
HAL Id: hal-03175157
https://hal.science/hal-03175157v1

Preprint submitted on 19 Mar 2021 (v1), last revised 7 Sep 2022 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On betweenness in order-theoretic trees
Bruno Courcelle

To cite this version:

Bruno Courcelle. On betweenness in order-theoretic trees. 2021. �hal-03175157v1�

https://hal.science/hal-03175157v1
https://hal.archives-ouvertes.fr

On betweenness in order-theoretic trees

Bruno Courcelle
LaBRI, CNRS, Bordeaux University

courcell@labri.fr

March 19, 2021

Abstract : An order-theoretic tree is a partial order such that the
set of nodes larger that any node is linearly ordered. Rooted trees,
ordered by the ancestor relation, are order-theoretic trees.

The ternary relation B(x, y, z) of betweenness states that y is be-
tween x and z, in some sense. For linear and partial orders, for finite
and order-theoretic trees, it has been characterized in first-order or
monadic second-order logic. In an order-theoretic tree, B(x, y, z)
means that x < y < z or z < y < x or x < y ≤ x⊔z or z < y ≤ x⊔z
where x ⊔ z is the least upper-bound of incomparable x and z.

We prove that the class of the induced substructures of the be-
tweenness structures of countable order-theoretic trees is monadic
second-order definable. The proof uses partitioned probe cographs,
a variant of cographs, and their known five bounds, i.e., the five
minimal excluded induced subgraphs, up to isomorphism.

This article links two apparently unrelated topics: cographs and
order-theoretic trees.

Introduction
The ternary relation B(x, y, z) of betweenness expresses that y is between

x and z, in some structure, such as a tree or a graph. Betweenness has been
already characterized by first-order ormonadic second-order sentences for linear
and partial orders [7, 9, 16], for certain finite graphs [1, 2], for finite trees and
for infinite trees of various kinds [3, 5, 6].

An order-theoretic tree (an O-tree for short) is a partial order T = (N,≤)
such that {x ∈ N | x ≥ y} is linearly ordered for any y, a notion studied by
Fraïssé [12]. It T is finite, we have a forest ordered by the ancestor relation.
The set of rational numbers is an order-theoretic tree although no node has
an immediate ancestor. We used order-theoretic trees previously to define the
modular decomposition and the rank-width of countable graphs [3, 8].

The betweenness structure of an O-tree T = (N,≤) is (N,BT) such that

BT (x, y, z) :⇐⇒ x
= y
= z
= x∧ [(x < y ≤ x⊔ z)∨ (z < y ≤ x⊔ z)]

1

where x ⊔ z denotes the least upper-bound of x and z. If x ⊔ z does not
exist, there is no triple (x, y, z) in BT . An induced betweenness is a induced
substructure of such (N,BT).

In [3, 6] we have characterized several types of betweenness structures, in par-
ticular the betweenness structures of order-theoretic trees by monadic second-
order sentences. We conjectured that the class IBO of induced betweenness
structures in O-trees is monadic second-order definable too. We prove a slight
weakening of this property by allowing the defining monadic second-order sen-
tence to use the finiteness set predicate Fin(X), expressing that the set X is
finite.

Our proof uses the fact that partitioned probe cographs, have exactly five
known bounds [15]. A bound is a minimal induced subgraph not in a given
hereditary class, i.e., closed under taking induced subgraphs (see Pouzet [17]).
A probe cograph is obtained from a cogaph by choosing a partition of its vertex
set into two sets and by removing the edges having their two ends in one of the
two sets. In a partitioned probe cograph, we keep track of the partition by means
of a labelling of the vertices. A probe cograph is obtained from a partitioned
probe cograph by forgetting the partition. The path P5 is a probe cograph. The
path P6 is a bound of probe cographs.

The class of probe cographs is hereditary. As it is 2-well-quasi-ordered [10,
17], it has finitely many bounds. They are not completely known but we define an
algorithm based on monadic second-order logic and clique-width decompositions
that could compute them. Unfortunately, it is intractable.

This article links two apparently unrelated notions: betweenness in order-
theoretic trees and certain graphs defined from cographs. To give an intuition
about this link, we observe that the cocomparability graph of an order-theoretic
tree is a graph without induced P4, hence, is a finite or infinite cograph (Propo-
sition 3.5).

Summary: Section 1 reviews partial orders, graphs, clique-width and usual
trees. Section 2 defines and studies p-cographs. Section 3 defines order-theoretic
trees. Section 4 proves the monadic second-order characterization of IBO. Sec-
tion 5 examines the bounds of the class of probe cographs.

1 Definitions and notation

All graphs, trees, partial orders and relational structures are countable which
means finite or countably infinite. We denote [k] := {1, ..., k}. Two sets A and
B overlap if A∩B, A−B and B −A are not empty. In some cases, we denote
by A ⊎B the union of two sets to stress that they are disjoint. Isomorphism of
graphs, combinatorial and logical structures is denoted by ≃.

Partial orders

2

For partial orders ≤,�,⊑, ... we denote respectively by <,≺,⊏, ... the
corresponding strict partial orders. We write x⊥y if x and y are incomparable
for the considered order.

Let P = (V,≤) be a partial order. For X,Y ⊆ V , the notation X < Y
means that x < y for every x ∈ X and y ∈ Y . We write X < y instead of
X < {y} and similarly for x < Y . We use similar notation for ≤ and ⊥. The
least upper-bound of x and y is denoted by x ⊔ y if it exists and is then called
their join.

If X ⊆ V , then we define N≤(X) := {y ∈ V | y ≤ X} and similarly for N<.
We define ↓ (X) := {y ∈ V | y ≤ x for some x ∈ X}. We have N≤(X) ≤ X,
N≤(∅) = V , and ↓ (∅) = ∅. We also define L≥(X) := {y ∈ V | y ≥ X}, and
similarly L>(X). We write L≥(x) (resp. L≥(x, y)) if X = {x} (resp. X =
{x, y}) and similarly for L>.

An embedding of a partial order P = (N,≤) into another one P ′ = (N ′,≤′)
is an injective mapping j : N → N ′ such that j(x) ≤′ j(y) if and only if x ≤ y.
It is a join-embedding if j(x)⊔′ j(y) = j(x⊔ y) whenever x and y have a join in
P . We write P ⊆j P

′ if the inclusion mapping is a join-embedding.

Graphs

In this article, graphs are undirected and simple, which means without loops
and parallel (multiple) edges. We denote respectively by Pn, Cn,Kn a path, a
cycle, a clique with n vertices.

The notation u− v designates an edge with ends u and v. As a property, it
means also "there is an edge between u and v". We say then that u and v are
adjacent or are neighbours. The notation u − v − w − x shows the vertices of
a path of 4 vertices. The notation u − v − w − x − u shows the vertices of a
4-cycle.

Induced subgraph inclusion is denoted by ⊆i and G[X] is the induced sub-
graph of a graph G = (V,E) having the vertex set X and then, G − x :=
G[V − {x}].

We denote by G⊕H the union of disjoint graphs G and H. This operation
does not modify the possibly existing vertex-labels. Then, G ⊗ H is G ⊕ H
augmented with edges between any vertex of G and any of H.

The diameter of a connected graph is the maximal distance between two
vertices, i.e., the minimum number of edges of a path between them.

By a class of graphs, we mean a set closed under isomorphism. A class
C is hereditary if it is closed under taking induced subgraphs. Its bounds are
then the graphs G not in C such that G− x ∈ C for each vertex x. They form
the class Bnd(C). If the graphs in Bnd(C) are finite and are finitely many up to
isomorphism, them C is FO-definable (see below) and recognizable in polynomial
time.

Rooted trees

A tree is a connected graph without cycles. It is convenient to call nodes the
vertices of a tree. A rooted tree is a triple T = (NT , ET , r) such that (NT , ET)
is a tree and r ∈ N . It can be defined as the partial order (NT ,≤T) such that

3

x ≤T y if and only if y is on the path from the root r to x. A leaf is a minimal
node,LT denotes the set of leaves. The other nodes are internal. We will always
handle rooted trees T as partial order (NT ,≤T), and in Section 3, we will define
certain generalized trees, called O-trees, as partial orders [12].

A node x is a son of y if x <T y and there is no node z such that x <T z <T y.
The degree of a node is the number of its sons. A node of degree 0 is thus a leaf.

The subtree of a rooted tree T issued from a node u is T/u := (NT≤(u),≤)
where ≤ is the restriction of ≤T to NT≤(u).

A rooted forest F is the union of pairwise disjoint rooted trees and RtF
denotes the set of roots of its trees.

A finite rooted tree T can be denoted linearly by �T defined as follows: If
T has root r and subtrees T1, ..., Tp issued from the sons of the root, then
�T := r(�T1, ...,�Tp). If T is reduced to r, then �T := r. The order of the sequence
T1, ..., Tp is irrelevant as trees are only ordered by the ancestor relation. In some
cases, we can replace in this notation a node by its label.

Logic

We will use relational structures of the following types : (N,≤) to describe
a partial order, a rooted tree or an order-theoretic tree, (V, edg) to describe a
graph with set V of vertices, and edg(x, y) means that there is an edge between
x and y. Betweenness structures are of the form (N,B) where B is a ternary
relation. Vertex or node labellings are formalized by additional unary relations.
If S is a relational structure with domain N and X ⊆ N , then S[X] denotes
the induced sustructure with domain X and ⊆idenotes an induced inclusion of
relations.

Properties will be expressed by first-order (FO) or monadic-second order
(MSO) sentences. A sentence is a formula without free variables. For example,
that a graph G has no induced subgraph isomorphic to a finite graph H is FO
expressible. That a graph G is not connected is expressed in its representing
structure (V, edg) by the following MSO sentence:
∃X[(∃x.x ∈ X) ∧ (∃y.y /∈ X) ∧ (∀x, y(x ∈ X ∧ y /∈ X) =⇒ ¬edg(x, y)].
See the book [9] for a detailed study of monadic second-order logic.
We abreviate first-order into FO and monadic second-order into MSO. We

consider classes of finite or countably infinite structures. Such a class is MSO
(or FO) definable if it is the class of finite or countably infinite models of an
MSO (or FO) sentence.

The finiteness set predicate Fin(X) expresses that a set X is finite. The
finiteness of a set X ⊆ N is not MSO expressible, unless some linear order on
N can be defined by MSO formulas (see Example 1.6 in [6]). This is the case
for example if N is the set of nodes of a ternary tree. An MSOfin-sentence is
an MSO-sentence where Fin(X) can be used.

All trees, graphs and relational structures are finite or countably infinite.

4

2 Cographs and related notions

In this section all graphs and trees are finite.

Definition 2.1 : Cographs
(a) A graph is a cograph if and only if it can be generated from isolated ver-

tices by the operations ⊕ and ⊗ if and only if it has no induced path P4. There
are many other characterizations [18]. The family of cographs is hereditary. only
bound is P4.

(b) The cycle a− b− c− d− a is defined by the term (a⊕ c)⊗ (b⊕ d). To
define it up to isomorphism, that is, without naming the vertices, we will use
the term (• ⊕ •) ⊗ (• ⊕ •). We can use the notation t1 ⊕ t2 ⊕ ... ⊕ tn because
the operation ⊕ is associative, and similarly for ⊗. We can also use the notation
⊕(t1, t2, ..., tn) or ⊕(t1, t2, ..., tn) if we consider t as a rooted tree whose internal
vertices are labelled by ⊕ or ⊗.

(c) The syntactic tree of term defining a cograph G = (V,E) is called a
{⊕,⊗}-tree. It is a rooted tree whose set of leaves is V and whose internal nodes
are of degree at least 2 and labelled by ⊕ or ⊗.

Definition 2.2 : 2-graphs
A 2-graph is a graph (V,E) equipped with a bipartition V1⊎V2 of its vertex

set V . We will say that x ∈ Vi is an i-vertex. The type of a finite path x1 −
x2 − ...− xn in a 2-graph is the word b1b2...bn over {1, 2} such that, for each i,
xi is a bi-vertex. �

Definitions 2.3 : Probe cographs

(a) A partitioned probe cograph (a pp-cograph in short) is a 2-graph obtained
from a cograph (V,E) by choosing a bipartition V1 ⊎ V2 of V and removing the
edges between its 1-vertices.

(b) A probe cograph (a p-cograph in short) is obtained from a pp-cograph by
forgetting the bipartition (and the corresponding labelling of its vertices by 1
or 2).

(c) A bipartition of a graph (or a vertex-labelling by 1 or 2) is good if it
makes it into a pp-cograph.

(d) Partitioned probe cographs can be defined by terms, similar to those that
define cographs, using the operation ⊕ and the operation ⊗ that we redefine
as follows for 2-graphs: G ⊗ H is G ⊕ H augmented with all edges between
an i-vertex of G and a j-vertex of H, provided i and j are not both 1. It is
associative. A nullary symbol •i(x) defines x as an isolated i-vertex.

The path P4 = a−b−c−d with labelling of type 1212 is a pp-cograph defined
by the term •1(c)⊗ ([•1(a)⊗•2(b)]⊕•2(d)). To define it up to isomorphism, we
can use the term •1⊗([•1⊗•2]⊕•2). Note that •1(x)⊗•1(y) and •1(x)⊕•1(y)
define the same 2-graph. See also Example 2.5(1). �

We review some results from [10, 15].

5

Proposition 2.4 : (1) The class of partitioned probe cographs is hereditary.
Its bounds are the paths of types 2222, 1222, 2122 or 21212 and the 2-graph
Q defined as the path a− b− c− d− e of type 12221 augmented with the edge
b− d. Its graphs can be recognized in linear time.

(2) The class of probe cographs is hereditary and has finitely many bounds.
Its graphs can be recognized in linear time.

An immediate consequence of interest for the present article is that pp-
cographs are definable among 2-graphs by a first-order (FO) sentence, effec-
tively constructed from the five known bounds. Probe cographs are so but the
corresponding FO sentence is not known, because the complete list of bounds is
not either. However, their bounds are definable in monadic second-order (MSO)
logic by a known sentence, obtained from the FO sentence that defines the
pp-cographs. We will discuss these points in Section 5.

Examples 2.5: (1) The path P4 is not a cograph. It has good labellings of
types 1212 and 1221. Its labellings of type 1222, 2122 and 2222 are not good.

(2) The labelled path P5 = a− b− c− d− e of type 12121 is a pp-cograph
defined by the term •1(c)⊗ [(•1(a)⊗•2(b))⊕ (•1(e)⊗•2(d)]. No other labelling
of it is good, which follows from Proposition 2.4(1).

(3) The path P6 = a − b − c − d − e − f is not a p-cograph. Assume it
has a good labelling. The induced path a− b− c− d− e must have type 12121
and f must have label 2. But then b − c − d − e − f has type 21212, which
is not possible by (1). It follows that a p-cograph has no induced P6. Hence,
a connected p-cograph cannot have diameter 5 or more because otherwise, it
would contain an induced path P6. Furthermore, P6 is a bound of p-cographs.

(4) All graphs having at most 5 vertices except the cycle C5 are p-cographs.
�

3 Order-theoretic trees

Definition 3.1: (a) An order-theoretic forest (an O-forest in short) is a partial
order J = (N,≤) such that, for each x ∈ N , the set L≥(x) := {y | y ≥ x} is
linearly ordered. An O-forest is an O-tree if every two nodes have an upper-
bound. An O-tree is a join-tree if every two elements x and y have a least
upper-bound, denoted by x ⊔ y and also called their join. An O-tree may have
no largest node. Its largest node if it exists is called the root. If x⊔ y and y ⊔ z
are defined, then so is x ⊔ z and it belongs to {x ⊔ y, y ⊔ z}.

(b) If u < w, then we say that w is an ancestor of u.
(c) A line in an O-forest (N,≤) is a subset L of N that is linearly ordered

and convex, i.e., is such that z ∈ L if x, y ∈ L and x < z < y.
(d) A leaf is a minimal node. It has degree 0; the set of leaves is denoted by

LJ .
(e) A node x has degree 1 if there is y < x such that every node z < x

is comparable with y. For finite forests, this is equivalent to the definition in

6

Section 1. If we delete nodes of degree 1 of an O-forest J, we obtain a (possibly
empty) O-forest J ′ such that J ′ ⊆j J because a node of degree 1 is not the join
of any two incomparable nodes. �

Definition 3.2 : Substitutions of lines in O-forests.
Let J = (N,≤) be an O-forest and, for each x ∈ N , let (Ax,≤x) be a

(possibly empty or singleton) linearly ordered set. These sets are assumed to be
pairwise disjoint. We let J ′ = J [Ax/x;x ∈ N] := (N

′,≤′) be the partial order
such that :

N ′ is the union of the sets Ax,

u ≤′ v if and only if either u ≤x v, or u ∈ Ax, v ∈ Ay and x < y.

It is an O-forest in which each nonempty Ax is a line.

Definitions 3.3 : The join-completion of an O-forest.
Let J = (N,≤) be an O-forest and K be the set of upwards closed lines

L≥(x, y) := L≥(x)∩L≥(y) for all (possibly equal) nodes x, y. If x and y have a
join, then L≥(x, y) = L≥(x⊔ y). If they have no upper-bound, then L≥(x, y) is
empty.

The family K is countable. We let h : N → K map x to L≥(x) and �J :=

(K,⊇). We call �J the join-completion of J because of the following proposition,
stated with these hypotheses and notation.

Proposition 3.4 [6] : The partially ordered set �J := (K,⊇) is a join-tree

and h is a join-embedding J → �J .�

If we identify x ∈ N with h(x) = L≥(x), we have a join-preserving inclusion

J ⊆j �J . The join of h(x) and h(y) is L≥(x, y).

The following side proposition shows that cographs arise naturally from O-
forests. We recall that ⊥ denotes incomparability.

Proposition 3.5: The cocomparability graph CC(J) := (N,⊥) of a finite
forest J = (N,≤) is a cograph.

Proof sketch: First we consider the cocomparability graph CC(T) =
(N,⊥) of a finite rooted tree T = (N,≤) is a cograph. If T = a(T1,, Tn)
and n ≥ 2, then CC(T) = a ⊕ (CC(T1) ⊗ ... ⊗ CC(Tn)). If n = 1, we have
CC(T) = a⊕CC(T1). �

If we define as a cograph an infinite graph without induced path P4, then
this proposition extends to countable O-forests.

7

4 Betweenness in order-theoretic trees

We will consider ternary structures S = (N,B). If n > 2, the notation
=
(x1, x2, ..., xn) means that x1, x2, ..., xn are pairwise distinct, hence it abreviates
an FO formula. If n > 3, then B+(x1, x2, ..., xn) abreviates the FO formula

B(x1, x2, x3) ∧B(x2, x3, x4) ∧ ... ∧B(xn−2, xn−1, xn)

and A(x1, x2, x3) abreviates

B(x1, x2, x3) ∨B(x2, x1, x3) ∨B(x1, x3, x2).

Definitions and background 4.1 : O-forests and their betweenness rela-

tions.

(a) The betweenness relation of an O-forest J = (N,≤) is the ternary relation
BJ ⊆ N

3 such that :

BJ(x, y, z) :⇐⇒
= (x, y, z) ∧ ([x < y ≤ x ⊔ z] ∨ [z < y ≤ x ⊔ z]).

If x⊔z is undefined, then BJ(x, y, z) holds for no triple (x, y, z). If x < y < z,
we have BJ(x, y, z).

We denote by BO the class of betweenness structures (N,BJ) of O-forests
J = (N,≤).

(b) The following related classes have been considered in [5, 6].

IBO is the class of induced substructures of the structures in BO.

QT (for quasi-trees) is the class of betweenness structures of join-
trees.

IBQT is the class of induced substructures of structures in QT.

We have the following proper inclusions :

QT ⊂ IBQT∩BO,

IBQT ⊂ IBO and

BO ⊂ IBO.

The classes IBQT and BO are incomparable, and for finite structures, we
have QT = BO.

(c) The betweenness relation B of a rooted tree T = (N,≤), (hence, (N,B)
∈QT) satisfies the following properties for all x, y, z, u ∈ N :

A1 : B(x, y, z)⇒
= (x, y, z).

A2 : B(x, y, z)⇒ B(z, y, x).

A3 : B(x, y, z)⇒ ¬B(x, z, y).

A4 : B(x, y, z) ∧B(y, z, u)⇒ B+(x, y, z, u).

A5 : B(x, y, z) ∧B(x, u, y)⇒ B+(x, u, y, z).

A6 : B(x, y, z)∧B(x, u, z)⇒ y = u ∨B+(x, u, y, z)∨B+(x, y, u, z).

A7 :
= (x, y, z)⇒ A(x, y, z)∨∃w[B(x,w, y)∧B(y,w, z)∧B(x,w, z)].

8

Conversely, every ternary structure satisfying these properties is in QT [3].
Furthermore, the class IBQT is FO definable (this is not immediate), and the
class BO is MSO definable [5, 6]. The case of IBO was left as a conjecture. We
will prove the following.

Theorem 4.2 : The class IBO is MSOfin-definable.

We will consider ternary structures (N,B) that always satisfy the FO-expres-
sible properties A1-A6. These properties hold in every structure in IBO but

do not characterize this class (Proposition 3.22 of [6]).

4.1 Preliminary results on IBO

Defintion 4.3 : The Gaifman graph of a ternary structure S = (N,B) is the
graph Gf (S) whose vertex set is N and that has an edge u − v if and only if
u and v belong to some triple in B. We say that S is connected if Gf (S) is.
If it is not, then S is the disjoint union of the induced structures S[X] for all
connected components X ⊆ N of Gf (S).

Lemma 4.4: (1) A structure S is in IBO if and only if its connected
components are.

(2) If a structure S in IBO is connected, then it is an induced betweenness
relation of an O-tree.

Proof: (1) The "only if" direction is clear by the definitions. Conversely,
assume that each connected component of a ternary structure S = (N,B) is in
IBO. For each of them S[X], let UX := (MX ,≤X) be a defining O-forest (we
have MX ⊇ X). We assume them pairwise disjoint. We let NR be N ordered by
reversing the natural order and assumed to be disjoint from each MX . We let
W be the union of NR and the UX ’s ordered as follows :

x ≤W y if and only if

x ≤ y in NR or x ≤X y for some component X, or x is in some MX

and y ∈ N.

Then W is an O-tree and B = BW ∩N3.

(2) Let S = (N,B) such that B = BU ∩N3 for some O-forest U = (M,≤).
Let M ′ be the union of the lines L≥(x) of U for all x ∈ N . Then U ′ := U [M ′] is
an O-forest and B = BU ′ ∩N3. We prove that it is an O-tree if furthermore S
is connected. If x and y belong to a triple in B, then they have an upper-bound
in M ′ by the definition of BU and, furthermore, any x′ ≥ x and y′ ≥ y also
have an upper-bound in M ′. Let u, v ∈M ′. There is a path x1−x2− ...−xn in
Gf (S) such that u ≥ x1 and v ≥ xn. Hence we have z1, z2, ..., zn−1 such that z1
is an upper-bound of u and x2, z2 is an upper-bound of z1 and x3, ...,zn−1 is an
upper-bound of zn−2 and v ≥ xn. We have zn−1 ≥ u. Hence, U ′ is an O-tree.�

9

The converse of Assertion (2) may be false: consider a star T = (N,≤) with
root r and S := (N − {r}, B) where B := BT [(N − {r})]. Then, S is in IBO,
defined from a tree, but not connected as B is empty.

Definition 4.5 : Marked join-trees and related notions
(a) A marked join-tree is a 4-tuple T = (M,≤,M⊕,M⊗) such that (M,≤)

is a join-tree and M⊕,M⊗ are disjoint subsets of M that contain no leaf. We
let VT :=M − (M⊕ ⊎M⊗). Its size is |M |.

(b) We define the betweenness relation BT ⊆ V
3
T of T as follows:

BT (x, y, z) :⇐⇒
= (x, y, z) ∧ x ⊔T z /∈M⊕∧

([x < y ≤ x ⊔T z] ∨ [z < y ≤ x ⊔T z]).

The join x ⊔T z is always defined as T is a join-tree. We have BT (x, y, z) if
x < y < z.

We let ST := (VT , BT) be the betweenness structure of T . The Gaifman
graph of ST has vertex set VT .

(c) If we delete from T all nodes of degree 1 belonging toM⊕⊎M⊗, we obtain
a marked join-tree having the same betweenness structure and that join-embeds
into T (cf. Definition 3.1(e)). We call reduced such a marked join-tree.

Lemma 4.6 : Let T = (M,≤,M⊕,M⊗) be a marked join-tree.
(1) If U = (N,≤, N⊕, N⊗) join-embeds in T , then BU = BT [N ∩ VT].
(2) If X ⊆ VT and B = BT [X], then there exists U as (1) such that BU = B.
(3) If T1, ..., Tn, ... is a sequence of marked join-trees such that Ti ⊆j Ti+1

and T is the union of the Ti’s, then then BT is the union of the increasing
sequence BT1 ⊆i BT2 ⊆i ...BTn ⊆i ...

Proof : (1) Since U join-embeds in T , if x, y ∈ N ∩VT , then x⊔U y = x⊔T y
and this join belongs to M⊕ (resp. M⊗) if and only if it belongs to N⊕ (resp.
N⊗). The result follows from the definitions.

(2) Let T = (M,≤,M⊕,M⊗) be a marked join-tree and N ⊆ M . Let us
remove from T all subtrees T/u that contain no node of N . We obtain U =
(N ′,≤,N⊕, N⊗), a marked join-tree that join-embeds in T and VU = N ∩ VT .
Hence we have B = BT [N] = BU by (1).

(3) We have Tn ⊆j T for each n. The result follows. �

Proposition 4.7 : (1) A structure S = (N,B) is in IBO if and only if is
B = BT for a marked join-tree T = (M,≤,M⊕,M⊗) such that VT = N .

(2) If N is finite, then T can be chosen finite of size at most 2 |N | − 1.
Proof: (1) "If" Let ST := (VT , BT) be defined from a marked join-

tree T = (M,≤,M⊕,M⊗). We will construct an O-tree U = (W,≤′) such that
M −M⊕ ⊆W and BU [VT] = BT .

For each node x in M⊕, we let NRx be an isomorphic copy of N ordered by
reversing the natural ordering. Hence NRx has no least element. We choose these
copies pairwise disjoint and disjoint with M .

10

We define U := T [NRx /x;x ∈ M⊕]. It is an O-tree by Definition 3.2 (where
substitutions are defined).

If x ⊔T z ∈M⊕, then x and z have no join in U .
Let x, y, z ∈ VT be such that BT (x, y, z) holds. If x < y < z or z < y < x

in T, then the same holds in U and BU(x, y, z) holds. Otherwise, x and z are
incomparable and x < y ≤ x ⊔T z > z or x < x ⊔T z ≥ y > z. Then, x ⊔T z is
either in VT or is labelled by ⊗. In both cases, x ⊔T z is the join of x and z in
U . Hence, BU (x, y, z) holds.

Conversely, assume that x, y, z ∈ VT and BU (x, y, z) holds. If x < y < z or
z < y < x in U, then the same holds in T and BT (x, y, z) holds. Otherwise, x
and z are incomparable and x < y ≤ x ⊔U z > z or x < x ⊔U z ≥ y > z. Then
x and z have a join m in T . It must be in VT ∪M⊗, otherwise, x⊔U z does not
exist because it would be the minimal element of NRm. Hence BT (x, y, z) holds.
Hence S ∈IBO.

"Only if" Conversely, assume that S = (N,B) in IBO is defined from an
O-tree U = (M,≤) such that N ⊆ M and B = BU ∩N

3. We can assume that
for every y ∈ M , we have x ≤ y for some x ∈ N : if this is not the case, we
replace M by the union M ′ of the upwards closed lines LU≥(x) for all x ∈ N
and, letting U ′ := (M ′,≤), we have N ⊆M ′ and B = BU ′ ∩N3.

Let W = (P,≤) be the join-completion of U , cf Definition 3.3. We label by
⊗ a node in M −N , and by ⊕ a node in P −M . These latter nodes have been
added to U in place of missing joins, according to Proposition 3.4.

Claim : B = BW .
Proof : B ⊆ BW . Let B(x, y, z). If x < y < z or z < y < x in U then the

same holds in W and BW (x, y, z) holds.
Otherwise, x and z are incomparable and x < y ≤ x ⊔ z > z or x < x ⊔ z ≥

y > z in U . Then x ⊔ z is in N or is labelled by ⊗ in W . Hence, BW (x, y, z)
holds. Then x ⊔ z is not labelled by ⊕.

Conversely, assume that BW (x, y, z) holds. A similar proof establishes that
B(x, y, z) holds. �

If S = (N,B) in IBO is defined from an O-forest U = (M,≤) as opposed
to an O-tree, then its connected components are defined by O-trees. For each of
them, we have a marked join-tree. We put them together in a marked join-tree
with a root labelled by ⊕. (Similar to the proof of Lemma 4.4(2)).

(2) Let S = (N,B) in IBO be finite and defined from a marked join-tree
T = (M,≤,M⊕,M⊗) such that N = VT and B = BT . By removing the nodes
in M⊕ ∪M⊗ of degree 1, we obtain a reduced marked join-tree that defines S
and has at most 2 |N | − 1 nodes. �

Remark 4.8 : We observed in Proposition 2.15 of [6] that a finite structure
in IBO may not be defined from any finite O-forest U (cf. Definition 4.1).
Marked join-trees remedy this "defect" and yield Proposition 4.7, a key fact for
our proof.

11

Figure 1: See Examples 4.9. In the O-tree to the left we have 0 > 1 > 2 > 3 >
... > n > ... above x and y.

Example 4.9 : We consider S = (N,B) in IBO defined from the infinite
O-tree on the left of Figure 1 where N = {0, a, a′, b, b′, c, c′, d, d′, e, e′}. We have:

(a) B(a′, a, 0), B(b′, b, 0),B(c′, c, 0), B(d′, d, 0), B(e′, e, 0),

(b) B+(a′, a, b, b′), B+(c′, c, d, d′), B+(a′, a, e, e′), B+(b′, b, e, e′),

B+(c′, c, e, e′) and B+(d′, d, e, e′).

We do not have B+(a′, a, c, c′) because a and c have no join, as the dotted
line represents NR.

The right part shows a finite marked join-tree T = (M,≤,M⊕,M⊗) where z
has been added as join of x and y and the nodes 2, 3, ..., n, ... of degree 1 above
z have been deleted (cf. Definition 3.1 for the degree).

We have M = N ∪ {1, x, y, z},M⊕ = {z},M⊗ = {1, x, y} and BT = B. �

Proposition 4.10 : S is in IBO if and only if each of its finite substructures
is.

Proof : The "only if" direction is clear as, by its definition, the class IBO
is hereditary, i.e., closed under taking induced substructures.

"If" direction. First, some observations. If S = (VT , B) is defined from a
marked join-tree T = (N,≤, N⊕,N⊗) and S′ ⊆i S, then the restriction T ′ of T
to {x ∈ N | x ≥ y for some y ∈ VT } is a marked join-tree that defines S′. By
reducing it (Definition 4.5(c)), we get T ′′ ⊆j T that defines S′.

By Proposition 4.7, each finite structure S = (N,B) in IBO of size m = |N |
is defined by marked join-trees of size at most 2m−1. We let J(S) be the finite
set of all such join-trees, up to isomorphism.

For proving the statement, we let S = (N,B) be infinite. It is the union of an
increasing sequence S1 ⊂i S2 ⊂i ... ⊂i Sn ⊂i ... of finite induced substructures
that we assume to be in IBO.

12

We will use the following version of Koenig’s Lemma. Let A1, A2, ..., An,...
be an infinite sequence of pairwise disjoint finite sets, and A be their union.
Let R ⊆ A × A be such that for every b in An, n > 1, there is a ∈ An−1 such
that (a, b) ∈ R. Then, there exists an infinite sequence a1, ..., an, ... such that
(an−1, an) ∈ R for each n > 1.

The finite sets J(Sn) are pairwise disjoint. We define
R := {(T, T ′) | T ∈ J(Sn−1), T ′ ∈ J(Sn), n > 1 and T ⊂j T ′}.
It follows from Lemma 4.6(2) that if T ′ ∈ J(Sn) and n > 1, we have

(T, T ′) ∈ R for some T ∈ J(Sn−1).
Hence, there is an infinite sequence of marked join-trees trees
T1 ⊂j T2 ⊂j ... ⊂j Tn ⊂j ... such that Tn ∈ J(Sn) for each n.
By Lemma 4.6(3), their union is a marked join-tree T such that Tn ⊂j T

for each n. We obtain an increasing sequence of finite marked join-trees whose
union is a marked join-tree that defines S. Hence S ∈IBO. �

The proof of Theorem 4.2 reduces to that of the following proposition.

Proposition 4.11: There is an MSO-sentence that characterizes the finite
connected structures in IBO among the finite ternary structures.

Proof of Theorem 4.2, assuming proved Proposition 4.11 : Let ϕ
be the MSO sentence such that, for every finite ternary structure S = (N,B) :

S |= ϕ if and only if S is connected and in IBO.

Consider the MSOfin sentence ψ :

∀X.(γ(X) ∧ Fin(X) =⇒ ϕ[X]),

where γ(X) expresses that X is connected in the Gaifman graph Gf (S) and
ϕ[X] is the relativization of ϕ to X.

Relativizing a sentence to a set, hereX, is a classical construction in monadic
second-order logic, see e.g. [9], Section 5.2.1. If S = (N,B) is a ternary structure
and X ⊆ N , then S |= ϕ[X] if and only if S[X] |= ϕ.

We prove that S |= ψ if and only if S is in IBO.
If S is in IBO, then every induced substructure S[X], in particular every

finite and connected one satisfies ϕ, hence S |= ψ.
Conversely, assume that S |= ψ. Let X be a finite subset of N . If it is

connected in Gf (S), then ϕ[X] holds hence S[X] is in IBO. Otherwise, it is a
disjoint union of connected sets in Gf (S). For each of them, say Y , the validity
of ψ implies that ϕ[Y] holds, S[Y] is in IBO and so are S[X] by Lemma 4.4(1)
and S by Proposition 4.10. �

13

4.2 Overview of the proof of Proposition 4.11

For proving Proposition 4.11, we will handle finite graphs, trees, forests and
structures (N,B). We need some definitions.

Definition 4.12 : Rooted forests compatible with a ternary relation.

A rooted forest T = (N,≤T) is compatible with a relation B ⊆ N3 satisfying
Axioms A1-A6 if, for all x, y, z ∈ N :

(i) if B(x, y, z) holds, then x <T y or z <T y,

(ii) if B(x, y, z) and x <T y >T z hold, then y = x ⊔T z.

(iii) if x <T z, then B(x, y, z) holds if and only if x <T y <T z. �

Lemma 4.13 : Let S = (N,B) ∈IBO be finite, connected and defined from
a finite reduced marked join-tree U = (N ⊎N⊕ ⊎N⊗, ≤U , N⊕, N⊗).

(1) Then T := U [N] = (N,≤T) is a finite rooted forest compatible with B,
where ≤T is the restriction of ≤U to N .

(2) The order ≤T is FO definable in the structure (N,B,R) where R is the
set of roots of T . �

The forest T is not necessarily a tree because the root of U need not be in
N . This root cannot be labelled by ⊕, otherwise S is not connected (we exclude
the trivial case where N is singleton).

Proof : (1) Let S, T, U as in the statement.
(i) If B(x, y, z) holds, then:

either x <U y <U z or z <U y <U x

or x⊥Uz ∧ (x <U y ≤U x ⊔U z ∨ z <U y ≤U x ⊔U z),

where in the latter case, x ⊔U z ∈ N ∪N⊗.

In all cases, we have x <U y or z <U y, hence x <T y or z <T y.
(ii) If B(x, y, z) and x <T y >T z hold, then the above description of

B(x, y, z) shows that y ≤U x ⊔U z. As we have x <U y >U z we must have
y = x⊔U z. If y is not x⊔T z , we have m ∈ N , such that x < m, z < m < y in
T and in U . But then y is not the join of x and z in U . Hence, y = x ⊔T z.

(iii) Clear from the definitions because ≤T is the restriction of ≤U to N .

(2) If R = {r}, then x ≤T y if and only if x = y or y = r or B(x, y, r) holds.
Otherwise, the root of U is in N⊗ and has degree at least 2. Let x and y be

not in R.
Claim : (a) If r ∈ R, we have x <T r if and only if B(x, r, r′) holds for some

r′ ∈ R.
(b) We have x <T y if and only if B(x, y, r) holds for some r ∈ R.

14

Proof : (a) Assume that x <T r. There is r′ ∈ R such that r ⊔U r′ has label
⊗. Hence B(x, r, r′) holds.

Conversely, if B(x, r, r′) holds for some r′ ∈ R, we have x <T r or r′ <T r
because T is compatible with B. As r and r′ are different and are distinct roots
of T , they are incomparable and we have x <T r.

(b) If x <T y, we have x <T y <T r for some r ∈ R. Hence B(x, y, r) holds
since T is compatible with B.

Conversely, if B(x, y, r) holds for some r ∈ R, then, we have x <T y or
r <T y. The latter is not possible as r is a root. �

Let ψ(R,x, y) be the following FO formula (an FO formula may have free
set variables and use atomic formulas x ∈ X):

x = y ∨ [x
= y ∧ ∃r(R = {r} ∧ [y = r ∨B(x, y, r)])]

∨[x
= y ∧ ∃r, r′ ∈ R(y = r ∧B(x, y, r′))]

∨[x
= y ∧ y /∈ R ∧ ∃r ∈ R.B(x, y, r)].

By the claim, it defines x ≤T y since R is the set of roots of T .
We let ϕ(R) be the FO formula relative to ternary structures S = (N,B)

expressing the following:

"R ⊆ N and the binary relation x ≤ y on N defined by S |=
ψ(R,x, y) is a partial order and T := (N,≤) is a forest that is
compatible with B and whose set of roots is R". �

Proposition 4.14 : Let S = (N,B) satisfy properties A1-A6.
(1) For everyR ⊆ N such that S |= ϕ(R), if we let≤ be defined by ψ(R,x, y),

then T := (N,≤) is a rooted forest compatible with B.
(2) Every rooted forest T := U [N] defined from a finite marked join-tree

U = (N ⊎ N⊕ ⊎ N⊗, ≤U , N⊕,N⊗) such that BU = B is described by the
formulas ϕ(R) and ψ(R,x, y).

Proof : The first assertion follows from the definition of ϕ. The second one
follows from Lemma 4.13(2). �

All rooted forests T compatible with B of potential interest for checking that
S is in IBO can be described in terms of their sets of roots R by the existential
MSO formula ∃R.ϕ(R).

We will construct MSO formulas to "check" that a "guessed" forest T sat-
isfies additional requirements implying that T := U [N] for some finite marked
join-tree U witnessing that S ∈IBO.

In some T that has been "guessed", we will insert (if possible) nodes labelled
by ⊕ or ⊗ so as to make it into the desired marked join-tree U . We will insert
nodes in T in the following cases:

15

Figure 2: Example 4.15

(1) If a′ < a, b⊥a, B(a′, a, b) holds and there is no x in T such that {a, b} < x
and B(a, x, b) holds, then we insert a ⊔U b labelled by ⊗ such that a ⊔U b < m
where m is any upper-bound in T of {a, b}.

(2) If a′ < a, b⊥a but B(a′, a, b) does not hold, then we insert a⊔U b as above
labelled by ⊕.

In Case (1) a and b may have a join m in T but we need to insert a "new
join" a ⊔U b < m.

Example 4.15 : The left part of Figure 2 shows a rooted tree T constructed
from the following facts relative to N := {a′, a, b, c′, c, d, e′, e, 1, 0} :

(a) B+(a′, a, 1, 0), B(b, 1, 0), B+(c′, c, 1, 0), B(d, 1, 0), B+(e′, e, 1, 0),

(b) B+(a′, a, c, c′), B(a′, a, d), B(b, c, c′),

(c)B+(a′, a, 1, e, e′), B+(b, 1, e, e′), B+(c′, c, 1, e, e′) andB+(d, 1, e, e′).

Facts (b) indicate the need of joins a ⊔ c, a ⊔ d, and b ⊔ c labelled by ⊗ in
the marked join-tree U to be constructed. These joins are all equal to x in the
tree in the middle of Figure 2. The absence of facts B(a′, a, b) and B(c′, c, d)
indicates the need of ⊕-labelled joins y and z, respectively between a,b and x,
and between c,d and x. However, no triple in B necessitates that b and d have
a ⊗-labelled join. A corresponding marked join-tree is shown in the middle of
Figure 2.

Consider now N ′ := {a′, a, b, d, e′, e, 1, 0} ⊆ N and B′ := B[N ′]. We get a
marked join-tree for B′ by deleting c, c′ and z from the previous one. However,
another one shown to the right, that defines (N ′, B′) where x is labelled by ⊗
and z by ⊕. �

We need more definitions. We let B,T,U and R, be as above in Lemma
4.13.

16

Definitions 4.16 : Cographs and pp-cographs defined from T and, either

U or B.

(a) For each node x of T with sons y1, ..., ys, s ≥ 2, we define yi ∼x yj if and
only if i = j or yi ⊔U yj
= x so that this join has label ⊗ or ⊕. It is easy to see
that ∼x is an equivalence relation.

We have yi ∼x yj if and only if B(yi, x, yj) does not hold, by (ii) of compat-
ibility, Definition 4.12.

(b) For each class C of the equivalence relation ∼x, we define Gx,C as the
2-graph (C,E,C1, C2) such that:

y ∈ C2 if and only if y′ < y for some y′ ∈ N ,

y− z is an edge if and only if y or z is in C2 and y ⊔U z has label ⊗.

There are no edges between vertices in C1. Hence Gx,C is a pp-cograph. We
obtain a cograph if we add edges y − z such that y and z are in C1 and y ⊔U z
has label ⊗.

(c) Let R = {r1, ..., rp}, p ≥ 2. We let Groot be the 2-graph (R,E,R1,R2)
defined as Gx,C above, where R replaces C and y ∈ R2 if and only if y′ < y for
some y′ ∈ N . It is also a pp-cograph. �

Lemma 4.17 : The edges y − z of Gx,C and Groot are characterized by
the FO formula (∃y′ < y, B(y′, y, z)) ∨ (∃z′ < z, B(z′, z, y)).

Proof : Consider x ∈ N and sons y and z of x in a class C of ∼x .
Let y− z be an edge of Gx,C such that y ∈ C2 and y ⊔U z has label ⊗. Then

BU(y
′, y, z) holds for all y′ < y and so does B(y′, y, z) as B = BU .

Conversely, if y′ < y∧ B(y′, y, z) holds, then the join y ⊔U z must have label
⊗ or be in N . But in the latter case, it must be x as y and z are sons of x.
Hence, we have B(y, x, z) but then we do not have y ∼x z. Hence, y − z is an
edge of Gx,C .

The proof is similar for Groot. The join y ⊔U z cannot be in N as y, z are
distinct roots. �

It follows that the 2-graphs Groot and Gx,C can be defined from B and T
only, without using U that we are actually looking for. Furthermore, they can
be described by FO formulas in the structure (N,B,R).

Proposition 4.18 : Let S = (N,B) and T = (N,≤) be defined for some R
satisfying ϕ(R) by the formula ψ(R,x, y).

(1) There exists a marked join-tree U ⊇ T such that B = BU if and only if
the 2-graphs Groot and Gx,C are pp-cographs.

(2) This condition is FO expressible in the structure (N,B,≤).
Proof: (1) The "only if" direction follows from the previous constructions.
Conversely, assume that each 2-graph Gx,C (determined solely from T and

B by Lemma 4.17) as in the statement is a pp-cograph. By adding some edges
between its 1-vertices, we can get a cograph Hx,C ⊇ Gx,C . It is defined by an

17

{⊕,⊗}-tree tx,C (Definition 2.1(c)), a rooted tree whose internal nodes are
labelled by ⊕ or ⊗ and whose set of leaves is C.

Similarly, if T has several roots and Groot is a pp-cograph, there is a cograph
Hroot ⊇ Groot defined by a {⊕,⊗}-tree troot whose set of leaves is R.

By inserting in T the internal nodes of tx,C between x and the nodes in C,
for all relevant pairs (C, x), and those of troot above the roots of T , we get a
marked join-tree U such that U ⊇ T = U [N] and B = BU .

This can be formalized as follows. By bottom-up induction, we define marked
join-trees Tx and Tx,C for each x in N and equivalence class C of the relation
∼x. We assume that the trees tx,C and troot are pairwise dijoint.

(a) If x is a leaf, then Tx := x. There is no set C to consider.
Otherwise, Tx := x(..., Tx,C, ...) where the list covers all equivalence classes

C of ∼x. (We use the linear notation of finite rooted trees defined in Section 1).
(b) If C = {y}, then Tx,C := Ty.
Otherwise, we use the {⊕,⊗}-tree tx,C as follows: Tx,C := tx,C [..., Ty/y, ...],

denoting the substitution in tx,C of Ty for each y ∈ C (it is a leaf of tx,C).
(c) To complete the construction, we define U := Tr if T is a tree with root

r ∈ N .
Otherwise, U := troot[..., Tr/r, ...] denoting the substitution in troot of Tr for

each leaf r ∈ R (it is a leaf of troot).
It is clear that U is a marked join-tree (N ⊎N⊕⊎N⊗, ≤U , N⊕, N⊗) and that

T = U [N].
Claim : BU = B.
Proof : Note that ≤T is the restriction of ≤U to N .
If x and z are comparable, then (x, y, z) ∈ BU if and only if x <U y <U z

if and only if x <T y <T z if and only if (x, y, z) ∈ B since T is compatible
with B.

We now assume x⊥z and (x, y, z) ∈ B.
Let u := x ⊔U z. By the compatibility of T with B (point (ii)), we have

x <T y or z <T y.
(a) If u ∈ N , then u = x⊔T z. Again by compatibility (point (i)), we do not

have u <T y. Hence, we have x <T y ≤T u >T z or z <T y ≤T u >T x. The
same inequalities hold with ≤U hence (x, y, z) ∈ BU .

(b) Otherwise, u has label ⊕ or ⊗. Let x′ be maximal in N such that x ≤ x′

and z′ be similar for z.
(b.1) If x′ and z′ have no upper-bound in T , they are distinct roots and u is

an internal node of Groot.
As noted above, we have x <T y or z <T y. Assume the first, wlog. Then

x <T y ≤T x′.
If u has label ⊗ then BU (x, y, z) holds by the definition of BU .
(If u has label ⊕ then BU(x, y, z) does not hold, but the definition of the

edges of Groot gives that BU(x, y, z) does not hold.)
(b.2) If x′ and z′ have a least upper-bound m in T , then, u <U m. We have

two cases:

18

Case 1 : B(x,m, z) holds. We cannot have y >T m, hence, we have x <T
y ≤T m >T z or z <T y ≤T m >T x. The same inequalities hold with ≤U ,hence
(x, y, z) ∈ BU .

Case 2 : if B(x,m, z) does not hold. Then x′ ∼m z′ (we cannot have
B(x′,m, z′)) and so x′ and z′ belong to a same class C of ∼m . Then we use the
same argument as above with Gm,C instead of Groot.

The proof that BU ⊆ B is similar. �

This completes the proof of Assertion (1).

(2) The following facts can be expressed in the structure (N,≤, B) such that
S = (N,B) satisfies A1-A6 and T = (N,≤) is a forest compatible with B by
MSO formulas that are easy to write explicitely:
α(R,R1, R2) : R is the set of root of T , it is not singleton and (R1, R2) is

its partition defined in Definition 4.16(c).
β(x, y, z) : y < x∧ z < x∧y ∼x z, (y and z are sons of x in T) cf. Definition

4.16(a).
γ(x,C,C1, C2) : C is a set of sons of x and an equivalence class of ∼x,

(C1, C2) is its partition defined in Definition 4.16(b).
η(R, y, z) : y − z is an edge of Groot.
η′(x,C, y, z) : y − z is an edge of Gx,C .
π(R) : R is not singleton and Groot is a pp-cograph (we use α and η).
π′(x,C, y, z) : Gx,C is well-defined and is a pp-cograph (we use γ and η′).
It is MSO expressible in (N,B,≤) by Proposition 2.4(1) whether the 2-

graphs Groot and Gx,C are all pp-cographs. The condition of Assertion (1) is
thus MSO expressible in the structure (N,B,≤) by an MSO sentence µ. �

Proof of Proposition 4.11: We must prove that an MSO-sentence can
characterize the finite connected structures in IBO among the finite ternary
structures. There is an MSO sentence χ expressing that a ternary structure
S = (N,B) is connected and satisfies A1-A6. The sentence over S = (N,B)
defined as ∃R(ϕ(R) ∧ µ′(R)) where µ′ translates µ (of Proposition 4.18(2)) by
using ψ(R,x, y) to define ≤ expresses well that S is in IBO by Proposition
4.18(1). �

5 Clique-width and the bounds of probe cographs

We discuss some properties of probe cographs. We first review clique-width.
Definition 5.1 : Clique-width.

(a) Simple loop-free undirected graphs are built with the help of vertex labels
(in addition to the labels of 2-graphs). Each vertex has a label in a set L. The
nullary symbol a(x) where a ∈ L, denotes the isolated vertex x labelled by a.
The operations are the union ⊕ of disjoint graphs, the unary operations adda,b
for a, b ∈ L, b
= a, that adds an edge between each a-labelled vertex and each b-
labelled vertex (unless they are already adjacent), the unary operation relaba→b

that changes every vertex label a into b.

19

(b) A term over the above defined operations is well-formed if no two occur-
rences of nullary symbols denote the same vertex (so that the graphs defined by
two arguments of any operation ⊕ are disjoint). We call them the clique-width
terms. Each term t denotes a vertex labelled graph val(t) whose vertices are
those specified by the nullary symbols of t. Its width is the number of labels that
occur in t. The clique-width of a graph G without labels from L (but possibly
with labels from another set like {1, 2}, denoted by cwd(G), is the least width
of a term t that denotes some vertex labelling of G.

(c) Clique-width terms may contain redundancies: for example adda,b(addc,d
(adda,b(G))) = addc,d(adda,b(G)) and relaba→b(relaba→c(G)) = relaba→c(G)
for every graph G. It follows that each graph of clique-width at most k is defined
by infinitely many terms written a fixed set L of k labels. However, one can
"normalize" these terms so that we avoid these redundancies. This is done in
Proposition 2.121 of [9]. Let us call normal such a term. It follows that for each
graph of clique-width at most k there is a finite number of normal terms that
define it and use the labels in L := [k]. Furthermore, the set Nk of normal terms
that use the labels in [k] is recognizable by a finite automaton, see [9]. �

Proposition 5.2 : The maximal clique-width of a probe cograph is 4.
Proof : The upper-bound, observed in [10], is easy to establish. The bound

4 is reached by the probe cograph defined by the term :

[•1(1)⊕ (•1(2)⊗ •2(7))⊕ (•1(3)⊗ •2(8))]⊗

[•1(4)⊕ (•1(5)⊗ •2(9))⊕ (•1(6)⊗ •2(10))]

shown in Figure 1, where the leaves 1,...,6 define 1-vertices and the leaves 7
to 10 (written in Italcs) define 2-vertices. It has clique-width1 4. �

Proposition 5.3: Apart from P6, the finitely many bounds of probe cographs
have diameter at most 4 and clique-width bounded by 8. They are connected
and MSO definable.

Proof : Since the class of probe cographs is closed under disjoint union,
their bounds are connected.

We have observed that P6 of diameter 5 is a bound. Any other graph of
diameter at least 5 contains properly an induced path P6, hence cannot be a
bound.

If a graph has G− x has clique-width k, then G has clique-idth at most 2k
[13]. Hence, as probe cographs have clique-width at most 4, their bounds have
clique-width at most 8.

If C is an hereditary class of graphs, then its bounds form the class:

Bnd(C) := {G | G /∈ C and G− x ∈ C for each vertex x of G}.

1 The verification has been done by using the software TRAG [11] that is accessible on-line.
It is based on [14].

20

If C is defined by an MSO sentence θ, then Bnd(C) is defined by the MSO
sentence :

¬θ ∧ ∀X(θ[X] and "X is the set of all vertices minus one").

By Proposition 2.4(1) the class of pp-cographs is FO definable. Hence, the
class of probe cographs is MSO definable, because an existential set quantifica-
tion is useful to guess a good labelling of the given graph. The corresponding
MSO sentence is known from the knowledge of the bounds of pp-cographs. How-
ever, the class of probe cographs is FO-definable by Proposition 2.4(2), but we
do not know the corresponding sentence as the bounds of probe cographs are
not completely known. �

Theorem 5.4 : There is an algorithm that can compute the finitely many
bounds of the class of probe cographs. An upper-bound to their sizes is com-
putable.

Proof sketch : By Proposition 5.3, we can construct effectively a monadic
second-order sentence ξ that defines the class B of bounds of probe cographs
among finite graphs. By Theorem 6.35 of [9] or an algebraic version of it in terms
of recognizable sets (Corollary 5.59), one can build a finite automaton A that
recognizes the set of normal terms of width at most 8 that define the graphs in
B. Then L(A) is finite as we know that B≃ is. However, several terms in L(A)
may define isomorphic graphs. As L(A) is finite, one can list its elements and
thus the graphs it defines after removing isomorphic duplicates.

The monadic second-order sentence ξ can be replaced by ξ ∧δ where δ is the
first-order sentence expressing that a graph is connected and its diameter2 is at
most 4. We obtain in this way a more restrictive set L(A) without missing any
graph in B except P6, but we know it.

Pumping lemmas are classical tools of language theory by which one can
bound the sizes of the terms of a finite recognizable set, without listing them.
However the obtained bound would be ridiculous huge. �

This decision procedure is actually intractable, because of the complexity of
the sentence ξ and the size of the corresponding automata, needing to handle
terms with 8 labels.

For the reader interested in determining exactly the bounds of probe cographs,
we indicate those we know. We denote by G the edge-complement of a graph
G.

Proposition 5.5 : The following graphs of clique-width 3 are bounds for
probe cographs:

(1) The standard graphs C5, P6, C6, C6.
(2) Three graphs obtained by substitutingK2 (an edge) to one or two vertices

of a path P4 or P5. See Figure 3.

2 The graphs having a universal vertex have diameter ≤2. The bounds on diameter and
clique-width do not prove Conjecture 2.16.

21

Figure 3: The graphs of Proposition 5.5(2). The second one, P5, is a probe
cograph.

Figure 4: The bounds C6, C6,D and D of Proposition 5.5(3).

(3) The graph D obtained from the cycle C6 = a− b− c− d− e− f − a by
adding the edge c− f and its complement D obtained from C6 by adding two
edges. Its clique-width is 3. See Figure 4.

(4) Graphs obtained from the "house" by substituting edges. See Figure 5.
Proof hints: (2) The path P5 has a unique good labelling. If we substitute

K2 for a 1-vertex, we obtain a bound.
(4) A good labelling of the house, to the left of Figure 5 must label c by 1

and either b or d by 1. We obtain two bounds, by substituting K2 to c or, to b
and d. �

We do not know any graph of clique-width 4 or more that is a bound for probe
cographs. Hence, for now, we are far from the upper-bound 8 of Proposition 5.3.

22

Figure 5: The "house" to the left, a probe cograph, and two bounds, cf. Propo-
sition 5.5(4).

6 Conclusion

We review two open problems.

Problem 1 : What can be said about the bounds of the class of probe
cographs?

MSO logic is of no help.

Problem 2 : Does there exist a monadic second-order transduction, cf.
Chapter 7 of [9], that transforms a finite ternary structure assumed to be in
IBO into a finite marked join-tree defining it?

We recall that in [6], we studied four classes of betweenness structures
(cf. Definition 4.1) : QT, IBQT, BO and IBO. Each betweenness structure
S = (N,B) is defined from a labelled O-tree, say T = (M,≤, N⊕,N⊗). This
description covers all cases, although labels are useless in some cases.

The question is whether some witnessing T can be defined by monadic
second-order formulas in the given structure S, in technical words, by a monadic
second-order transduction. A FO transduction exists for QT and MSO trans-
ductions exist for IBQT and BO.

Theorem 4.2 establishes that the class IBO is MSO definable, without build-
ing an associated MSO transduction. As a finite structure in IBO having n
elements can be defined from a marked rooted tree with at most 2n nodes, it
is not hopeless to find such a transduction (an MSO transduction transforms a
structure with n elements into one with at most kn elements, for some fixed k.)

References

[1] M. Changat, P. Narasimha-Shenoi, and G. Seethakuttyamma, Be-
tweenness in graphs: A short survey on shortest and induced
path betweenness, AKCE International Journal of Graphs and

Combinatorics, 16 (2019) 96-109. (Available on ScienceDirect.com,
https://doi.org/10.1016/j.akcej.2018.06.007)

23

[2] V. Chvatal, Antimatroids, betweenness, convexity, in Research Trends in
Combinatorial Optimization, Springer, 2008, pp. 57-64.

[3] B. Courcelle, Several notions of rank-width for countable graphs, J. Comb.
Theory, Ser. B. 123 (2017) 186-214.

[4] B. Courcelle, Algebraic and logical descriptions of generalized trees, Logical
Methods in Computer Science 13 (2017) Issue 3.

[5] B. Courcelle, Betweenness in order-theoretic trees, in Fields of Logic and
Computation III, Lec. Notes Comp. Sci. 12180 (2020) 79-94.

[6] B. Courcelle, Axiomatizations of betweenness in order-theoretic trees, Log-
ical Methods in Computer Science 17 (2021) Issue 1, pp. 11:1-11-42.

[7] B. Courcelle, Betweenness of partial orders, Theoretical In-

formatics and Applications, 54 (2020), see https://www.rairo-
ita.org/articles/ita/abs/2020/01/ita200028/ita200028.html.

[8] B. Courcelle and C. Delhommé, The modular decomposition of countable
graphs. Definition and construction in monadic second-order logic. Theor.
Comput. Sci. 394 (2008) 1-38.

[9] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Cambridge University Press, 2012.

[10] J. Daligault, M. Rao and S. Thomassé, Well-quasi-order of relabel func-
tions. Order 27 (2010) 301-315.

[11] I. Durand and M.Raskin, On line software TRAG, see http://trag.labri.fr

[12] R. Fraïssé, Theory of relations, Studies in Logic, Volume 145, North-
Holland, 2000.

[13] F. Gurski, The behaviour of clique-width under graph operations and graph
transformations. Theory Comput. Syst. 60 (2017) 346-376.

[14] M. Heule and S. Szeider, A SAT approach to clique-width. ACM Trans.

Comput. Log. 16 (2015), 24:1-24:27.

[15] V. B. Le and H. de Ridder, Characterisations and linear-time recognition
of probe cographs. Graph-Theoretic Concepts in Computer Science, (WG
2007), Lecture Notes in Computer Science 4769 (2007) 226-237.

[16] J. Lihova, Strict-order betweenness, Acta Univ. M. Belii Ser. Math. 8
(2000) 27-33. Available from https://actamath.savbb.sk/acta0804.shtml.

[17] M. Pouzet, Un bel ordre d’abritement et ses rapports avec les bornes d’une
multirelation, Comptes Rendus Académie des Sciences, Série A, 274 (1972)
1677-1680.

[18] Wikipedia, Cographs, https://en.wikipedia.org/wiki/Cograph

24

