Optimal identification experiment design software

Introduction

This document gives an overview of an optimal identification experiment design software that we have recently developed. This software is made of a number of m-files that have to be used with Matlab and can be downloaded from the French repository HAL: https://hal.archives-ouvertes.fr/hal-03157382

In this software, we mostly focus on the so-called least costly framework [START_REF] Bombois | Least costly identification experiment for control[END_REF] even though we also consider the more classical framework [START_REF] Goodwin | Dynamic system identification: Experiment design and data analysis[END_REF]. The functions of this software follow from the results in many contributions (see e.g., [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF][START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF][START_REF] Lindqvist | On experiment design in identification of smooth linear systems[END_REF][START_REF] Jansson | Experiment design with Applications in Identification and Control[END_REF][START_REF] Bombois | Least costly identification experiment for control[END_REF][START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF]).

The LMI optimization problems involved in the different optimal experiment design problems are solved using the LMI lab of Matlab. In the directory Experiment Design Software, you will find another directory MatlabfunctionsOED where all the Matlab functions of this software are located. Besides the directory MatlabfunctionsOED, you will also find three m-files giving examples and a .mat-file that is needed by one of these examples. These three examples and the important functions in the directory MatlabfunctionsOED are discussed in this document 1 .

Another software for optimal experiment design has been developed at the KTH and present interesting functionalities (see [START_REF] Annergren | MOOSE: model based optimal input design toolbox for matlab[END_REF]).

Finally, since it is is the first version of this software and since there are many new functions, some flaws could be still present in some functions. Please, do not hesitate to contact the author with remarks, feedback, ...

Identification and model structures

In this software, we consider the identification of a SISO discrete-time system (sample time T s ) with one input u(t) and one output y(t) and described by a stable plant transfer function G(z, θ 0 ) and a stable, inversely stable and monic noise transfer function H(z, θ 0 ):

y(t) = G(z, θ 0 )u(t) + H(z, θ 0 )e(t) (1) 
where e(t) is a white noise of variance σ 2 e and where θ 0 is the unknown parameter vector describing the system. This unknown parameter vector will be identified using input-output data collected on the system: Z N = {y(t), u(t)|t = 1, ..., N }. These data can be collected by applying an excitation signal r(t) to the system either in open loop or in closed loop:

OP EN -LOOP OP ERAT ION : u(t) = r(t) (2) 
CLOSED -LOOP OP ERAT ION : u(t) = r(t) -K(z)y(t)

where K(z) is a stabilizing controller. When the system is operated in open loop, the input u(t) is thus equal to r(t) and the output y(t) is given by y(t) = G(z, θ 0 )r(t) + H(z, θ 0 )e(t). When the system is operated in closed loop with the controller K(z), the input u(t) and the output y(t) are given by:

u(t) = =ur(t) 1 1 + K(z)G(z, θ 0 ) r(t) - K(z) 1 + K(z)G(z, θ 0 ) H(z, θ 0 )e(t) (4) 
y(t) = G(z, θ 0 ) 1 + K(z)G(z, θ 0 ) r(t) =yr(t) + 1 1 + K(z)G(z, θ 0 ) H(z, θ 0 )e(t) (5) 
Based on the data set Z N and a parametrized model structure M = {G(z, θ), H(z, θ)}, we can determine an estimate θN of θ 0 using prediction error identification [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]:

θN = arg min θ 1 N N t=1 2 (t, θ) (6) (t, θ) = H(z, θ) -1 (y(t) -G(z, θ)u(t)) (7) 
If the chosen model structure is rich enough to describe the true system and if the data are informative, θN is a consistent estimate of the unknown true parameter vector θ 0 [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. Moreover, θN is also (asymptotically) normally distributed around θ 0 with a covariance matrix P θ given by:

P θ = σ 2 e N ψ(t, θ 0 )ψ T (t, θ 0 ) -1 (8) 
where ψ(t, θ) = ∂ (t,θ) ∂θ . This covariance matrix can be estimated based on θN and the data set Z N :

P θ ≈ σ2 e N 1 N N t=1 ψ(t, θN )ψ T (t, θN ) -1 (9) 
with σ2 e = 1 N N t=1

2 (t, θN ). Moreover, the covariance matrix (8) can be related to the power spectrum Φ r (ω) of the excitation signal r(t) used for the identification. If the data have been collected in open loop, we have:

P -1 θ = N 2πσ 2 e π -π F u (e jωTs , θ 0 )F * u (e jωTs , θ 0 )Φ r (ω) + F e (e jωTs , θ 0 )F * e (e jωTs , θ 0 )σ 2 e dω (10) 
F u (z, θ) = H -1 (z, θ) ∂G(z, θ) ∂θ F e (z, θ) = H -1 (z, θ) ∂H(z, θ) ∂θ
If the data have been collected in closed loop with a controller K(z), we have:

P -1 θ = N 2πσ 2 e π -π F u (e jωTs , θ 0 )F * u (e jωTs , θ 0 )|S(e jωTs , θ 0 )| 2 Φ r (ω) + F v (e jωTs , θ 0 )F * v (e jωTs , θ 0 )σ 2 e dω (11)
where

S(z, θ) = 1/(1 + K(z)G(z, θ)) and F v (z, θ) = F e (z, θ) -K(z)S(z, θ)H(z, θ)F u (z, θ) with F u (z, θ)
and F e (z, θ) as defined below [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF].

As usual in prediction error identification, we will suppose that the transfer functions G(z, θ) and H(z, θ) in the mode structure M can be written as the ratio of a number of polynomials defined as follows

B(z, θ) = b 0 + b 1 z -1 + • • • + b n b -1 z -n b +1 A(z, θ) = 1 + a 1 z -1 + • • • + a na z -na C(z, θ) = 1 + c 1 z -1 + • • • + c nc z -nc D(z, θ) = 1 + d 1 z -1 + • • • + d n d z -n d F (z, θ) = 1 + f 1 z -1 + • • • + f n f z -n f
where n a , n b , n c , n d and n f can be freely chosen by the user. The parameter vector θ is a column vector containing the coefficients of the different polynomials in alphabetical order. If the system is e.g. parametrized with the polynomials A, B and C, the parameter vector θ is defined as:

θ = (a 1 , a 2 , ..., a na , b 0 , ..., b n b -1 , c 1 , ..., c nc ) T
In practice, we only use a finite number of combinations of these polynomials. This leads to the five types of model structures M given in Table 1. In this table, the delay n k of the plant transfer function G can also be freely chosen by the user. A model structure is entirely defined by its type (ARX, ARMAX, OE, FIR or BJ), the delay n k of the plant transfer function G and the number of parameters present in each of the polynomials defining this model structure. In this software, this will be determined by the input arguments typemodel and vector order that are also defined in Table 1.

When typemodel='arx', n a and n b in vector order must be larger or equal to one (n a ≥ 1 and n b ≥ 1). When typemodel='armax', n a , n b and n c in vector order must be larger or equal to one. When type-model='oe', n b and n f in vector order must be larger or equal to one. When typemodel='fir', n b in vector order must be larger or equal to one, but n c and n d may be equal to zero (n c ≥ 0 and n d ≥ 0). When typemodel='bj', n b , n c +n d and n f in vector order must be larger or equal to one. Let us give some examples.

Example 1. Let us consider the following system

y(t) = G(z, θ 0 )u(t) + H(z, θ 0 )e(t) = 3z -1 1 -0.7z -1 u(t) + 1 1 -0.7z -1 e(t) (12) 
A full-order model structure for this system can be chosen as an ARX model structure (i.e. typemodel='arx') with n a = 1, n b = 1 and n k = 1 (vector order=[1 1 1]). The parameter vector θ 0 that needs to be identified is given by θ 0 = (-0.7, 3) T .

Example 2. Let us consider the following system

y(t) = G(z, θ 0 )u(t) + H(z, θ 0 )e(t) = 3z -1 1 -0.7z -1 u(t) + 1 + 0.9z -1 + 0.2z -2 1 + 0.6z -1 e(t) (13) 
A full-order model structure for this system can be chosen as an BJ model structure (i.e. typemodel='bj')

with n b = 1, n c = 2, n d = 1, n f = 1 and n k = 1 (vector order=[1 2 1 1 1]
). The parameter vector θ 0 that needs to be identified is given by θ 0 = (3, 0.9, 0.2, 0.6, -0.7) T .

To distinguish between a system operated in open loop and a system operated in closed loop, we use the input argument controller. To select the closed-loop configuration, the input argument controller must be chosen equal to the transfer function or the state-space representation of the controller K(z). If K(z) = 1, we choose: controller=tf(1,1,T s ) where T s is the sample time. To select the open-loop configuration, the input argument controller must be chosen equal to the scalar 0 i.e., controller=0.

Remark. Using the Matlab function determinationGH.m, you can compute the transfer function G i (z) = G(z, θ i ) and H i (z) = H(z, θ i ) for any value θ i of the parameter vector θ. The syntax of this Matlab function is:

[Gi,Hi]=determinationGH(typemodel,vector order,Ts,theta i)

Model structure G(z, θ) H(z, θ) typemodel vector order ARX z -n k B(z, θ) A(z, θ) 1 A(z, θ) 'arx' [n a , n b , n k ] ARMAX z -n k B(z, θ) A(z, θ) C(z, θ) A(z, θ) 'armax' [n a , n b , n c , n k ] OE z -n k B(z, θ) F (z, θ) 1 'oe' [n b , n f , n k ] FIR z -n k B(z, θ) C(z, θ) D(z, θ) 'fir' [n b , n c , n d , n k ] BJ z -n k B(z, θ) F (z, θ) C(z, θ) D(z, θ) 'bj' [n b , n c , n d , n f , n k ]
Table 1: Model structures where the input arguments typemodel, vector order, Ts (sampling time T s ) are defined above and where the input argument theta i must be chosen equal to the column vector θ i . The two output arguments are the transfer functions

G i (z) = G(z, θ i ) and H i (z) = H(z, θ i ) (in their state-space representation).

Parametrization of the excitation spectrum

In general, in optimal experiment design, the objective is to optimally design the power spectrum Φ r (ω) of the excitation signal r(t). We will consider here two types of excitation signals [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF][START_REF] Bombois | Least costly identification experiment for control[END_REF].

The first type is a multisinus made up of L sinusoids at different frequencies i.e., r(t) = L m=1 A m cos(ω m tT s + φ m ). Such a multisinus has the following spectrum:

Φ r (ω) = π L m=1 A 2 m 2 (δ(ω -ω m ) + δ(ω + ω m )) (14) 
We observe that the spectrum Φ r (ω) is independent of the phase shifts φ m (m = 1, ..., L). When designing the spectrum of the multisinus, we will suppose that the frequencies ω m (m = 1, ..., L) are a-priori specified by the user. In other words, only the amplitudes A m (m = 1, ..., L) will be determined optimally by the optimal experiment design problem. Once these amplitudes determined, a realization of the excitation signal r(t) can be easily constructed by e.g. choosing φ m = 0 (m = 1, ..., L).

The second type of excitation signal is a unit variance white noise filtered by an arbitrary FIR filter of degree M . Such excitation signal has the following spectrum:

Φ r (ω) = c 0 + M m=1 c m e -jmωTs + e jmωTs ≥ 0 ∀ω (15)
where c m (m = 0, ..., M ) are the auto-correlation coefficients of the excitation signal r(t). It is to be noted that, when M is chosen equal to zero, this parametrization corresponds to a white noise r(t) of variance c 0 .

The coefficients c m (m = 0, ..., M ) in (15) will be the ones that will be optimally determined by the optimal experiment design problem.

Based on a spectrum of the type (15), a realization of the excitation can be achieved based on spectral factorization [START_REF] Lindqvist | On experiment design in identification of smooth linear systems[END_REF]. The matlab function real filtwhitenoise in this software allows to derive a realization of N samples of a signal r(t) having the spectrum (15). This function takes, as first input argument, a column vector of dimension M + 1 containing the coefficients c m (m = 0, ..., M ) i.e., (c 0 , c 1 , ..., c M ) T and, as second input argument, the number N of samples of the desired realization. Consequently, a realization of 1000 samples of the signal r(t) with spectrum Φ r (ω) = 1 + 0.1 e -jωTs + e jωTs can be obtained via the command: r=real filtwhitenoise([1;0.1],1000);.

The value of the spectrum (15) at the frequencies in a vector vecw can be obtained via the matlab function analysiswhitenoisespectrum that takes, as first input argument, the column vector (c 0 , c 1 , ..., c M ) T and, as second input argument, the row vector vecw while the third argument is the sampling time T s . Consequently, for T s = 1, the value of the spectrum Φ r (ω) = 1 + 0.1 e -jωTs + e jωTs at the frequencies 0.5 and 1.5 can be obtained via the command:

phirw=analysiswhitenoisespectrum([1;0.1],[0.5,1.5],1);.
phirw is then a row vector of dimension 2 given by (Φ r (ω = 0.5), Φ r (ω = 1.5)).

Matlab function optimalexpdesign classical: classical A-optimal or E-optimal experiment design

Syntax.

[PHI,Pthetath,optimizedPtheta measure]=optimalexpdesign classical(typeoptimality,typecost,parameter cost, ... ... typespectrum,parameter spectrum,ndata,typemodel,vector order,Ts,controller,theta init,var e i)

This matlab function computes the optimal excitation signal (A-optimal or E-optimal) for the identification of a discrete-time system operated either in open loop or in closed loop. The considered optimal experiment design problem can be summarized as determining, for a given data length N , the spectrum of the excitation signal minimizing a scalar measure of P θ subject to one or several cost constraints [START_REF] Goodwin | Dynamic system identification: Experiment design and data analysis[END_REF][START_REF] Lindqvist | On experiment design in identification of smooth linear systems[END_REF][START_REF] Jansson | Experiment design with Applications in Identification and Control[END_REF]. We will here consider different scalar measures of P θ and different cost constraints.

The measure of P θ can be determined via the input argument typeoptimality. If we choose typeoptimal-ity='A', we wish to minimize the trace of P θ (A-optimality). If we choose typeoptimality='E', we wish to minimize the largest eigenvalue of P θ (E-optimality).

The cost constraint can be determined via the input arguments typecost and parameter cost. Let us denote by P(x) the power of the discrete-time signal x(t) and by u r (t) (resp. y r (t)) the part of the input signal u(t) (resp. the output signal y(t)) induced by the excitation signal. See (4) and ( 5) for the closed-loop operation. For the open-loop operation, u r (t) = u(t) = r(t) and y r (t) = G(z, θ 0 )r(t).

If we choose typecost='separated' and parameter cost =[β u ,β y ] for some user-chosen scalar constants β u and β y , we have two cost constraints:

P(u r ) < β u (16) P(y r ) < β y (17) 
If we choose typecost='sum' and parameter cost =[β,α u ,α y ] for some user-chosen scalar constants β, α u and α y , we have a unique cost constraint:

α u P(u r ) + α y P(y r ) < β (18)
If we choose typecost='power r' and parameter cost =[β] for some user-chosen scalar constant β, we have the following cost constraint:

P(r) < β (19) 
In other words, we directly constrain the power of the excitation signal r(t).

We have also to specify the type of spectrum we wish to design via the input arguments typespectrum and parameter spectrum. If we choose typespectrum='whitenoise' and parameter spectrum =[M ] where M ≥ 0 is an user-chosen scalar constant, we consider the parametrization (15) with M + 1 decision variables c 0 , c 1 ,..., c M . If we choose typespectrum='multisinus' and we choose parameter spectrum equal to an user-chosen column vector (ω 1 , ω 2 , ..., ω L ) T containing L different frequencies , we consider the parametrization (14) with L decision variables A 1 , A 2 ,..., A L .

The remaining input arguments are:

• the input argument ndata which must be chosen equal to the duration N of the to-be-designed experiment

• the input arguments describing the to-be-identified system i.e. typemodel, vector order, Ts (sampling time) and controller. See Section 2.

• The input argument theta init which has to be chosen equal to a first estimate θ init of θ 0 .

• The input argument var e i which has to be chosen equal to a first estimate σ 2 e,init of σ 2 e .

These last input arguments (i.e., θ init and σ 2 e,init ) are necessary to evaluate the quantity P θ (and also in some cases the quantity J ) that depend(s) on the unknown quantities θ 0 and σ 2 e .

The first output argument of this matlab function is a column vector PHI containing the optimal coefficients of the spectrum. If typespectrum='whitenoise' and parameter spectrum =[M ], this column vector PHI is equal to (c 0,opt , c 1,opt , ..., c M,opt ) T . If typespectrum='multisinus' and parameter spectrum=(ω 1 , ω 2 , ..., ω L ) T , this column vector PHI is equal to (A 1,opt , A 2,opt , ..., A M,opt ) T .

The second output argument Pthetath is the covariance matrix P θ,opt that is computed with the optimal spectrum Φ r,opt and with the estimates θ init , σ 2 e,init for the unknown quantities θ 0 and σ 2 e . For this purpose, we use the expression [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] in the open-loop case and the expression (11) in the closed-loop case.

The third output argument optimizedPtheta measure is the optimal value of the measure of P θ that has been minimized. If typeoptimality='A', this output argument is equal to the trace of P θ,opt . If typeoptimal-ity='E', this output argument is equal to the largest eigenvalue of P θ,opt .

Example. An example of the use of the Matlab function optimalexpdesign classical is given in the m-file: example classicaldesign.m.

In this example, we consider the BJ system:

y(t) = G(z, θ 0 )u(t) + H(z, θ 0 )e(t) = 3z -1 1 -0.7z -1 u(t) + (1 -0.9z -1 ) e(t) (20) 
and we suppose for simplicity that the initial estimates for θ 0 = (3, -0.9, -0.7) T and σ 2 e = 1 are the true values of these quantities. This matlab function computes the optimal excitation signal for the identification of a discrete-time system operated either in open loop or in closed loop. The considered optimal experiment design problem can be summarized as determining, for a given data length N , the spectrum of the excitation signal minimizing the cost J of the identification experiment subject to one or several (simple) accuracy constraints [START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF]. We will here consider different definitions for the cost of an identification experiment and different accuracy constraints.

The cost J of the identification experiment will be specified via the input arguments typecost and parameter cost. If we choose typecost='sum' and parameter cost =[α u ,α y ] for some user-chosen scalar constants α u and α y , the cost J is defined as:

J = α u P(u r ) + α y P(y r ) (21) 
In other words, the cost is defined as a linear combination of the power of y r and u r (the parts of the output and input signals induced by the excitation signal r(t)).

If we choose typecost='power r' and parameter cost =[], J is defined as J = P(r). In other words, J is defined as the power of the excitation signal r(t).

The considered accuracy constraint(s) can be specified via the input argument typeaccuracy and parameter accuracy. If we choose typeaccuracy='Radm' and parameter accuracy equal to a positive-definite matrix R adm = R T adm , the accuracy constraint is given by:

P -1 θ ≥ R adm (22) 
The two other types of accuracy constraints pertain to bound the modeling error |G(e jωTs , θN ) -G(e jωTs , θ 0 )| between the identified model and the true system in the frequency domain. Using a first order-approximation [START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF], a measure of this modeling error can be given by the following quantities as a function of the covariance matrix P θ of θN :

r 1 (ω) = λ max (T (e jωTs , θ 0 ) P θ T T (e jωTs , θ 0 )) (23) 
r 2 (ω) = Λ(e jωTs , θ 0 ) P θ Λ * (e jωTs , θ 0 )

where Λ T (z, θ) = ∂G(z,θ) ∂θ and T (e jωTs , θ 0 ) = Re(Λ(e jωTs , θ 0 )) Im(Λ(e jωTs , θ 0 )) (Re(.) and Im(.) denotes the real and imaginary part) and where λ max (A) is the largest eigenvalue of the matrix A. Note that, up to a first order approximation, r 2 (ω) is in fact equal to the square root of var(G(e jωTs , θN )) ∆ = E|G(e jωTs , θN ) -G(e jωTs , θ 0 )| 2 (E is the expectation operator) [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] and note also that T (e jωTs , θ 0 ) P θ T T (e jωTs , θ 0 ) (in the expression of r 1 (ω)) is the covariance matrix of the vector Re(G(e jωTs , θN )) Im(G(e jωTs , θN )) (see [START_REF] Bombois | Quantification of frequency domain error bounds with guaranteed confidence level in prediction error identification[END_REF][START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF] for more details).

Using r 1 (ω) or r 2 (ω), we can consider the following accuracy constraints:

r 1 (ω) ≤ r adm (ω) ∀ω ∈ Ω (25) r 2 (ω) ≤ r adm (ω) ∀ω ∈ Ω ( 26 
)
where r adm (ω) is an user-chosen frequency function and Ω = {ω 1 , ω 2 , ..., ω n } is an user-chosen set of n frequencies covering the frequency domain. If we choose typeaccuracy='r1' and parameter accuracy equal to a matrix of dimension n × 2 given by:

    ω 1 r adm (ω 1 ) ω 2 r adm (ω 2 ) ... ... ω n r adm (ω n )     , (27) 
the accuracy constraint is given by ( 25). If we choose typeaccuracy='r2' and parameter accuracy equal to the matrix (27), the accuracy constraint is given by (26).

Like in the previous section, we have also to specify the type of spectrum we wish to design via the input arguments typespectrum and parameter spectrum. If we choose typespectrum='whitenoise' and parameter spectrum =[M ] where M ≥ 0 is an user-chosen scalar constant, we consider the parametrization (15) with M + 1 decision variables c 0 , c 1 ,..., c M . If we choose typespectrum='multisinus' and we choose parameter spectrum equal to an user-chosen column vector (ω 1 , ω 2 , ..., ω L ) T containing L different frequencies , we consider the parametrization (14) with L decision variables A 1 , A 2 ,..., A L .

The remaining input arguments are:

• the input argument ndata which must be chosen equal to the duration N of the to-be-designed experiment

• the input arguments describing the to-be-identified system i.e. typemodel, vector order, Ts (sampling time) and controller. See Section 2.

• The input argument theta init which has to be chosen equal to a first estimate θ init of θ 0 .

• The input argument var e i which has to be chosen equal to a first estimate σ2 e,init of σ 2 e .

These last input arguments (i.e., θ init and σ 2 e,init ) are necessary to evaluate the quantity P θ (and also in some cases the quantity J ) that depend(s) on the unknown quantities θ 0 and σ 2 e .

The first output argument of this matlab function is a column vector PHI containing the optimal coefficients of the spectrum. If typespectrum='whitenoise' and parameter spectrum =[M ], this column vector PHI is equal to (c 0,opt , c 1,opt , ..., c M,opt ) T . If typespectrum='multisinus' and parameter spectrum=(ω 1 , ω 2 , ..., ω L ) T , this column vector PHI is equal to (A 1,opt , A 2,opt , ..., A M,opt ) T .

The second output argument Pthetath is the covariance matrix P θ,opt that is computed with the optimal spectrum Φ r,opt and with the estimates θ init , σ 2 e,init for the unknown quantities θ 0 and σ 2 e . For this purpose, we use the expression [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] in the open-loop case and the expression (11) in the closed-loop case.

The third output argument cost is the optimal value J opt of the cost J . When necessary, this optimal value is computed with the estimate θ init for θ 0 .

Example. An example of the use of the Matlab function LCexpdesign simple is given in the m-file: example simpleleastcostlydesign.m.

In this example, we consider the same BJ system as in [START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF]:

y(t) = G(z, θ 0 )u(t) + H(z, θ 0 )e(t) = 3.6z -1 1 -0.7z -1 u(t) + (1 -0.9z -1 ) e(t) (28) 
and we suppose for simplicity that the initial estimates for θ 0 = (3.6, -0.9, -0.7) T and σ 2 e = 1 are the true values of these quantities. For the accuracy constraint (25), the frequency function r adm (ω) is chosen as

r adm (ω) = 0.01 |G(e jωTs , θ 0 )| 2.45 (29) 
This bound on the measure of the modeling error is indeed the one considered in 2 Section 5.1 of [START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF]. Note that the results given by this m-file are slightly different than the ones obtained in Section 5.1 of [START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF] since, in Section 5.1 of [START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF], θ init = θ 0 .

6 Matlab function LCexpdesign Id4C: least costly experiment design for control

Syntax.

[PHI,Pthetath,cost]=LCexpdesign simple(typecost,parameter cost,frequency weighting,K init,chi,... ... typespectrum,parameter spectrum,ndata,typemodel,vector order,Ts,controller,theta init,var e i)

This matlab function computes the optimal excitation signal for the identification of a discrete-time system operated either in open loop or in closed loop. The considered optimal experiment design problem can be summarized as determining, for a given data length N , the spectrum of the excitation signal minimizing the cost J of the identification experiment while ensuring that the uncertainty of the identified model is sufficient small for the controller designed with the identified model to achieve satisfactory performance with the unknown true system. We consider more particularly the framework introduced in [START_REF] Bombois | Least costly identification experiment for control[END_REF].

The cost of the experiment will be defined as in the previous section. Let us define more precisely the accuracy constraint considered in [START_REF] Bombois | Least costly identification experiment for control[END_REF]. For this purpose, note that, since the identified parameter vector is (asymptotically) normally distributed around θ 0 with covariance P θ (see Section 2), the unknown true parameter vector θ 0 will lie, modulo a probability of η%, in the following uncertainty ellipsoid:

U = {θ ∈ R k | (θ -θN ) T P -1 θ (θ -θN ) < χ} ( 30 
)
where χ is such that P r(χ 2 (k) < χ) = η (k is the dimension of θ and χ 2 (k) is the χ-squared distribution with k degrees of freedom). Suppose that a controller K(z) has been designed with the identified model G(z, θN ). The performance F ( K, θ, ω) of the loop [ K(z) G(z, θ)] made up of the designed controller K(z) and an arbitrary system G(z, θ) is defined at the frequency ω as:

F ( K, θ, ω) = σ max W l,1 (e jωTs ) 0 0 W l,2 (e jωTs ) R( K, θ, e jωTs ) W r,1 (e jωTs ) 0 0 W r,2 (e jωTs ) (31) 
R( K, θ, z) =   K(z)G(z,θ) 1+ K(z)G(z,θ) G(z,θ) 1+ K(z)G(z,θ) K(z) 1+ K(z)G(z,θ) 1 1+ K(z)G(z,θ)   (32) 
where σ max (A) is the largest singular value of the matrix A and where W l,1 (z), W l,2 (z), W r,1 (z) and W r,2 (z) are user-chosen weighting functions. In this H ∞ -framework, the loop [ K(z) G(z, θ)] will be deemed to have satisfactory performance if

F ( K, θ, ω) < 1 ∀ω (33) 
It is to be noted that (33) implies that, for i = 1, 2 and j = 1, 2,

|R ij ( K, θ, e jωTs )| < 1 |W l,i (e jωTs )W r,j (e jωTs )| ∀ω ( 34 
)
where R ij is the (i, j)-entry of the matrix R.

Since θ 0 lies in U , the loop [ K(z) G(z, θ 0 )] will be deemed to have satisfactory performance if, for all ω,

F ( K, θ, ω) < 1 ∀ θ ∈ U (35)
The goal of the least costly experiment design for control is to minimize the cost J of the experiment in such a way that the size P θ of the uncertainty set U is small enough to guarantee that (35) holds at each frequency ω. Since the center θN of U and K are both unknown before the identification experiment, θN will be replaced by an available initial estimate θ init of θ 0 and K will be replaced by the controller K init designed using G(z, θ init ). Moreover, the constraint (35) will only be verified at a finite grid Ω of the frequency range.

In the matlab function, the cost J of the identification experiment will be specified via the input arguments typecost and parameter cost. If we choose typecost='sum' and parameter cost =[α u ,α y ] for some user-chosen scalar constants α u and α y , the cost J is defined as:

J = α u P(u r ) + α y P(y r ) (36) 
In other words, the cost is defined as a linear combination of the power of y r and u r (the parts of the output and input signals induced by the excitation signal r(t).

If we choose typecost='power r' and parameter cost =[], J is defined as J = P(r). In other words, J is defined as the power of the excitation signal r(t).

In order to define the accuracy constraint, we need to define a number of input arguments frequency weighting, K init and chi. The first input argument is frequency weighting. If we suppose that the frequency grid Ω defined above contains n frequencies (i.e. Ω = {ω 1 , ω 2 , ..., ω n }), the input argument frequency weighting will have to be chosen equal to the following matrix of dimension n × 5:

    ω 1 W l,1 (e jω1Ts
) W l,2 (e jω1Ts ) W r,1 (e jω1Ts ) W r,2 (e jω1Ts ) ω 2 W l,1 (e jω2Ts ) W l,2 (e jω2Ts ) W r,1 (e jω2Ts ) W r,2 (e jω2Ts ) ... ... ... ... ... ω n W l,1 (e jωnTs ) W l,2 (e jωnTs ) W r,1 (e jωnTs ) W r,2 (e jωnTs )     (37) Some of the weighting functions can be chosen equal to zero. For example, if you wish to only constrain the sensitivity function (i.e. R 22 ), you specify W l,1 (z) = W r,1 (z) = 0. The input argument K init must be chosen equal to the initial estimate K init of the controller K(z) i.e., the controller that is designed using G(z, θ init ). The input argument chi must be chosen equal to the scalar χ in U (see (30)).

Like in the previous sections, we have also to specify the type of spectrum we wish to design via the input arguments typespectrum and parameter spectrum. If we choose typespectrum='whitenoise' and parameter spectrum =[M ] where M ≥ 0 is an user-chosen scalar constant, we consider the parametrization (15) with M + 1 decision variables c 0 , c 1 ,..., c M . If we choose typespectrum='multisinus' and we choose parameter spectrum equal to an user-chosen column vector (ω 1 , ω 2 , ..., ω L ) T containing L different frequencies , we consider the parametrization (14) with L decision variables A 1 , A 2 ,..., A L .

The remaining input arguments are:

• the input argument ndata which must be chosen equal to the duration N of the to-be-designed experiment

• the input arguments describing the to-be-identified system i.e. typemodel, vector order, Ts (sampling time) and controller. See Section 2. Recall that the input argument controller (if it is nonzero) corresponds to the controller that is present in the loop when doing the experiment. This controller may thus be different from the controller given in the input argument K init.

• The input argument theta init which has to be chosen equal to a first estimate θ init of θ 0 . This is also the estimate with which the controller given in the input argument K init has been designed.

• The input argument var e i which has to be chosen equal to a first estimate σ 2 e,init of σ 2 e .

These last input arguments (i.e., θ init and σ 2 e,init ) are necessary to evaluate the quantity P θ (and also in some cases the quantity J ) that depend(s) on the unknown quantities θ 0 and σ 2 e .

The first output argument of this matlab function is a column vector PHI containing the optimal coefficients of the spectrum. If typespectrum='whitenoise' and parameter spectrum =[M ], this column vector PHI is equal to (c 0,opt , c 1,opt , ..., c M,opt ) T . If typespectrum='multisinus' and parameter spectrum=(ω 1 , ω 2 , ..., ω L ) T , this column vector PHI is equal to (A 1,opt , A 2,opt , ..., A M,opt ) T .

The second output argument Pthetath is the covariance matrix P θ,opt that is computed with the optimal spectrum Φ r,opt and with the estimates θ init , σ 2 e,init for the unknown quantities θ 0 and σ 2 e . For this purpose, we use the expression [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] in the open-loop case and the expression (11) in the closed-loop case.

The third output argument cost is the optimal value J opt of the cost J . When necessary, this optimal value is computed with the estimate θ init for θ 0 .

To verify the results given by the Matlab function, we also provide the Matlab function robustnessanalysis.m that allows to perform the robustness analysis.

Syntax.

[nominal perf,worstcase perf,mu]=robustnessanalysis(typemodel,vector order,Ts,theta hat,K hat,chi,Ptheta,vec w)

In a nutshell, based on the identified model G(z, θN ), a controller K(z) designed with this identified model and the uncertainty set U obtained after an identification experiment, this function provides the worst case performance R W C,ij for each of the closed-loop transfer functions and for all frequencies ω in an user-chosen frequency grid. For i = 1, 2 and j = 1, 2 and for a given frequency ω, R W C,ij is defined as:

R W C,ij (ω) = sup θ∈U |R ij ( K, θ, e jωTs )| (38) 
where R ij is the (i, j)-entry of the matrix R (see (32). We can then easily verify whether (34) holds. The worst case performance (38) is computed using the tools in [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF]. Note that, prior to that, it is verified 3 whether the loop [ K(z) G(z, θ)] is stable for all θ ∈ U . This is also done using the tools in [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF] via the computation of a frequency function µ(ω). If µ(ω) is smaller than one at all frequencies, [ K(z) G(z, θ)] is stable for all θ ∈ U .

The Matlab function robustnessanalysis.m takes as first input arguments typemodel vector order, Ts and theta hat that allows to define G(z, θN ) (theta hat has to be chosen equel to θN ). The next input argument K hat has to be chosen equal to the controller K(z). Finally, the input arguments chi and Ptheta must be respectively chosen equal to the scalar χ and the covariance matrix P θ defining U (see (30)). Finally, the input argument vec w is a column vector containing the frequencies at which R W C,ij must be computed.

If vec w is equal to (ω 1 , ω 2 , ..., ω n ) T , the first output argument nominal perf represents the nominal performance i.e. the one of the loop [ K(z) G(z, θN )] and is given by the following matrix: 3 If it is not the case, R W C,ij (ω) will be infinite at one frequency ω.

ω 1 ω 1 Rω 1

 111 |R 11 ( K, θN , e jω1Ts )| |R 21 ( K, θN , e jω1Ts )| |R 12 ( K, θN , e jω1Ts )| |R 22 ( K, θN , e jω1Ts )| ω 2 |R 11 ( K, θN , e jω2Ts )| |R 21 ( K, θN , e jω2Ts )| |R 12 ( K, θN , e jω2Ts )| |R 22 ( K, θN , e jω2Ts )| ... ... ... ... ... ω n |R 11 ( K, θN , e jωnTs )| |R 21 ( K, θN , e jωnTs )| |R 12 ( K, θN , e jωnTs )| |R 22 ( K, θN , e jωnTs )|     (39)The second output argument worstcase perf represents the worst case performance and is given by the following matrix:W C,11 (ω 1 ) R W C,21 (ω 1 ) R W C,12 (ω 1 ) R W C,22 (ω 1 ) ω 2 R W C,11 (ω 2 ) R W C,21 (ω 2 ) R W C,12 (ω 2 ) R W C,22 (ω 2 ) ω n R W C,11 (ω n ) R W C,21 (ω n ) R W C,12 (ω n ) R W C,22(ω n ) third output argument mu represents the robust stability analysis and is given by the following matrix: µ(ω 1 ) ω 2 µ(ω 2 ) ... ... ω n µ(ω n )

Note that some functions in the directory MatlabfunctionsOED are just subfunctions of the major functions. These subfunctions will not be discussed. Note that the subfunction kroprod for the Kronecker product has been developed by G. Scorletti.

Matlab function LCexpdesign simple: simple least costly experiment designSyntax.[PHI,Pthetath,cost]=LCexpdesign simple(typecost,parameter cost,typeaccuracy,parameter accuracy,... ... typespectrum,parameter spectrum,ndata,typemodel,vector order,Ts,controller,theta init,var e i)

Indeed, in Section 5.1 of[START_REF] Bombois | Design of least costly identification experiments : The main philosophy accompanied by illustrative examples[END_REF], the accuracy constraint is 2.45 r 1 (ω) ≤ 0.01 |G(e jωTs , θ 0 )|.

example leastcostlydesignforcontrol.m.

In this example, we consider the same ARX system as in [START_REF] Bombois | Least costly identification experiment for control[END_REF]:

and we suppose for simplicity that the initial estimates for θ 0 = (-1.99185, 2.20265, -1.84083, 0.89413, 0.10276, 0.18123) T and σ 2 e = 0.5 are the true values of these quantities. Like in [START_REF] Bombois | Least costly identification experiment for control[END_REF], we put a constraint on the entry R 22 of the matrix R (see (32)), but we here also put a constraint on the entry R 12 :

After the experiment design achieved with LCexpdesign Id4C.m, we use robustnessanalysis.m to verify whether R W C,12 (ω) and R W C,22 (ω) satisfy the imposed constraints:

For simplicity, the worst case performance is computed with K = K init and θN = θ init = θ 0 . The initial controller K init can be found in initialcontroller.mat.
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