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Abstract

In this article, we are intested in the evolution of speciali-
sation among a single population of heterogeneous robotic
agents in a cooperative foraging task. In particular, we want
to compare (1) the emergence and (2) fixation of genotypic
polymorphism under two different selection methods: elitist
and fitness-proportionate. We show that, while the emergence
of specialists is easy under an elitist selection, this method
cannot maintain heterogeneous behaviours throughout the
whole simulation. In comparison a fitness-proportionate al-
gorithm proves to be inefficient in evolving any cooperative
strategy but ensures the conservation of heterogeneity when
it is present in the population. We then reveal through addi-
tional experiments two key factors for the evolution of het-
erogenous behaviours in our task: (1) protection of genotypic
diversity and (2) efficient selection of partners. We finally
demonstrate this assertion and, while our main problem re-
mains unsolved, we provide directions on how it could be
successfully approached.

Introduction
Task specialisation is a defining characteristic in achieving
efficient coordination and is thus considered to be crucial
in the evolution of complex cooperative behaviours (Sza-
thamàry and Maynard Smith, 1995). The problem of evolv-
ing cooperation has been largely studied in evolutionary
robotics as it raises interesting persepectives for the design
of collective robotics (Trianni et al., 2007; Hauert et al.,
2010; Doncieux et al., 2015). As a consequence, the man-
ner in which robotic agents could evolve specialisation (or
division of labour) for a cooperative task represents a com-
pelling challenge in evolutionary robotics. As such, a large
body of litterature has already been dedicated to this subject.
However, most research focus on the particular case of ho-
mogeneous groups of individuals (Waibel et al., 2009) as is
classic in evolutionary robotics. This means that the indi-
viduals are forced to rely on phenotypical plasticity (Waibel
et al., 2006; Ferrante et al., 2015; Eskridge et al., 2015)
and/or environmental cues (Waibel et al., 2006; Goldsby
et al., 2010) in order to achieve specialisation.

In this paper, we focus on a slightly different problem:
the evolution of a polymorphic population where division of

labour is encoded at the genotypic level. More precisely,
we want to study the evolution of a population containing
two (or more) different types of genotypes. Each of these
types of genotype should be able to encode for a differ-
ent role without requiring the addition of mechanisms for
lifetime specialisation. Thus it poses the problem of both
evolving and maintaining genotypic polymorphism in a sin-
gle population. Here we want to investigate the conditions
under which specialised behaviours for a cooperative task
can evolve in a single population of heterogeneous individ-
uals. In particular, we are interested in the influence of the
selection process in achieving division of labour.

We design a 2-robots cooperative foraging task where
both a solitary and a cooperative strategies can evolve but
where cooperation is highly rewarded. The genotype of each
robotic agent is separately chosen in the population and the
individuals therefore form an heterogeneous group. This
task is greatly favored by the evolution of efficient coordina-
tion strategies. In particular, our previous work on a similar
task (Bernard et al., 2015) showed that two types of coop-
erative strategy could evolve: one where both individuals
adopt homogeneous behaviours (generalists) and the other
one where they adopt a leader/follower strategy (specialists).
Moreover, it was shown that the latter could only emerge be-
tween heterogeneous individuals. As it is also the more effi-
cient behaviour, we study the conditions for its emergence.
The evolutionary dynamics of two popular selection meth-
ods are studied: (1) an elitist (µ+ λ) evolution strategy and
(2) fitness-proportionate selection. Fitness-proportionate in
particular is interesting with regards to genotypic polymor-
phism as it is known to allow the evolution of frequency-
dependent selection (Altenberg, 1991).

In the next Section, we introduce the experimental setup.
Then we present the two types of cooperative strategies that
can evolve. Next, we investigate whether any of the se-
lection methods could evolve heterogeneous behaviours. In
particular, we study for both schemes the evolutionary out-
comes depending on whether the population is initially con-
stituted of random individuals or seeded with pre-evolved
efficient specialists. Then we present the results of com-



putational analyses in order to reveal and understand more
deeply the mechanisms at play. In a final experiment, we
reveal key mechanisms which could be investigated to solve
this problem. Finally we discuss our findings and shed light
on interesting perspectives for future work.

Methods
We evaluate two robotic agents in a 800 by 800 units square
arena devoid of any obstacles except for the foraging targets.
At the beginning of a simulation, 18 targets are randomly
positioned in the environment. While the agents may move
freely in the arena, the targets’ positions are fixed. For a
target to be collected, any agent needs to stay in contact with
it for a specified amount of time (800 simulation steps). The
target is removed after this duration and put back at another
random position so that the number of targets is kept the
same throughout a simulation. We consider that cooperative
foraging happens if both individuals are in contact of the
target when it is removed. When an agent collects a target,
it is rewarded 50 if this target has been foraged in a solitary
manner or 250 if both agents have cooperated to collect it.

Each agent is circular-shaped with a diameter of 20 units
and possesses a collection of different sensory inputs. The
first type of inputs is a 90 degrees front camera and is com-
posed of 12 rays, each one indicating the type and distance
to the nearest object (either another agent or a target). The
other type of inputs are 12 proximity sensors evenly dis-
tributed around the agent’s body. With a range of twice the
agent’s diameter, each proximity sensor outputs the proxim-
ity of the nearest obstacle in its range.

Both agents begin the simulation next to each other at the
same end of the arena and can move according to the out-
puts of their neural network. This neural network is a fully
connected multi-layer perceptron with one hidden layer. The
inputs of the neural network are comprised of all the sensory
information of the agent, i.e. 36 input neurons for the cam-
era (3 inputs for each ray) and 12 for the proximity sensors.
A final input neuron whose value is always 1 is used as a bias
neuron. This amounts the total number of input neurons to
49. The hidden layer is constituted of 8 neurons while the
2 neurons of the output layer return the speed of the agent’s
wheels. A sigmoid is used as the activation function of each
neuron. Finally, the topology of the network is kept constant
during the experiments.

The population of individuals is evolved thanks to a clas-
sical evolutionary algorithm. The genotype of each individ-
ual is constituted of a collection of the 410 real-valued con-
nection weights of the neural network. At each generation
of the algorithm, every individual is evaluated by being suc-
cessively paired with another individual randomly chosen in
the population 5 times. Each pair interacts in the setting pre-
sented before during 20000 simulation steps which we call a
trial. We perform 5 trials for each pair of individuals in or-
der to decrease the impact of the targets’ random positions

on the individuals’ performance. The fitness score of an in-
dividual is computed as the average reward per trial.

The population for the next generation is created accord-
ing to two different selection schemes :

• (µ + λ) elitist selection: the population of the next gen-
eration is constituted of the µ best individuals from this
generation and λ offsprings sampled from the best indi-
viduals.

• Fitness-proportionate: offsprings are randomly sampled
from the current generation to constitute the population of
the next generation. The probability to sample a particular
parent is proportional to this parent’s fitness score.

Regardless of the selection method used, every offspring
is a mutated clone of its parent and no recombination is
used in our algorithm. The probability for each gene to
mutate is 5× 10−3 and mutations are sampled according to
a gaussian operator with a standard deviation of 2 × 10−2.
Finally, experiments were conducted with the robotic 2D
simulator of SFERESv2 (Mouret and Doncieux, 2010), a
framework for evolutionary computation. You can find the
source code for the experiments available for download at
http://pages.isir.upmc.fr/˜bredeche/Experiments/ALIFE2016-
specialisation.tgz.

Behaviours of Specialists in a Cooperative
Foraging Task

We showed in a previous article (Bernard et al., 2015) that
two cooperative strategies could evolve in this particular
task: turning (between two turners) and leader/follower (be-
tween a leader and a follower). Both of these strategies
achieve cooperative foraging but with varied efficiency.

In the turning strategy, both individuals turn around one
another so that they can keep the other individual in their
line of sight and stay close to it (see Figure 1(a)). At the
same time, the two individuals try to get closer to a target.
This way, as soon as one of the two individuals is in contact
with a target, the other individual can join it so the target
may be collected cooperatively. Consequently, both individ-
uals adopt a similar behaviour in this strategy and can be
described as generalists.

In the leader/follower strategy, the individuals specialise
in two roles: a leader and a follower. The leader always
gets on the target first and checks rarely for its partner. In
comparison, the follower tries to keep its leader in view dur-
ing the entirety of the simulation so that it can get on the
same target (see Figure 1(b)). Consequently, we observe the
expression of two clearly heterogeneous behaviours which
implies that both individuals are specialists. More impor-
tantly we also showed that, given our agents’ capabilities,
each phenotype needed to be encoded by a different geno-
type for specialisation to happen.

http://pages.isir.upmc.fr/~bredeche/Experiments/ALIFE2016-specialisation.tgz
http://pages.isir.upmc.fr/~bredeche/Experiments/ALIFE2016-specialisation.tgz
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Figure 2: Average reward and leadership proportion with a leader/follower or turning strategy Boxplots of (a) the average
reward and (b) the leadership proportion over 20 independent trials for the leader/follower and turning strategies. The leadership
ratio of an individual represents the propensity for one individual among the pair to arrive first more often than its partner on a
target collected in a cooperative fashion. The position of each target at the beginning of each trial was randomized.

(a) (b)

Figure 1: Snapshots of the simulation after an entire trial
in the foraging task. The path of each robotic agent from
their initial positions (black dots) is represented in red and
blue. The blue discs represent the 18 targets in the envi-
ronment. When a target is foraged by the two agents, a red
cross (resp. blue) is drawn on the target if the red agent
(resp. blue) arrived on it first. Each snapshot corresponds to
a trial where agents adopted a different strategy: (a) turning
or (b) leader/follower.

Figure 2(a) shows the efficiency of each strategy, defined
as the average reward obtained by the two individuals dur-
ing a simulation over 20 independent trials (with random-
ized targets’ positions for each trial). We can see that, as ex-
pected, the leader/follower strategy achieves a significantly
higher efficiency (Mann-Whitney U-test on the average re-
ward over 20 trials, p-value < 0.0001). This difference in
efficiency is directly correlated to a highly significant differ-
ence in the proportion of leadership as shown in Figure 2(b)

(Mann-Whitney U-test on the leadership proportion over 20
trials, p-value < 0.0001). We compute this proportion by
looking at the propensity for one of the two individuals to
arrive first more often on a target foraged cooperatively (i.e.
the emergence of a leader).

Evolving Heterogeneous Behaviours with an
Elitist Selection

Bootstrapping leader/follower strategies
In this first experiment, we are interested in the emergence of
a leader/follower strategy when starting with a population of
random individuals under an (µ+ λ) elitist selection. In or-
der to investigate the influence of population size, we tested
three different sizes N : 20, 40 and 100. For each population
size, we conducted 11 independent runs, each one lasting
90000 evaluations. For each population size N , we defined
µ (i.e. the number of parents) and λ (i.e. the number of off-
springs) as N

2 . For example, when population size was 100,
50 individuals were kept from the previous generation and
used to create 50 mutated offsprings.

Table 1 shows the repartition of the best individuals’
strategies at the last generation of evolution for each popu-
lation size. We consider a behaviour to be cooperative when
more than 50% of the total number of targets collected are
foraged cooperatively. First, we observe that in every repli-
cate individuals always end up evolving a cooperative strat-
egy. We also see that evolving a leader/follower strategy
is difficult as specialists evolve in only 1 run (out of 33)
and when the population size is 100. These results suggest
that it is nearly impossible to evolve such heterogeneous be-
haviours with this setting.



Pop. # L/F # Turning # NC Total
size Strat. Strat. Strat.
20 0 11 0 11
40 0 11 0 11
100 1 10 0 11

Table 1: Strategies evolved by the best individuals un-
der elitist selection with an initially random population.
Repartition of the different strategies adopted by the best in-
dividuals at the last evaluation in each of the replicates for
different population sizes N . We indicate in each cell the
number of simulations where a particular strategy evolved.
Populations were evolved under an (µ+ λ) elitist selection,
with µ = N

2 and λ = N
2 . Individuals’ genotype values were

intially random. In the table ”L/F” stands for leader/follower
and ”NC” for ”Non-Cooperative”.

However, when looking at the whole evolutionary history
we can reveal additional information about the evolution of
specialists. We show in Figure 3 the proportion of evolu-
tionary time when the best individual of each run adopted a
leader/follower strategy. This value is computed as the ratio
of the number of generations when the leadership ratio was
high enough (over a threshold value of 0.6) out of the to-
tal number of generations. We observe that even if the best
individuals end up adopting a generalist strategy, this was
not the case during the entirety of the evolution. In partic-
ular, there is a significant increase (Mann-Whitney, p-value
< 0.05) in the number of generations where the best indi-
vidual showed a leader/follower strategy when population
size was 100 compared to a population size of 20. Therefore
this implies that it is possible to evolve specialists but their
stability in the population over time is nearly impossible to
achieve.

Maintaining heterogeneity in a population seeded
with specialists
In order to investigate the lack of stability of genotypic poly-
morphism under elitist selection, we design another experi-
ment. We separately evolve a population of efficient leader
individuals and follower individuals beforehand. We then
replace the worst individuals w.r.t. fitness score in the popu-
lation of leaders by a certain amount of followers. Our goal
is to study if artificially constructing such population could
result in the invasion and fixation of a stable leader/follower
strategy.

The number of followers initially inserted in the popula-
tion was varied according to two different settings: (1) we
add only one follower or (2) we add an amount of followers
equal to half of the population. Experiments were replicated
11 times during 90000 evaluations with population size of
40 and 100.

We show (Table 1) no significant differences in compari-
son to simulations with a population constituted of initially

Figure 3: Proportion of time with a leader/follower strat-
egy. Boxplots of the number of generations where the best
individual in each replicate adopted a leader/follower strat-
egy out of the total number of generations. We consider that
the best individual adopted a leader/follower strategy when
its leadership ratio was over a threshold value of 0.6.

random individuals w.r.t. the number of simulations where
a leader/follower strategy evolved. These results suggest
that even when purposely adding specialists, their stability
in the population is still very hard to achieve. This implies
that whether the behaviours are evolved from random geno-
types or bootstrapped with efficient individuals is not as im-
portant as maintaining heterogeneity in the population. In
particular, in only one replicate among the 3 runs where a
leader/strategy was eventually adopted (out of 44) did the
specialists initially added were maintained. In the 2 other
runs we observe multiple emergences and disappearances of
specialists throughout evolution.

Evolution Under a Fitness-Proportionate
Selection

In this next experiment we want to investigate the evo-
lution of heterogeneous behaviours when using a fitness-
proportionate selection. As fitness-proportionate is known
to allow frequency-dependent selection, we hypothesize that
it may facilitate the evolution of specialists.

Bootstrapping leader/follower strategies
Similarly to the elitist selection, we replicated our exper-
iments in 11 independent runs during 90000 evaluations.
Likewise, population sizes were 20, 40 and 100.

We show in Table 3 that results are highly different when
using such selection scheme. In particular, the fitness-
proportionate selection performed poorly w.r.t. evolving co-
operative strategies. For each population size, no coopera-
tive strategy evolved at all in the vast majority of replicates.
However in one particular run we do observe the emergence



Pop. Followers # L/F # Turning # NC Total
size added Strat. Strat. Strat.
40 1 0 11 0 11
40 20 0 11 0 11
100 1 1 10 0 11
100 50 2 9 0 11

Table 2: Strategies evolved by the best individuals un-
der elitist selection when adding followers. Repartition of
the different strategies adopted by the best individuals at last
evaluation in each of the replicates for different population
sizes N . We indicate in each cell the number of simula-
tions where a particular strategy evolved. Populations were
evolved under a (µ + λ) elitist selection, with µ = N

2 and
λ = N

2 . The population was initially seeded with a pop-
ulation of leaders in which we added a specific amount of
followers. In the table ”L/F” stands for leader/follower and
”NC” for ”Non-Cooperative”.

Pop. # L/F # Turning # NC Total
size Strat. Strat. Strat.
20 0 1 10 11
40 0 1 10 11
100 1 2 8 11

Table 3: Strategies evolved by the best individuals un-
der fitness-proportionate selection with an initially ran-
dom population. Repartition of the different strategies
adopted by the best individuals at the last evaluation in each
of the replicates for different population sizes. We indi-
cate in each cell the number of simulations where a par-
ticular strategy evolved. Populations were evolved under a
fitness-proportionate selection. Individuals’ genotype val-
ues were initially random. In the table ”L/F” stands for
leader/follower and ”NC” for ”Non-Cooperative”.

and fixation of specialists. This is similar to what was ob-
served under elitist selection w.r.t. evolving specialists.

Yet a closer look at the dynamics of evolution under a
fitness-proportionate selection yields interesting results. In
particular, there is not much variation in the strategy adopted
by the best individuals throughout evolution. This is consis-
tent with the fact that the bootstrap of a cooperative strat-
egy was not observed in most of the replicates: fitness-
proportionate is not efficient in evolving any cooperative be-
haviour. In consequence, there is not much variation in the
proportion of individuals adopting a leader/follower strategy
during evolution. As a matter of fact, we observe that in the
only replicate where there was genotypic polymorphism at
the end of the simulation, specialists were already present at
the random initialisation of the population and did not evolve
through mutation. This is very different with the elitist se-
lection where we observe multiple emergences of specialists

(even briefly) during evolution in many different runs.

Maintaining heterogeneity in a population seeded
with specialists

Pop. Followers # L/F # Turning # NC Total
size added Strat. Strat. Strat.
40 1 7 0 4 11
40 20 8 0 3 11
100 1 10 0 1 11
100 50 10 0 1 11

Table 4: Strategies evolved by the best individuals un-
der fitness-proportionate selection when adding follow-
ers. Repartition of the different strategies adopted by the
best individuals at the last evaluation in each of the replicates
for different population sizesN . We indicate in each cell the
number of simulations where a particular strategy evolved.
Populations were evolved under a fitness-proportionate se-
lection. The population was initially seeded with a popu-
lation of leaders in which we added a specific amount of
followers. In the table ”L/F” stands for leader/follower and
”NC” for ”Non-Cooperative”.

As expected from previous results, fitness-proportionate
performs well in terms of stability of heterogeneous be-
haviours. We show in Table 4 that in the majority of repli-
cates the best individuals adopt a leader/follower strategy at
the end of the simulations. This is particularly true when
population size is high enough (100). A major difference
with the elitist selection is that in all replicates where a
leader/follower strategy was observed at the end of the run,
the specialists were maintained from the start throughout
evolutionary time. These results suggest that, although not
efficient at bootstrapping cooperative behaviours, fitness-
proportionate performs well w.r.t. the stability of genotypic
heterogeneity. Furthermore, we can hypothesize that this se-
lection scheme is good at maintaining heterogeneity specif-
ically because it largely fails (under our choice of parame-
ters) at bootstrapping any cooperative strategy.

Computational Analyses of Population
Dynamics

In this present section, our goal is to understand more deeply
the dynamics at play which allow the invasion of subopti-
mal generalists even when efficient specialists are present.
To that end we run computational analyses based on the
expected fitness of each of the three phenotypes. Table 5
shows the average payoff of pair-wise simulations between
each type of phenotypes. We consider the payoffs for both
phenotypes in each pair to be identical as no significant dif-
ferences were observed between their payoffs.

Several observations can be made directly from these re-
sults. First, we can confirm that the leader/follower strategy



Phenotype Leader Follower Turner
Leader 1265 5000 3480

Follower 5000 100 2750
Turner 3480 2750 2755

Table 5: Payoff matrix for pair-wise simulations of each
phenotype. Average payoffs of each phenotype against ev-
ery phenotype in a pair-wise simulation. Each pair was eval-
uated 10 times in order to decrease the stochastic effects of
the initial conditions (i.e. random positions of the targets).

displayed by a (leader, follower) pair is clearly the best strat-
egy. However each one of these two phenotypes performs
very poorly against itself with the worst payoff obtained by
a pair constituted of two followers. Secondly, turner individ-
uals perform also very well against leaders. Last, there is no
significant differences w.r.t. payoffs when a turner is paired
with a follower or another turner. These last two points hint
at a shared lineage between followers and turners.

Indeed analyses of the genotypes’ histories in our previ-
ous experiments reveal that turner individuals in fact de-
scend from follower individuals. This means that they act
as followers when interacting with leaders but are not as ef-
ficient. However they are a lot more efficient than followers
when paired with individuals of the same phenotype (or fol-
lowers).

From this payoff matrix, we run computational analyses
to model the gradient of phenotypes’ repartition in an infinite
population. The fitness W of a particular phenotype i is
computed as follows:

Wi =

M∑
j=1

P (ij) ∗ F (j)

with j the phenotype it is paired with, M the number of
different phenotypes (3), P (ij) the payoff of phenotype i
against j and F (j) the proportion of phenotype j in the pop-
ulation. From this fitness, we can deduce the variation of
phenotypes repartition by updating the proportion F of each
phenotype i:

Fi = Fi ∗
Wi∑M
j=1Wj

We show in Figure 4(a) a vector field of this gradient. We
can see that there actually exists an equilibrium between the
three phenotypes (marked by the a dot at the crossing be-
tween the the dotted lines). This implies that even though
the turner strategy is not the more efficient one, it is still ex-
pected that this phenotype can invade and coexist with the
two other phenotypes.

We can hypothesize that we could not observe this equi-
librium in our robotic simulations because of the stochastic

effects arising from selection in a finite population. In or-
der to study this hypothesis we ran additional computational
simulations based on the same payoff matrix. The initial
population is entirely composed of leaders and the selection
method is an elitist (N2 +N

2 ) evolution strategy where N is
the population size. Every 10 generations, each offspring
has a probability of 1 ∗ 10−2 to mutate into any of the two
other phenotypes.

Figure 4(b) shows the final repartition of phenotypes af-
ter 1500 generations of evolution for N = 20, N = 100
and N = 1000 in 11 independent replicates. We can see
that when increasing population size we also increase the
probability that an equilibrium where the three phenotypes
exist is reached. We actually observe that the repartition of
phenotypes at the last generation of evolution gets closer to
the predicted equilibrium as population size increases. This
implies that when population size increases, the probabil-
ity to lose particular phenotypes decreases. In other words,
the effect that the stochasticity of fitness evaluation has on
the sampling of the genotypes for the next generation is mit-
igated: population size is essential to the maintenance of
specialists.

General Properties for Evolving
Heterogeneous Behaviours

From the previous Section, we can hypothesize two key
properties for the successful evolution of genotypic poly-
morphism. First, we showed that population size needed to
be large enough in order to decrease the probability that het-
erogeneity could be lost during the evolutionary time. Even
under an elitist selection where the best individuals are im-
mediately selected, the stochastic nature of fitness evaluation
entails that there is no guarantee that both types get selected.
This means that a performance biased selection may lead to
the composition of the new population not accurately repre-
senting the genotypic diversity of the previous one. There-
fore, there needs to be a mechanism for the preservation of
genotypic diversity. Second, we previously saw that one key
reason for the invasion of turner individuals is that, while
followers perform badly against themselves, this is not the
case for the formers. This means that the manner in which
robots are paired is essential for achieving specialisation.

In order to test these hypotheses we design a last exper-
iment where we diverge from the initial problem and now
coevolve two separate populations. In this coevolution algo-
rithm, each individual of one population is always evaluated
against an individual of the other population (5 times as in
previous experiments). Then, each population separately un-
dergoes selection under an elitist (10+10) selection method
to create the population of the next generation (which means
that each population size is 20). We conducted 11 indepen-
dent replicates which lasted 90000 evaluations each. The
populations were initially constituted of random individuals.

We show (Table 6) that when using coevolution, we al-
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Figure 4: Vector field of the gradient of phenotypes’ proportions and proportions of phenotypes at the last generation
of evolution. (a) Vector field of the gradient of phenotypes’ proportions in an infinite population. The strength of variation is
indicated by the color of the arrow. (b) Repartition of phenotypes at the last generation of evolution for all three population
sizes. Evolution lasted 1500 generations and results were replicated across 11 independent simulations. The initial population
was entirely composed of leaders.

# L/F # Turning # NC Total
Strat. Strat. Strat.

11 0 0 11

Table 6: Strategies evolved by the best individuals when
coevolving two populations. Repartition of the different
strategies adopted bt the best individuals at the last eval-
uation in each of the 11 replicates. We indicate in each
cell the number of simulations where a particular strategy
evolved. Two populations were coevolved under elitist se-
lection and the individuals’ genotype values were initially
random. In the table ”L/F” stands for leader/follower and
”NC” for ”Non-Cooperative”.

ways evolve specialists in every replicates. Moreover, this
algorithm is highly stable as the heterogeneous behaviours
that emerged were never lost during evolution in every repli-
cates. This means that coevolution is highly efficient both
for the bootstrap of a leader/follower strategy and its main-
tenance throughout evolution. Regarding our hypothesized
properties, we can check that the coevolution algorithm re-
spects both of them. Firstly, as populations are separately
coevolved, we make sure that performance-based selection
does not accidentally lead to the disappearance of special-
ists. Thus we ensure that the populations’ genotypic diver-
sity is protected. Secondly, we create a very specific pair-
ing between individuals. Indeed individuals inside the same

population are never partnered with one another. This means
that followers are always paired with leaders. As turners
thus possesses no fitness benefit over the other phenotypes,
their invasion is prevented. The question is open as to how
to endow an algorithm working on a single population with
such properties.

Discussion and Conclusions
In this paper, we investigated the evolution of specialisation
through a leader/follower strategy in a cooperative foraging
task. Our goal was to reveal the difficulties that arise when
trying to evolve genotypic polymorphism in a single popula-
tion. To that end, we mainly studied the dynamics of evolu-
tion with two different selection methods: an (µ+ λ) elitist
evolution strategy and fitness-proportionate selection.

We first showed that the long term evolution of a
leader/follower strategy was nearly impossible with an eli-
tist selection. However bootstrapping specialists was not
a problem as we observed that they frequently emerged
during evolution. The major obstacle was rather to main-
tain heterogeneity over evolutionary time. Indeed, even
when adding efficient followers to a population of leaders
to force the adoption of a leader/follower strategy, special-
ists couldn’t be maintained. In comparison, the properties
shown by the fitness-proportionate algorithm were quite the
opposite. While it was almost not capable of evolving a
leader/follower strategy (nor any other cooperative strategy),



the fitness-proportionate selection demonstrated high stabil-
ity. It was therefore capable of maintaining specialists when
present. We thus revealed two critical properties for evolv-
ing heterogeneous behaviours in a single population: boot-
strapping these behaviours and maintaining them through-
out evolution.

We then ran computational analyses and showed that
while a pair of turners is indeed less efficient w.r.t. payoff
than a pair of leader and follower, it is a lot more efficient
than a pair of leaders or a pair of followers. As a result, these
individuals can easily invade part of the population. More-
oever, we also showed that the maintenance of specialists
was very sensible to population size. Performance-based
selection can indeed affect heterogeneity in the composi-
tion of the next generation’s population. Finally, a coevo-
lution algorithm, which we showed to be always successful
in evolving heterogeneous behaviours, solved both of these
two problems with (1) specific partners selection as pairs
were constituted of individuals from different populations
and (2) protection of the behaviours evolved by applying se-
lection separately on the two populations. While this algo-
rithm is not concerned with genotypic polymorphism in a
single population, it is useful to yield effective mechanisms
which could be studied to solve our problem.

This raises several interesting perspectives on how to
solve this problem. First, niche protection could prevent the
disappearance of the efficient but unstable leader/follower
strategy. As a matter of fact, coevolution is akin to a partic-
ular type of niches protection with 2 niches. However, we
intend to investigate how we could implement such mech-
anism without specifying the explicit number nor the orga-
nization of the niches. Rewarding diversity (Lehman and
Stanley, 2008) is also known as an effective way to protect
novel behaviours and could be another promising direction.
In particular, a multiobjective algorithm on performance and
diversity (Doncieux and Mouret, 2014), by rewarding geno-
typic and phenotypic diversity, may protect evolved special-
ists.

Secondly, we showed that because partners were chosen
randomly among the population, it created the opportunity
for a ”parasitic” strategy to invade. An interesting direction
for future works could be to investigate restrictions in the
choice of partners. For example it would be compelling to
investigate how the individuals could evolve to select their
partner based on genotypic or phenotypic information.
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Bernard, A., André, J.-B., and Bredeche, N. (2015). Evolution of
Cooperation in Evolutionary Robotics : the Tradeoff between
Evolvability and Efficiency. In Proceedings of the European
Conference on Artificial Life 2015, pages 495–502.

Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. E. G.
(2015). Evolutionary Robotics: What, Why, and Where to.
Frontiers in Robotics and AI, 2(4).

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box op-
timization: a review of selective pressures for evolutionary
robotics. Evolutionary Intelligence, pages 1–18.

Eskridge, B. E., Valle, E., and Schlupp, I. (2015). Emergence of
Leadership within a Homogeneous Group. PloS one, 10(7).

Ferrante, E., Turgut, A. E., Duéñez Guzmán, E., Dorigo, M., and
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