victory to the opponent. Indi-
viduals can potentially memorize their opponent’s strategy,
since there is no reset between rounds.

Simulations The simulation itself was kept simple, with
a model similar to that of Padirac et al.. In particular,
this model doesn’t take into account enzyme saturation.
This prevents some advanced strategies (since saturating en-
zymes may be in itself a way to kill one’s opponent, thus
winning by default) and allows individuals to grow without
limitations, continuously increasing their size. Since enzy-
matic saturation creates hidden couplings between the nodes
(Rondelez, 2012), removing it was taken as a step to insure
the readability of the results. Thanks to this, the behavior
of the network - and hence the individual’s strategy - is di-
rectly encoded by the networks of cross regulations between
the nodes, and not by various type of competitive inhibitions
acting at a global level. Using this simplified model is also a
compromise between computational requirements and pre-



cision, but any observed behavior should be obtainable in
real in-vitro experiments.

bioNEAT: NEAT for Reaction Networks
The evolution of individuals was done by using a modi-
fied version of NeuroEvolution of Augmenting Topologies
(NEAT) (Stanley and Miikkulainen, 2002), adapted to per-
form with simulated individual networks built using the
DNA toolbox paradigm instead of artificial neural networks.
The evolution itself was performed through multiple runs
and tweaking of the fitness function.

NEAT
NEAT is a state-of-the-art evolutionary algorithm designed
to evolve both the topology and the parameters of neural net-
works, while keeping them as simple as possible. This is
done by starting from very simple individuals, and progres-
sively complexifying them in a competitive process. This
is performed through the addition of new nodes and con-
nections, while at the same time modifying the weight of
existing ones.

The major strength of NEAT is that it keeps tracks of
when specific connections or node where added in the an-
cestry line. This allows to perform meaningful cross-over:
identical elements present in two individuals, are automati-
cally recognized and matched during the creation of a new
individual from two parents. Additionally, mismatching el-
ements from the fittest individual are also passed along.

NEAT also performs speciation to protect innovation that
could require more than one step to find a new, better solu-
tion to the problem at hand. Specifically, the size of a species
depends on the average fitness of its individuals, preventing
one type of solution to completely invade the population.
Moreover, speciation is easily performed, since the history
of evolution of individuals is saved, giving a straightforward
distance between individuals based on the genes they pos-
sess.

bioNEAT
Due to the initial ressemblance between reaction network
and artificial neural network, NEAT stands as a relevant
option for optimizating toobox-based systems. In particu-
lar, systems from the DNA toolbox have a straightforward
edge/node graph representation similar to neural networks:
DNA sequences can be directly mapped to nodes, and con-
nections with positive weights are equivalent to activation
links. However, the DNA toolbox cannot be directly imple-
mented using the original NEAT for two reasons. Firstly,
additional parameters regarding sequences stability and ini-
tial concentration must be added. Secondly, negative links
targetting nodes must be replace by inhibitory links target-
ting arcs.To address these issues, we introduce bioNEAT, a
NEAT-derivative that is able to optimize reaction networks.

A first feature of bioNEAT is to allow the GA to not only
modify the “weight” of connections (that is, the concentra-
tion of DNA template, in our representation), but also the
relevant biological parameters (such as the thermodynami-
cal stability of DNA sequences and their initial concentra-
tions). The thermodynamical parameters of the move se-
quences was fixed to prevent individuals to use extremely
stable sequences to saturate the monitoring of their oppo-
nents. In the particular case of the experiments described
hereafter, we also prevented activations toward the opponent
or the clock.

The second feature of bioNEAT addresses the asymmetry
between activation and inhibition process that is inherent to
the DNA toolbox, and which cannot be modelled as a clas-
sic neural networks link with positive and negative weights.
While the sign of a neural weight simply encodes the type
of the connection and target a node, a DNA toolbox’ in-
hibitor targets an edge (and impact only one of the output
from the source node) rather than a node. Moreover, an
inhibitor cannot be instantiated without the template it in-
hibits. As a consequence, bioNEAT protects the addition of
an inhibitory connection (and removal of a particular tem-
plate) during evolution. Then, bioNEAT produces reaction
network with inhibitory connections from node to link.

Fitness Score
Scoring of an individual uses a lexicographic fitness func-
tion taking place in two steps. First, the individual has to
beat the three most basic possible players, playing respec-
tively only rock, paper or scissors. This ensures that our
individuals are able to play all moves, and to play them dis-
cerningly. Individuals unable to pass this test are awarded a
very small fitness, based on the number of rounds they have
won, directing the evolution toward basic strategies. On the
other hand, individuals which were able to pass the test are
awarded the right to enter the second phase.

The second phase is a simple tournament among all re-
maining individuals: each of them has to fight each of the
others. The fitness is then based on the amount of correct
moves made in total. A sample match is shown in Figure
3. Because of this, the evolutionary pressure forces the in-
dividuals into an arms race, to be able to defeat as many
opponents as possible.

Results
Results were obtained by evolving individuals in 10 separate
runs, always starting from a uniform population of individ-
uals with autocatalysis on the rock sequence (thus playing
always rock). A typical run involved 200 generations of a
population of 100 individuals. bioNEAT speciation control
loop is adjusted to keep the number of species as close as
possible to 10. Other relevant parameters are shown in Ta-
ble 1. Over the course of the experiment, various kind of
strategies emerged before getting outdated or integrated into
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Figure 3: Two fighting individuals. References to the op-
ponent’s nodes are shown in the dashed box. Top: the ac-
tual network of those individuals. Bottom: the correspond-
ing behavior over time. The color code for sequences con-
centration is red for the clock, green for rock, blue for pa-
per and purple for scissors. The individual on the right has
a better comparison mechanism than the individual on the
left, as shown by the fact that it has the correct move be-
fore the match starts. However, the individual on the left
uses the clock to fake switching his move from scissors to
rock, which coerce its opponent to update its move to paper.
Just before the round is validated, the individual on the left
changes its move again to scissors, winning each hands.

more complex control systems. However, in our runs, a sta-
ble group of species typically appeared after 50 to 100 gen-
erations and quickly took over the population until the end
of the run. They represent individuals which had developed
part or all of the mechanisms explained later in this Section,
and the apparent stability was only due to a constant arms
race, where individuals kept adding more and more modules,
while those who couldn’t keep up where discarded. How-
ever, since our fitness can only compare individuals among
a given generation, its evolution over time does not reflect
the global improvement of individuals. This prompted us to
perform a post-mortem analysis of our individuals by mak-
ing the best of each generations of a given run fight each
other, highlighting a progressive improvement of our indi-
viduals, as shown in Figure 4. In particular, the logarithmic
shape of the curve goes well with the idea that the efforts re-
quired to overcome one’s opponents are greater and greater
as the simplest strategies get commonly countered.

Cheating
The easiest, and thus first strategy evolved is actual cheating.
Since they have references to what each other will play, and
continuous access to current concentrations, the individuals
monitor the action of their opponent and try to play accord-
ingly. A minimal example is shown on Figure 2. Cheating
can be of two kinds: either using a direct connection (“if my
opponent plays rock, I will play paper”), or an inhibition (“if

General parameters
Population size 100
Number of generations 200
Speciation parameters
Targeted number of species 10
NEAT compatibility parameters c1 = c2 = 1; c3 = 0
Initial speciation threshold 0.6
Minimal threshold 0.1
Threshold update ε 0.03
Mutation parameters
P(Mutation only) 0.25
P(Parameter mutation) 0.9
Otherwise P(Add node) 0.2
Otherwise P(Add activation) 0.2
Else add inhibition
P(Connection disabling) 0.1
P(Gene mutation (for each node)) 0.8
Crossover parameters
P(Interspecies crossover) 0.01
P(Re-enabling gene) 0.25

Table 1: Parameters used to evolve individuals
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Figure 4: Top: average a posteriori fitness of the best indi-
viduals, as well as minimum, maximum, first and third quar-
tiles. While noisy, the curve still shows an increasing trend
similar to that of a logarithm. Bottom: the average num-
ber of templates in individuals over generations in a typical
run. The trend is similar to that of the fitness, showing that
bloating stays within acceptable limits.



Figure 5: Basic mechanisms observed in individuals. (a.)
Noise generation with two activation level. When the ad-
ditional path is inhibited, the main sequence will still have
a high concentration, but not high enough to be this turn’s
move. (b.) A given move’s concentration is kept low for
some time by being inhibited by the clock sequence C. (c.)
A very simple feint: while pretending to play rock (the se-
quence R) has a non-zero concentration), the individual is
actually playing scissors (S), which would win against the
expected reaction of the opponent. This mechanism is often
decorated with various other systems to balance the concen-
trations of one sequence relatively to the other. (d.) Simple
comparison mechanism. The reaction path from the oppo-
nent’s move will only be activated if the concentration of
paper (P) is high enough, compared to the concentration of
rock (R). (e.) A fold change detector, allowing the moni-
toring of the increase in the concentration of the rock (R)
sequence of the opponent. Often, the detection will happen
after a first amplification of the monitored signal.

my opponent plays rock, I will not play scissors”). Cheating
leads in some cases to the apparition of oscillatory behav-
iors, as both individuals are both trying to play the winning
move.

Defense mechanisms
Once cheating appears, it quickly spreads among the whole
population, either by cross-over, elimination of individuals
which could not adapt, of by parallel discovery of the mech-
anism. From there on, the only way to improve is to de-
velop mechanisms against the other cheater’s spying while
at the same time improving the monitoring of its current
move. Many defenses where expressed among the evolved
individuals, but can mainly be separated into five categories:
noise generators, stealth, feint, concentration comparators
and fold change detectors. Representatives of all those cate-
gories are shown in Figure 5.

Noise generators are the easiest form of defense. Since
it is fair to assume that the opponent will monitor at least

two move sequences to decide its own next move, a sim-
ple yet efficient way to keep it off track is to continuously
generate all sequences. This is a valid action, since only
the highest sequence decides which move is played. Hav-
ing a weak autocatalytic connection is enough, as long as
there is a way for the other sequences to become lower (re-
member that an individual has to be able to play all moves
to have a good fitness). Often, such sequence will have an
additional catalytic loop using an additional sequence. This
loop is only activated when this sequences is supposed to
be played. This simple mechanism allows the individual to
have multiple activation levels (by opposition to just “on”
and “off”), with a better control on the final concentration of
the target sequence rather than using activation mechanisms
from different possibly not trustworthy part of the system.

Stealth is the complementary of noise generation. In-
stead of hiding one’s true move among decoys, it is kept
at a concentration as near to zero as possible until the last
moment. This technique relies on monitoring the clock se-
quence, since timing is extremely important. The clock se-
quence is used to generate a large amount of timer, which
in turn inhibits a specific move. If the inhibition is stable
enough, the target sequence will be kept low until the timer
has been degraded. If the delay is not long enough, the op-
ponent will still have time to read and adapt. On the other
hand, if the delay is too long, the move will not be valid.
Part of the system dedicated to this mechanism seems to be
very stable over generations, since it is based on a delicate
balancing of parameters where any change can prove deadly.

Feint resembles closely the previous two strategies, but
uses a different structure. In this case, the individual spoofs
a specific move (say “rock”), but this very move also ac-
tivates the generation of the real move (for instance “scis-
sors”), often through a long activation path to generate de-
lay. It relies on the fact that the opponent will try to adapt
to the perceived move, and won’t be able to react in time to
the change. The system may be reset by the clock, or by a
change in the opponent’s perceived move.

As the direct monitoring of sequences became less and
less reliable, structures to compare absolute concentrations
as well as detect sudden modifications became more and
more common. Concentration comparison is done through
the inhibition of a reaction path if its activation is not strong
enough compared to the reference. Since this inhibition
originates from the monitoring of another sequence, the first
pathway is activated only if the first sequence has a higher
concentration. Of course, by tuning the strength of pathways
and inhibition, it is possible to have more specific control
over the targeted ratio between the two sequences. For in-
stance, it would be possible to slightly modify the system
to inhibit the reaction path only if the compared sequence
has a concentration multiple times higher than the reference
sequence. This defense mechanism is used to counter noise
generators and feints.



The last technique commonly spread among individuals
is a way to detect concentration increase. While concen-
tration comparison is able to detect that a stealthy move is
being played, it is only able to do so once the move became
dominant (which, if the other player is timing right, should
be too late). However, by using a monitoring coupled with
incoherent feedforward, individuals are capable of detecting
rapid variations in concentration, which would be a sign that
their opponent is about to switch their move. Some indi-
viduals also pretended to switch their move to throw such
defense technique off guard, but this was quickly countered
by a mix of both direct comparison and incoherent feedfor-
ward.

Memory vs cheating
Quite early on, individuals with a basic memory, such as the
bistable from Figure 1, appear in the population. However,
those individuals were too “naive” in the sense that they had
no defense against cheaters. Moreover, cheating requires
about the same amount of mutations to appear, or even less if
partial (that is, the individual can read some moves, but not
all). For this reason, it seems that it is much more advan-
tageous for individuals to focus only on attack and defense.
This prevented the reapparition of memory in later genera-
tion, leading to purely reactive individuals.

The arms race
Looking at individuals over time shows the apparitions of
the different cheating and defense mechanisms over time,
with a noticeable complexification of the best individuals.
Figure 6 shows such individuals at different times of a spe-
cific run, highlighting the apparition of various mechanisms.

The logical conclusion of this evolution strategy is that
individuals with high fitness in a given generation have very
little, or even no structures that are not related to cheating
and defeating. Even when they exist, such structures are mu-
tated during the next few generations to serve some attack or
defense purpose. We performed an a posteriori evaluation
of the fitness to check whether this increase in individuals
size was indeed justified or only bloating. By performing
this evaluation, we get a sense of the improvement of indi-
viduals over time that cannot be deduced from the lexico-
graphic fitness used for evolution, since the later one only
compares individuals from a given generation. The fitness
itself is computed by making the best individual of all gen-
erations fight each other and score points in the same fashion
than in the second part of the lexicographic fitness.

The trend of the a posteriori fitness also implies that there
is no cyclic effect. While the lexicographic fitness guaran-
tees that all individuals have the capacity of playing any
move given the right conditions, there could be more ad-
vanced strategy displaying such cyclic dynamics. For in-
stance, individuals using stealth are beaten by individuals
using incoherent feedforwards, which could have been, in

Generation 10: partial cheating.

Generation 14: complete cheater.

Generation 109: stealth. The clock sequence (here designated A)
hides a move (b).

Generation 122: fold change detector. The sequence c both
activates and inhibits the creation of a. However, the activation
path is longer than the inhibition path, meaning that a (rock) is

only activated by this module if the concentration of c (scissors) is
decreasing. Since c is directly linked to the opponent’s b (paper),

this individual is protected against stealthy play of b.

Figure 6: Individuals generated during a run. The color
of activation nodes indicates their stability, going from red
(very unstable) to blue (very stable). Green nodes are in-
hibitors. The notation for the moves rock, paper and scis-
sors is respectively a, b and c. References to the opponent’s
sequences are designated by a leading C. A represents the
clock.



turn, beaten by another strategy that is weak against stealth.
Since the fitness increase is monotonic (if we ignore the
noise), we can conclude that the arms race is open-ended,
with complexification of individuals the only possible way
to improve.

We could also note that the arms race pushes individuals
to perform well within their own ecosystem, but not always
optimally. For instance, the individual from generation 122
in Figure 6 only defends against stealthy changes in the con-
centration of “paper”, leaving it open to the exact same strat-
egy, if performed on another move. However, it is easy for
a human designer to take inspiration from those modules to
create an “optimal” player.

Conclusion
In this work, our first hope was to observe the emergence of
memory to allow non-trivial strategies at rock-paper-scissor
using bioNEAT, a modified version of NEAT designed to
evolve chemical reaction networks from the DNA toolbox.
However, the very rules, derived from experimental settings,
we set for the games prevented this mechanism from being
efficient. Instead, increasingly complex cheating seemed
to be the best answer. However, this is not the only thing
we learned from this exercise. While having DNA sys-
tems compete against each other and evolve new (cheat-
ing) strategies can be a goal in itself, the systems evolved
along the way gave us also more insight about DNA com-
puting systems. In particular, it was possible to observe
the emergence of particular structures with interesting dy-
namics, which may prove useful to a human trying to de-
velop DNA systems, like with the libraries of (Rodrigo et al.,
2011). It could be also interesting to make individuals com-
pete against a human designed “optimal” cheater and see if
they can evolve even more advanced strategies to counter
it. Furthermore, since the DNA toolbox mimic the behavior
of gene regulatory circuits (Montagne et al., 2011), an open
question would be whether those mechanisms appear in real
life or if they are only valid in the toolbox. Also, it would be
interesting to extend the current systems to take into account
reaction-diffusion and be able to play more complex games.
There is little doubt that such systems will have their own
share of remarkable mechanisms.
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