
HAL Id: hal-03175027
https://hal.science/hal-03175027

Submitted on 19 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal identification experiment design software
Xavier Bombois

To cite this version:
Xavier Bombois. Optimal identification experiment design software. [Research Report] Laboratoire
Ampère. 2021. �hal-03175027�

https://hal.science/hal-03175027
https://hal.archives-ouvertes.fr

Optimal identification experiment design software

X. Bombois (xavier.bombois@ec-lyon.fr)1,2

1Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
2Centre National de la Recherche Scientifique (CNRS), France

March 19, 2021

1 Introduction

This document gives an overview of an optimal identification experiment design software that we have re-
cently developed. This software is made of a number of m-files that have to be used with Matlab and can
be downloaded from the French repository HAL:

https://hal.archives-ouvertes.fr/hal-03157382

In this software, we mostly focus on the so-called least costly framework [5] even though we also consider the
more classical framework [6]. The functions of this software follow from the results in many contributions
(see e.g., [10, 3, 9, 7, 5, 4]).

The LMI optimization problems involved in the different optimal experiment design problems are solved
using the LMI lab of Matlab. In the directory Experiment Design Software, you will find another direc-
tory MatlabfunctionsOED where all the Matlab functions of this software are located. Besides the directory
MatlabfunctionsOED, you will also find three m-files giving examples and a .mat-file that is needed by one
of these examples. These three examples and the important functions in the directory MatlabfunctionsOED
are discussed in this document1.

Another software for optimal experiment design has been developed at the KTH and present interesting
functionalities (see [1]).

Finally, since it is is the first version of this software and since there are many new functions, some
flaws could be still present in some functions. Please, do not hesitate to contact the author with remarks,
feedback, ...

2 Identification and model structures

In this software, we consider the identification of a SISO discrete-time system (sample time Ts) with one
input u(t) and one output y(t) and described by a stable plant transfer function G(z, θ0) and a stable,
inversely stable and monic noise transfer function H(z, θ0):

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t) (1)

where e(t) is a white noise of variance σ2
e and where θ0 is the unknown parameter vector describing the

system. This unknown parameter vector will be identified using input-output data collected on the system:

1Note that some functions in the directory MatlabfunctionsOED are just subfunctions of the major functions. These sub-
functions will not be discussed. Note that the subfunction kroprod for the Kronecker product has been developed by G.
Scorletti.

1

https://hal.archives-ouvertes.fr/hal-03157382

ZN = {y(t), u(t)|t = 1, ..., N}. These data can be collected by applying an excitation signal r(t) to the
system either in open loop or in closed loop:

OPEN − LOOP OPERATION : u(t) = r(t) (2)

CLOSED − LOOP OPERATION : u(t) = r(t)−K(z)y(t) (3)

where K(z) is a stabilizing controller. When the system is operated in open loop, the input u(t) is thus
equal to r(t) and the output y(t) is given by y(t) = G(z, θ0)r(t) +H(z, θ0)e(t). When the system is operated
in closed loop with the controller K(z), the input u(t) and the output y(t) are given by:

u(t) =

=ur(t)︷ ︸︸ ︷
1

1 +K(z)G(z, θ0)
r(t)− K(z)

1 +K(z)G(z, θ0)
H(z, θ0)e(t) (4)

y(t) =
G(z, θ0)

1 +K(z)G(z, θ0)
r(t)︸ ︷︷ ︸

=yr(t)

+
1

1 +K(z)G(z, θ0)
H(z, θ0)e(t) (5)

Based on the data set ZN and a parametrized model structureM = {G(z, θ), H(z, θ)}, we can determine

an estimate θ̂N of θ0 using prediction error identification [10]:

θ̂N = arg min
θ

1

N

N∑
t=1

ε2(t, θ) (6)

ε(t, θ) = H(z, θ)−1 (y(t)−G(z, θ)u(t)) (7)

If the chosen model structure is rich enough to describe the true system and if the data are informative, θ̂N
is a consistent estimate of the unknown true parameter vector θ0 [10]. Moreover, θ̂N is also (asymptotically)
normally distributed around θ0 with a covariance matrix Pθ given by:

Pθ =
σ2
e

N

(
ψ(t, θ0)ψT (t, θ0)

)−1
(8)

where ψ(t, θ) = ∂ε(t,θ)
∂θ . This covariance matrix can be estimated based on θ̂N and the data set ZN :

Pθ ≈
σ̂2
e

N

(
1

N

N∑
t=1

ψ(t, θ̂N)ψT (t, θ̂N)

)−1

(9)

with σ̂2
e = 1

N

∑N
t=1 ε

2(t, θ̂N). Moreover, the covariance matrix (8) can be related to the power spectrum
Φr(ω) of the excitation signal r(t) used for the identification. If the data have been collected in open loop,
we have:

P−1
θ =

N

2πσ2
e

∫ π

−π
Fu(ejωTs , θ0)F ∗u (ejωTs , θ0)Φr(ω) + Fe(e

jωTs , θ0)F ∗e (ejωTs , θ0)σ2
e dω (10)

Fu(z, θ) = H−1(z, θ)
∂G(z, θ)

∂θ
Fe(z, θ) = H−1(z, θ)

∂H(z, θ)

∂θ

If the data have been collected in closed loop with a controller K(z), we have:

P−1
θ =

N

2πσ2
e

∫ π

−π
Fu(ejωTs , θ0)F ∗u (ejωTs , θ0)|S(ejωTs , θ0)|2Φr(ω) + Fv(e

jωTs , θ0)F ∗v (ejωTs , θ0)σ2
e dω (11)

where S(z, θ) = 1/(1 +K(z)G(z, θ)) and Fv(z, θ) = Fe(z, θ)−K(z)S(z, θ)H(z, θ)Fu(z, θ) with Fu(z, θ) and
Fe(z, θ) as defined below (10).

2

As usual in prediction error identification, we will suppose that the transfer functions G(z, θ) and H(z, θ)
in the mode structure M can be written as the ratio of a number of polynomials defined as follows

B(z, θ) = b0 + b1z
−1 + · · ·+ bnb−1z

−nb+1

A(z, θ) = 1 + a1z
−1 + · · ·+ ana

z−na

C(z, θ) = 1 + c1z
−1 + · · ·+ cnc

z−nc

D(z, θ) = 1 + d1z
−1 + · · ·+ dnd

z−nd

F (z, θ) = 1 + f1z
−1 + · · ·+ fnf

z−nf

where na, nb, nc, nd and nf can be freely chosen by the user. The parameter vector θ is a column vector con-
taining the coefficients of the different polynomials in alphabetical order. If the system is e.g. parametrized
with the polynomials A, B and C, the parameter vector θ is defined as:

θ = (a1, a2, ..., ana
, b0, ..., bnb−1, c1, ..., cnc

)T

In practice, we only use a finite number of combinations of these polynomials. This leads to the five types
of model structuresM given in Table 1. In this table, the delay nk of the plant transfer function G can also
be freely chosen by the user. A model structure is entirely defined by its type (ARX, ARMAX, OE, FIR
or BJ), the delay nk of the plant transfer function G and the number of parameters present in each of the
polynomials defining this model structure. In this software, this will be determined by the input arguments
typemodel and vector order that are also defined in Table 1.

When typemodel=’arx’, na and nb in vector order must be larger or equal to one (na ≥ 1 and nb ≥ 1).
When typemodel=’armax’, na, nb and nc in vector order must be larger or equal to one. When type-
model=’oe’, nb and nf in vector order must be larger or equal to one. When typemodel=’fir’, nb in vec-
tor order must be larger or equal to one, but nc and nd may be equal to zero (nc ≥ 0 and nd ≥ 0). When
typemodel=’bj’, nb, nc+nd and nf in vector order must be larger or equal to one. Let us give some examples.

Example 1. Let us consider the following system

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t) =
3z−1

1− 0.7z−1
u(t) +

1

1− 0.7z−1
e(t) (12)

A full-order model structure for this system can be chosen as an ARX model structure (i.e. typemodel=’arx’)
with na = 1, nb = 1 and nk = 1 (vector order=[1 1 1]). The parameter vector θ0 that needs to be identified
is given by θ0 = (−0.7, 3)T .

Example 2. Let us consider the following system

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t) =
3z−1

1− 0.7z−1
u(t) +

1 + 0.9z−1 + 0.2z−2

1 + 0.6z−1
e(t) (13)

A full-order model structure for this system can be chosen as an BJ model structure (i.e. typemodel=’bj’)
with nb = 1, nc = 2, nd = 1, nf = 1 and nk = 1 (vector order=[1 2 1 1 1]). The parameter vector θ0 that
needs to be identified is given by θ0 = (3, 0.9, 0.2, 0.6,−0.7)T .

To distinguish between a system operated in open loop and a system operated in closed loop, we use the
input argument controller. To select the closed-loop configuration, the input argument controller must be
chosen equal to the transfer function or the state-space representation of the controller K(z). If K(z) = 1,
we choose: controller=tf(1,1,Ts) where Ts is the sample time. To select the open-loop configuration, the
input argument controller must be chosen equal to the scalar 0 i.e., controller=0.

Remark. Using the Matlab function determinationGH.m, you can compute the transfer function Gi(z) =
G(z, θi) and Hi(z) = H(z, θi) for any value θi of the parameter vector θ. The syntax of this Matlab function
is:

[Gi,Hi]=determinationGH(typemodel,vector order,Ts,theta i)

3

Model structure G(z, θ) H(z, θ) typemodel vector order

ARX
z−nkB(z, θ)

A(z, θ)

1

A(z, θ)
’arx’ [na, nb, nk]

ARMAX
z−nkB(z, θ)

A(z, θ)

C(z, θ)

A(z, θ)
’armax’ [na, nb, nc, nk]

OE
z−nkB(z, θ)

F (z, θ)
1 ’oe’ [nb, nf , nk]

FIR z−nkB(z, θ)
C(z, θ)

D(z, θ)
’fir’ [nb, nc, nd, nk]

BJ
z−nkB(z, θ)

F (z, θ)

C(z, θ)

D(z, θ)
’bj’ [nb, nc, nd, nf , nk]

Table 1: Model structures

where the input arguments typemodel, vector order, Ts (sampling time Ts) are defined above and where the
input argument theta i must be chosen equal to the column vector θi. The two output arguments are the
transfer functions Gi(z) = G(z, θi) and Hi(z) = H(z, θi) (in their state-space representation).

3 Parametrization of the excitation spectrum

In general, in optimal experiment design, the objective is to optimally design the power spectrum Φr(ω) of
the excitation signal r(t). We will consider here two types of excitation signals [8, 5].

The first type is a multisinus made up of L sinusoids at different frequencies i.e., r(t) =
∑L
m=1Amcos(ωmtTs+

φm). Such a multisinus has the following spectrum:

Φr(ω) = π

L∑
m=1

A2
m

2
(δ(ω − ωm) + δ(ω + ωm)) (14)

We observe that the spectrum Φr(ω) is independent of the phase shifts φm (m = 1, ..., L). When designing
the spectrum of the multisinus, we will suppose that the frequencies ωm (m = 1, ..., L) are a-priori specified
by the user. In other words, only the amplitudes Am (m = 1, ..., L) will be determined optimally by the
optimal experiment design problem. Once these amplitudes determined, a realization of the excitation signal
r(t) can be easily constructed by e.g. choosing φm = 0 (m = 1, ..., L).

The second type of excitation signal is a unit variance white noise filtered by an arbitrary FIR filter of
degree M . Such excitation signal has the following spectrum:

Φr(ω) = c0 +

M∑
m=1

cm
(
e−jmωTs + ejmωTs

)
≥ 0 ∀ω (15)

where cm (m = 0, ...,M) are the auto-correlation coefficients of the excitation signal r(t). It is to be noted
that, when M is chosen equal to zero, this parametrization corresponds to a white noise r(t) of variance c0.
The coefficients cm (m = 0, ...,M) in (15) will be the ones that will be optimally determined by the optimal
experiment design problem.

Based on a spectrum of the type (15), a realization of the excitation can be achieved based on spectral
factorization [9]. The matlab function real filtwhitenoise in this software allows to derive a realization of N

4

samples of a signal r(t) having the spectrum (15). This function takes, as first input argument, a column
vector of dimension M + 1 containing the coefficients cm (m = 0, ...,M) i.e., (c0, c1, ..., cM)T and, as second
input argument, the number N of samples of the desired realization. Consequently, a realization of 1000
samples of the signal r(t) with spectrum Φr(ω) = 1+0.1

(
e−jωTs + ejωTs

)
can be obtained via the command:

r=real filtwhitenoise([1;0.1],1000);.

The value of the spectrum (15) at the frequencies in a vector vecw can be obtained via the matlab
function analysiswhitenoisespectrum that takes, as first input argument, the column vector (c0, c1, ..., cM)T

and, as second input argument, the row vector vecw while the third argument is the sampling time Ts.
Consequently, for Ts = 1, the value of the spectrum Φr(ω) = 1 + 0.1

(
e−jωTs + ejωTs

)
at the frequencies 0.5

and 1.5 can be obtained via the command:

phirw=analysiswhitenoisespectrum([1;0.1],[0.5,1.5],1);.

phirw is then a row vector of dimension 2 given by (Φr(ω = 0.5), Φr(ω = 1.5)).

4 Matlab function optimalexpdesign classical: classical A-optimal or
E-optimal experiment design

Syntax.

[PHI,Pthetath,optimizedPtheta measure]=optimalexpdesign classical(typeoptimality,typecost,parameter cost, ...
... typespectrum,parameter spectrum,ndata,typemodel,vector order,Ts,controller,theta init,var e i)

This matlab function computes the optimal excitation signal (A-optimal or E-optimal) for the identi-
fication of a discrete-time system operated either in open loop or in closed loop. The considered optimal
experiment design problem can be summarized as determining, for a given data length N , the spectrum of
the excitation signal minimizing a scalar measure of Pθ subject to one or several cost constraints [6, 9, 7].
We will here consider different scalar measures of Pθ and different cost constraints.

The measure of Pθ can be determined via the input argument typeoptimality. If we choose typeoptimal-
ity=’A’, we wish to minimize the trace of Pθ (A-optimality). If we choose typeoptimality=’E’, we wish to
minimize the largest eigenvalue of Pθ (E-optimality).

The cost constraint can be determined via the input arguments typecost and parameter cost. Let us
denote by P(x) the power of the discrete-time signal x(t) and by ur(t) (resp. yr(t)) the part of the input
signal u(t) (resp. the output signal y(t)) induced by the excitation signal. See (4) and (5) for the closed-loop
operation. For the open-loop operation, ur(t) = u(t) = r(t) and yr(t) = G(z, θ0)r(t).

If we choose typecost=’separated’ and parameter cost =[βu,βy] for some user-chosen scalar constants βu
and βy, we have two cost constraints:

P(ur) < βu (16)

P(yr) < βy (17)

If we choose typecost=’sum’ and parameter cost =[β,αu,αy] for some user-chosen scalar constants β, αu
and αy, we have a unique cost constraint:

αuP(ur) + αyP(yr) < β (18)

If we choose typecost=’power r’ and parameter cost =[β] for some user-chosen scalar constant β, we have
the following cost constraint:

P(r) < β (19)

In other words, we directly constrain the power of the excitation signal r(t).

5

We have also to specify the type of spectrum we wish to design via the input arguments typespectrum and
parameter spectrum. If we choose typespectrum=’whitenoise’ and parameter spectrum =[M] where M ≥ 0
is an user-chosen scalar constant, we consider the parametrization (15) with M + 1 decision variables c0,
c1,..., cM . If we choose typespectrum=’multisinus’ and we choose parameter spectrum equal to an user-chosen
column vector (ω1, ω2, ..., ωL)T containing L different frequencies , we consider the parametrization (14) with
L decision variables A1, A2,..., AL.

The remaining input arguments are:

• the input argument ndata which must be chosen equal to the duration N of the to-be-designed exper-
iment

• the input arguments describing the to-be-identified system i.e. typemodel, vector order, Ts (sampling
time) and controller. See Section 2.

• The input argument theta init which has to be chosen equal to a first estimate θinit of θ0.

• The input argument var e i which has to be chosen equal to a first estimate σ2
e,init of σ2

e .

These last input arguments (i.e., θinit and σ2
e,init) are necessary to evaluate the quantity Pθ (and also in

some cases the quantity J) that depend(s) on the unknown quantities θ0 and σ2
e .

The first output argument of this matlab function is a column vector PHI containing the optimal coeffi-
cients of the spectrum. If typespectrum=’whitenoise’ and parameter spectrum =[M], this column vector PHI
is equal to (c0,opt, c1,opt, ..., cM,opt)

T . If typespectrum=’multisinus’ and parameter spectrum=(ω1, ω2, ..., ωL)T ,
this column vector PHI is equal to (A1,opt, A2,opt, ..., AM,opt)

T .

The second output argument Pthetath is the covariance matrix Pθ,opt that is computed with the optimal
spectrum Φr,opt and with the estimates θinit, σ

2
e,init for the unknown quantities θ0 and σ2

e . For this purpose,
we use the expression (10) in the open-loop case and the expression (11) in the closed-loop case.

The third output argument optimizedPtheta measure is the optimal value of the measure of Pθ that has
been minimized. If typeoptimality=’A’, this output argument is equal to the trace of Pθ,opt. If typeoptimal-
ity=’E’, this output argument is equal to the largest eigenvalue of Pθ,opt.

Example. An example of the use of the Matlab function optimalexpdesign classical is given in the m-file:

example classicaldesign.m.

In this example, we consider the BJ system:

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t) =
3z−1

1− 0.7z−1
u(t) + (1− 0.9z−1) e(t) (20)

and we suppose for simplicity that the initial estimates for θ0 = (3,−0.9,−0.7)T and σ2
e = 1 are the true

values of these quantities.

5 Matlab function LCexpdesign simple: simple least costly experi-
ment design

Syntax.

[PHI,Pthetath,cost]=LCexpdesign simple(typecost,parameter cost,typeaccuracy,parameter accuracy,...
... typespectrum,parameter spectrum,ndata,typemodel,vector order,Ts,controller,theta init,var e i)

6

This matlab function computes the optimal excitation signal for the identification of a discrete-time sys-
tem operated either in open loop or in closed loop. The considered optimal experiment design problem can
be summarized as determining, for a given data length N , the spectrum of the excitation signal minimizing
the cost J of the identification experiment subject to one or several (simple) accuracy constraints [4]. We
will here consider different definitions for the cost of an identification experiment and different accuracy
constraints.

The cost J of the identification experiment will be specified via the input arguments typecost and param-
eter cost. If we choose typecost=’sum’ and parameter cost =[αu,αy] for some user-chosen scalar constants
αu and αy, the cost J is defined as:

J = αuP(ur) + αyP(yr) (21)

In other words, the cost is defined as a linear combination of the power of yr and ur (the parts of the output
and input signals induced by the excitation signal r(t)).

If we choose typecost=’power r’ and parameter cost =[], J is defined as J = P(r). In other words, J is
defined as the power of the excitation signal r(t).

The considered accuracy constraint(s) can be specified via the input argument typeaccuracy and parame-
ter accuracy. If we choose typeaccuracy=’Radm’ and parameter accuracy equal to a positive-definite matrix
Radm = RTadm, the accuracy constraint is given by:

P−1
θ ≥ Radm (22)

The two other types of accuracy constraints pertain to bound the modeling error |G(ejωTs , θ̂N) −
G(ejωTs , θ0)| between the identified model and the true system in the frequency domain. Using a first
order-approximation [4], a measure of this modeling error can be given by the following quantities as a

function of the covariance matrix Pθ of θ̂N :

r1(ω) =
√
λmax (T (ejωTs , θ0) Pθ T T (ejωTs , θ0)) (23)

r2(ω) =
√

Λ(ejωTs , θ0) Pθ Λ∗(ejωTs , θ0) (24)

where ΛT (z, θ) = ∂G(z,θ)
∂θ and T (ejωTs , θ0) =

(
Re(Λ(ejωTs , θ0))
Im(Λ(ejωTs , θ0))

)
(Re(.) and Im(.) denotes the real and

imaginary part) and where λmax(A) is the largest eigenvalue of the matrix A. Note that, up to a first order ap-

proximation, r2(ω) is in fact equal to the square root of var(G(ejωTs , θ̂N))
∆
= E|G(ejωTs , θ̂N)−G(ejωTs , θ0)|2

(E is the expectation operator) [10] and note also that T (ejωTs , θ0) Pθ T T (ejωTs , θ0) (in the expression of

r1(ω)) is the covariance matrix of the vector

(
Re(G(ejωTs , θ̂N))

Im(G(ejωTs , θ̂N))

)
(see [2, 4] for more details).

Using r1(ω) or r2(ω), we can consider the following accuracy constraints:

r1(ω) ≤ radm(ω) ∀ω ∈ Ω (25)

r2(ω) ≤ radm(ω) ∀ω ∈ Ω (26)

where radm(ω) is an user-chosen frequency function and Ω = {ω1, ω2, ..., ωn} is an user-chosen set of n
frequencies covering the frequency domain. If we choose typeaccuracy=’r1’ and parameter accuracy equal to
a matrix of dimension n× 2 given by: 

ω1 radm(ω1)
ω2 radm(ω2)
... ...
ωn radm(ωn)

 , (27)

7

the accuracy constraint is given by (25). If we choose typeaccuracy=’r2’ and parameter accuracy equal to
the matrix (27), the accuracy constraint is given by (26).

Like in the previous section, we have also to specify the type of spectrum we wish to design via the
input arguments typespectrum and parameter spectrum. If we choose typespectrum=’whitenoise’ and param-
eter spectrum =[M] where M ≥ 0 is an user-chosen scalar constant, we consider the parametrization (15)
with M + 1 decision variables c0, c1,..., cM . If we choose typespectrum=’multisinus’ and we choose parame-
ter spectrum equal to an user-chosen column vector (ω1, ω2, ..., ωL)T containing L different frequencies , we
consider the parametrization (14) with L decision variables A1, A2,..., AL.

The remaining input arguments are:

• the input argument ndata which must be chosen equal to the duration N of the to-be-designed exper-
iment

• the input arguments describing the to-be-identified system i.e. typemodel, vector order, Ts (sampling
time) and controller. See Section 2.

• The input argument theta init which has to be chosen equal to a first estimate θinit of θ0.

• The input argument var e i which has to be chosen equal to a first estimate σ2
e,init of σ2

e .

These last input arguments (i.e., θinit and σ2
e,init) are necessary to evaluate the quantity Pθ (and also in

some cases the quantity J) that depend(s) on the unknown quantities θ0 and σ2
e .

The first output argument of this matlab function is a column vector PHI containing the optimal coeffi-
cients of the spectrum. If typespectrum=’whitenoise’ and parameter spectrum =[M], this column vector PHI
is equal to (c0,opt, c1,opt, ..., cM,opt)

T . If typespectrum=’multisinus’ and parameter spectrum=(ω1, ω2, ..., ωL)T ,
this column vector PHI is equal to (A1,opt, A2,opt, ..., AM,opt)

T .

The second output argument Pthetath is the covariance matrix Pθ,opt that is computed with the optimal
spectrum Φr,opt and with the estimates θinit, σ

2
e,init for the unknown quantities θ0 and σ2

e . For this purpose,
we use the expression (10) in the open-loop case and the expression (11) in the closed-loop case.

The third output argument cost is the optimal value Jopt of the cost J . When necessary, this optimal
value is computed with the estimate θinit for θ0.

Example. An example of the use of the Matlab function LCexpdesign simple is given in the m-file:

example simpleleastcostlydesign.m.

In this example, we consider the same BJ system as in [4]:

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t) =
3.6z−1

1− 0.7z−1
u(t) + (1− 0.9z−1) e(t) (28)

and we suppose for simplicity that the initial estimates for θ0 = (3.6,−0.9,−0.7)T and σ2
e = 1 are the true

values of these quantities. For the accuracy constraint (25), the frequency function radm(ω) is chosen as

radm(ω) =
0.01 |G(ejωTs , θ0)|

2.45
(29)

This bound on the measure of the modeling error is indeed the one considered in2 Section 5.1 of [4]. Note
that the results given by this m-file are slightly different than the ones obtained in Section 5.1 of [4] since,
in Section 5.1 of [4], θinit 6= θ0.

2Indeed, in Section 5.1 of [4], the accuracy constraint is 2.45 r1(ω) ≤ 0.01 |G(ejωTs , θ0)|.

8

6 Matlab function LCexpdesign Id4C: least costly experiment design
for control

Syntax.

[PHI,Pthetath,cost]=LCexpdesign simple(typecost,parameter cost,frequency weighting,K init,chi,...
... typespectrum,parameter spectrum,ndata,typemodel,vector order,Ts,controller,theta init,var e i)

This matlab function computes the optimal excitation signal for the identification of a discrete-time sys-
tem operated either in open loop or in closed loop. The considered optimal experiment design problem can
be summarized as determining, for a given data length N , the spectrum of the excitation signal minimizing
the cost J of the identification experiment while ensuring that the uncertainty of the identified model is
sufficient small for the controller designed with the identified model to achieve satisfactory performance with
the unknown true system. We consider more particularly the framework introduced in [5].

The cost of the experiment will be defined as in the previous section. Let us define more precisely the
accuracy constraint considered in [5]. For this purpose, note that, since the identified parameter vector
is (asymptotically) normally distributed around θ0 with covariance Pθ (see Section 2), the unknown true
parameter vector θ0 will lie, modulo a probability of η%, in the following uncertainty ellipsoid:

U = {θ ∈ Rk | (θ − θ̂N)TP−1
θ (θ − θ̂N) < χ} (30)

where χ is such that Pr(χ2(k) < χ) = η (k is the dimension of θ and χ2(k) is the χ-squared distribution
with k degrees of freedom). Suppose that a controller K̂(z) has been designed with the identified model

G(z, θ̂N). The performance F (K̂, θ, ω) of the loop [K̂(z) G(z, θ)] made up of the designed controller K̂(z)
and an arbitrary system G(z, θ) is defined at the frequency ω as:

F (K̂, θ, ω) = σmax

((
Wl,1(ejωTs) 0

0 Wl,2(ejωTs)

)
R(K̂, θ, ejωTs)

(
Wr,1(ejωTs) 0

0 Wr,2(ejωTs)

))
(31)

R(K̂, θ, z) =

 K̂(z)G(z,θ)

1+K̂(z)G(z,θ)

G(z,θ)

1+K̂(z)G(z,θ)
K̂(z)

1+K̂(z)G(z,θ)
1

1+K̂(z)G(z,θ)

 (32)

where σmax(A) is the largest singular value of the matrix A and where Wl,1(z), Wl,2(z), Wr,1(z) and Wr,2(z)

are user-chosen weighting functions. In this H∞-framework, the loop [K̂(z) G(z, θ)] will be deemed to have
satisfactory performance if

F (K̂, θ, ω) < 1 ∀ω (33)

It is to be noted that (33) implies that, for i = 1, 2 and j = 1, 2,

|Rij(K̂, θ, ejωTs)| < 1

|Wl,i(ejωTs)Wr,j(ejωTs)|
∀ω (34)

where Rij is the (i, j)-entry of the matrix R.

Since θ0 lies in U , the loop [K̂(z) G(z, θ0)] will be deemed to have satisfactory performance if, for all ω,

F (K̂, θ, ω) < 1 ∀ θ ∈ U (35)

The goal of the least costly experiment design for control is to minimize the cost J of the experiment in
such a way that the size Pθ of the uncertainty set U is small enough to guarantee that (35) holds at each

frequency ω. Since the center θ̂N of U and K̂ are both unknown before the identification experiment, θ̂N will
be replaced by an available initial estimate θinit of θ0 and K̂ will be replaced by the controller Kinit designed
using G(z, θinit). Moreover, the constraint (35) will only be verified at a finite grid Ω of the frequency range.

9

In the matlab function, the cost J of the identification experiment will be specified via the input ar-
guments typecost and parameter cost. If we choose typecost=’sum’ and parameter cost =[αu,αy] for some
user-chosen scalar constants αu and αy, the cost J is defined as:

J = αuP(ur) + αyP(yr) (36)

In other words, the cost is defined as a linear combination of the power of yr and ur (the parts of the output
and input signals induced by the excitation signal r(t).

If we choose typecost=’power r’ and parameter cost =[], J is defined as J = P(r). In other words, J is
defined as the power of the excitation signal r(t).

In order to define the accuracy constraint, we need to define a number of input arguments frequency weighting,
K init and chi. The first input argument is frequency weighting. If we suppose that the frequency grid Ω
defined above contains n frequencies (i.e. Ω = {ω1, ω2, ..., ωn}), the input argument frequency weighting will
have to be chosen equal to the following matrix of dimension n× 5:

ω1 Wl,1(ejω1Ts) Wl,2(ejω1Ts) Wr,1(ejω1Ts) Wr,2(ejω1Ts)
ω2 Wl,1(ejω2Ts) Wl,2(ejω2Ts) Wr,1(ejω2Ts) Wr,2(ejω2Ts)
...
ωn Wl,1(ejωnTs) Wl,2(ejωnTs) Wr,1(ejωnTs) Wr,2(ejωnTs)

 (37)

Some of the weighting functions can be chosen equal to zero. For example, if you wish to only constrain
the sensitivity function (i.e. R22), you specify Wl,1(z) = Wr,1(z) = 0. The input argument K init must be

chosen equal to the initial estimate Kinit of the controller K̂(z) i.e., the controller that is designed using
G(z, θinit). The input argument chi must be chosen equal to the scalar χ in U (see (30)).

Like in the previous sections, we have also to specify the type of spectrum we wish to design via the
input arguments typespectrum and parameter spectrum. If we choose typespectrum=’whitenoise’ and param-
eter spectrum =[M] where M ≥ 0 is an user-chosen scalar constant, we consider the parametrization (15)
with M + 1 decision variables c0, c1,..., cM . If we choose typespectrum=’multisinus’ and we choose parame-
ter spectrum equal to an user-chosen column vector (ω1, ω2, ..., ωL)T containing L different frequencies , we
consider the parametrization (14) with L decision variables A1, A2,..., AL.

The remaining input arguments are:

• the input argument ndata which must be chosen equal to the duration N of the to-be-designed exper-
iment

• the input arguments describing the to-be-identified system i.e. typemodel, vector order, Ts (sampling
time) and controller. See Section 2. Recall that the input argument controller (if it is nonzero)
corresponds to the controller that is present in the loop when doing the experiment. This controller
may thus be different from the controller given in the input argument K init.

• The input argument theta init which has to be chosen equal to a first estimate θinit of θ0. This is also
the estimate with which the controller given in the input argument K init has been designed.

• The input argument var e i which has to be chosen equal to a first estimate σ2
e,init of σ2

e .

These last input arguments (i.e., θinit and σ2
e,init) are necessary to evaluate the quantity Pθ (and also in

some cases the quantity J) that depend(s) on the unknown quantities θ0 and σ2
e .

The first output argument of this matlab function is a column vector PHI containing the optimal coeffi-
cients of the spectrum. If typespectrum=’whitenoise’ and parameter spectrum =[M], this column vector PHI
is equal to (c0,opt, c1,opt, ..., cM,opt)

T . If typespectrum=’multisinus’ and parameter spectrum=(ω1, ω2, ..., ωL)T ,
this column vector PHI is equal to (A1,opt, A2,opt, ..., AM,opt)

T .

10

The second output argument Pthetath is the covariance matrix Pθ,opt that is computed with the optimal
spectrum Φr,opt and with the estimates θinit, σ

2
e,init for the unknown quantities θ0 and σ2

e . For this purpose,
we use the expression (10) in the open-loop case and the expression (11) in the closed-loop case.

The third output argument cost is the optimal value Jopt of the cost J . When necessary, this optimal
value is computed with the estimate θinit for θ0.

To verify the results given by the Matlab function, we also provide the Matlab function robustnessanal-
ysis.m that allows to perform the robustness analysis.

Syntax.

[nominal perf,worstcase perf,mu]=robustnessanalysis(typemodel,vector order,Ts,theta hat,K hat,chi,Ptheta,vec w)

In a nutshell, based on the identified model G(z, θ̂N), a controller K̂(z) designed with this identified
model and the uncertainty set U obtained after an identification experiment, this function provides the
worst case performance RWC,ij for each of the closed-loop transfer functions and for all frequencies ω in an
user-chosen frequency grid. For i = 1, 2 and j = 1, 2 and for a given frequency ω, RWC,ij is defined as:

RWC,ij(ω) = sup
θ∈U
|Rij(K̂, θ, ejωTs)| (38)

where Rij is the (i, j)-entry of the matrix R (see (32). We can then easily verify whether (34) holds. The
worst case performance (38) is computed using the tools in [3]. Note that, prior to that, it is verified3 whether
the loop [K̂(z) G(z, θ)] is stable for all θ ∈ U . This is also done using the tools in [3] via the computation of
a frequency function µ(ω). If µ(ω) is smaller than one at all frequencies, [K̂(z) G(z, θ)] is stable for all θ ∈ U .

The Matlab function robustnessanalysis.m takes as first input arguments typemodel vector order, Ts and
theta hat that allows to define G(z, θ̂N) (theta hat has to be chosen equel to θ̂N). The next input argument
K hat has to be chosen equal to the controller K̂(z). Finally, the input arguments chi and Ptheta must
be respectively chosen equal to the scalar χ and the covariance matrix Pθ defining U (see (30)). Finally,
the input argument vec w is a column vector containing the frequencies at which RWC,ij must be computed.

If vec w is equal to (ω1, ω2, ..., ωn)T , the first output argument nominal perf represents the nominal

performance i.e. the one of the loop [K̂(z) G(z, θ̂N)] and is given by the following matrix:


ω1 |R11(K̂, θ̂N , e

jω1Ts)| |R21(K̂, θ̂N , e
jω1Ts)| |R12(K̂, θ̂N , e

jω1Ts)| |R22(K̂, θ̂N , e
jω1Ts)|

ω2 |R11(K̂, θ̂N , e
jω2Ts)| |R21(K̂, θ̂N , e

jω2Ts)| |R12(K̂, θ̂N , e
jω2Ts)| |R22(K̂, θ̂N , e

jω2Ts)|
...

ωn |R11(K̂, θ̂N , e
jωnTs)| |R21(K̂, θ̂N , e

jωnTs)| |R12(K̂, θ̂N , e
jωnTs)| |R22(K̂, θ̂N , e

jωnTs)|

 (39)

The second output argument worstcase perf represents the worst case performance and is given by the
following matrix: 

ω1 RWC,11(ω1) RWC,21(ω1) RWC,12(ω1) RWC,22(ω1)
ω2 RWC,11(ω2) RWC,21(ω2) RWC,12(ω2) RWC,22(ω2)
...
ωn RWC,11(ωn) RWC,21(ωn) RWC,12(ωn) RWC,22(ωn)

 (40)

Finally, the third output argument mu represents the robust stability analysis and is given by the following
matrix: 

ω1 µ(ω1)
ω2 µ(ω2)
... ...
ωn µ(ωn)

 (41)

3If it is not the case, RWC,ij(ω) will be infinite at one frequency ω.

11

Example. An example of the use of the Matlab function LCexpdesign Id4C.m and robustnessanalysis.m is
given in the m-file:

example leastcostlydesignforcontrol.m.

In this example, we consider the same ARX system as in [5]:

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t)

G(z, θ0) = z−3(0.10276+0.18123z−1)
1−1.99185z−1+2.20265z−2−1.84083z−3+0.89413z−4

H(z, θ0) = 1
1−1.99185z−1+2.20265z−2−1.84083z−3+0.89413z−4

and we suppose for simplicity that the initial estimates for θ0 = (−1.99185, 2.20265,−1.84083, 0.89413, 0.10276, 0.18123)T

and σ2
e = 0.5 are the true values of these quantities. Like in [5], we put a constraint on the entry R22 of the

matrix R (see (32)), but we here also put a constraint on the entry R12:

Wl,1(z) = 0.1 Wl,2(z) =
0.5165− 0.4632z−1

1− 0.999455z−1
Wr,1(z) = 0 Wr,2(z) = 1

After the experiment design achieved with LCexpdesign Id4C.m, we use robustnessanalysis.m to verify
whether RWC,12(ω) and RWC,22(ω) satisfy the imposed constraints:

RWC,12(ω) <
1

|Wl,1(ejωTs)Wr,2(ejωTs)|︸ ︷︷ ︸
=10

and RWC,22(ω) <
1

|Wl,2(ejωTs)Wr,2(ejωTs)|︸ ︷︷ ︸
= 1

|Wl,2(ejωTs)|

For simplicity, the worst case performance is computed with K̂ = Kinit and θ̂N = θinit = θ0. The initial
controller Kinit can be found in initialcontroller.mat.

7 Acknowledgment

We thank Federico Morelli for his careful re-reading of the software and his suggestions.

References

[1] M. Annergren and C. Larsson. MOOSE: model based optimal input design toolbox for matlab. Technical
report, Royal Institute of Technology (KTH), Sweden, 2011.

[2] X. Bombois, B. Anderson, and M. Gevers. Quantification of frequency domain error bounds with
guaranteed confidence level in prediction error identification. Systems & control letters, 54(5):471–482,
2005.

[3] X. Bombois, M. Gevers, G. Scorletti, and B.D.O. Anderson. Robustness analysis tools for an uncertainty
set obtained by prediction error identification. Automatica, 37(10):1629–1636, 2001.

[4] X. Bombois and G. Scorletti. Design of least costly identification experiments : The main philosophy
accompanied by illustrative examples. Journal Européen des Systèmes Automatisés (JESA), 46(6-
7):587–610, 2012, Available on the HAL repository hal-00756344.

[5] X. Bombois, G. Scorletti, M. Gevers, P.M.J. Van den Hof, and R. Hildebrand. Least costly identification
experiment for control. Automatica, 42(10):1651–1662, 2006.

[6] G. Goodwin and R. Payne. Dynamic system identification: Experiment design and data analysis. New
York, Academic Press, Inc., 1977.

12

[7] H. Jansson. Experiment design with Applications in Identification and Control. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden, 2004.

[8] H. Jansson and H. Hjalmarsson. Input design via LMIs admitting frequency-wise model specifications
in confidence regions. IEEE Transactions on Automatic Control, 50(10):1534–1549, October 2005.

[9] K. Lindqvist. On experiment design in identification of smooth linear systems. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden, 2001.

[10] L. Ljung. System Identification: Theory for the User, 2nd Edition. Prentice-Hall, Englewood Cliffs,
NJ, 1999.

13

	Introduction
	Identification and model structures
	Parametrization of the excitation spectrum
	Matlab function optimalexpdesign_classical: classical A-optimal or E-optimal experiment design
	Matlab function LCexpdesign_simple: simple least costly experiment design
	Matlab function LCexpdesign_Id4C: least costly experiment design for control
	Acknowledgment

