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We prove several results related to a Logvinenko-Sereda type theorem on dominating sets for generalized doubling Fock spaces. In particular, we give a precise polynomial dependence of the sampling constant on the relative density parameter γ of the dominating set. Our method is an adaptation of that used in [HKKO21] for the Bergman spaces and is based on a Remez-type inequality and a covering lemma related to doubling measures.

Introduction

Sampling problems are central in signal theory and cover, for instance, sampling sequences and so-called dominating sets which allow to recover the norm of a signal -defined by an integration over a given domain -from the integration on a subdomain (precise definitions will be given later). They have been considered in a large variety of situations (see e.g. the survey [START_REF] Fricain | Harmonic analysis, function theory, operator theory, and their applications[END_REF]), including the Fock space and its generalized versions (see [Sei04, MMOC03, OC98, Lin00, JPR87, LZ19]). In this paper we will focus on the second class of problems, i.e. dominating sets. Conditions guaranteeing that a set is dominating were established rather long ago (in the 70's for the Paley-Wiener space and in the 80's for the Bergman and Fock spaces, see e.g. the survey [START_REF] Fricain | Harmonic analysis, function theory, operator theory, and their applications[END_REF] and references therein). More recently, people got interested in estimates of the sampling constants which give quantitative information on the tradeoff between the cost of the sampling and the precision of the estimates. The major paper on this connection is by Kovrijkine [Kov01] who gave a method to consider this problem in the Paley-Wiener space. Subsequently, his method was adapted to several other spaces (see [HJK20, JS21, HKKO21, GW21, BJPS21]). In this paper, inspired by the methods in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF], we will discuss the case of generalized doubling Fock spaces. For these, the paper [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF] provides a wealth of results that allow to translate the main steps of [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF] to this new framework.

Notations. As usual, A B (respectively A B) means that there exists a constant c > 0 independent of the relevant variables such that A ≤ cB (resp. A ≥ cB). Similarly, A B stands for A B and A B.

1.1. Doubling subharmonic functions and generalized Fock spaces. A function φ : C -→ R of class C 2 is said to be subharmonic if ∆φ ≥ 0, and doubling subharmonic if it is subharmonic and the (non-negative) measure µ := ∆φ is doubling, i.e. there exists a constant C such that for every z ∈ C and r > 0, µ(D(z, 2r)) ≤ Cµ(D(z, r)).

(1.1)

Here D(z, r) denotes the standard open euclidean disk of center z ∈ C and radius r > 0.

The minimal constant satisfying (1.1) is denoted by C µ and called doubling constant for µ. A basic example of doubling subharmonic function is φ(z) = |z| 2 for which µ = ∆φ is equal to 4 times the Lebesgue measure and C µ = 4. The reader may consider this simpler case for the time of the introduction. Doubling subharmonic functions induce a new metric on the complex plane C which is more adapted to the complex analysis we shall work with. We postpone the advanced results on doubling measures to Section 2 but let us introduce some basic objects related to it. First, we can associate with φ as above a function ρ :

C -→ R + , such that µ(D(z, ρ(z))) = 1.
To get an idea, assuming φ is suitably regularized, we have ∆φ ρ -2 (see [MMOC03, Theorem 14 and Remark 5]). Next, denote D r (z) := D(z, rρ(z)) the disk adapted to the new metric and write D(z) := D 1 (z) the disk with unit mass for the measure µ. Finally, with these definitions in mind we can introduce the following natural density. A measurable set E is (γ, r)-dense (with respect to the above metric), if for every z ∈ C

|E ∩ D r (z)| |D r (z)| ≥ γ.
Here |F | denotes planar Lebesgue measure of a measurable set F . We will just say that the set is relatively dense if there is some γ > 0 and some r > 0 such that the set is (γ, r)-dense. We shall see in the next subsection that relative density is the right notion to characterize dominating sets.

Let dA be the planar Lebesgue measure on C. For a doubling subharmonic function φ : C -→ R and 1 ≤ p < +∞, we will denote by L p φ (F ) the Lebesgue space on a measurable set F ⊂ C with respect to the measure e -pφ dA. We will also use the notation

f p L p φ (F ) := F |f | p e -pφ dA.
Finally, we define the doubling Fock space, by

F p φ = {f ∈ Hol(C) : f p L p φ (C) := C |f | p e -pφ dA < +∞}.
These spaces appear naturally in the study of the Cauchy-Riemann equation (see [START_REF] Christ | On the ∂ equation in weighted L 2 norms in C 1[END_REF][START_REF] Constantin | Some spectral properties of the canonical solution operator to ∂ on weighted Fock spaces[END_REF]) and are well studied objects (see e.g. [START_REF] Oliver | Toeplitz operators on doubling Fock spaces[END_REF] for Toeplitz operators on these spaces). When φ(z) = |z| 2 , F p φ is the classical Fock space (see the textbook [START_REF] Zhu | Analysis on Fock spaces[END_REF] for more details). 1.2. Dominating sets and sampling constants. A measurable set E ⊂ C will be called dominating for F p φ if there exists C > 0 such that

E |f | p e -pφ dA ≥ C p C |f | p e -pφ dA, ∀f ∈ F p φ . (1.2)
The biggest constant C appearing in (1.2) is called the sampling constant.

The notion of dominating sets can be defined for several spaces of analytic functions and their characterization has been at the center of intensive research starting with a famous result of Panejah [START_REF] Panejah | On some problems in harmonic analysis[END_REF][START_REF] Panejah | Certain inequalities for functions of exponential type and a priori estimates for general differential operators[END_REF], and Logvinenko and Sereda [START_REF] Logvinenko | Equivalent norms in spaces of entire functions of exponential type[END_REF] for the Paley-Wiener space, which consists of all functions in L 2 whose Fourier transform is supported on a fixed compact interval. For corresponding results in the Bergman space we refer to [START_REF] Luecking | Inequalities on Bergman spaces[END_REF][START_REF] Luecking | Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives[END_REF][START_REF] Luecking | Dominating measures for spaces of analytic functions[END_REF][START_REF] Green | Dominating Sets in Bergman Spaces on Strongly Pseudoconvex Domains[END_REF]. As for Fock spaces, this has been done by Jansen, Peetre and Rochberg in [START_REF] Janson | Hankel forms and the Fock space[END_REF] for the classical case ϕ(z) = |z| 2 and by Lou and Zhuo in [LZ19, Theorem A] for generalized doubling Fock spaces (see also [START_REF] Ortega-Cerdà | Sampling measures[END_REF] for a characterization of general sampling measures). It turns out that a set E is dominating for the doubling Fock spaces if and only if it is relatively dense. This characterization also holds for the other spaces of analytic functions mentioned above with an adapted notion of relative density.

Once the dominating sets have been characterized in terms of relative density, a second question of interest is to know whether the sampling constants can be estimated in terms of the density parameters (γ, r). Kovrijkine answered this question in [START_REF] Kovrijkine | Some results related to the Logvinenko-Sereda theorem[END_REF] giving a sharp estimate on the sampling constants for the Paley-Wiener spaces, with a polynomial dependence on γ (see also [START_REF] Reznikov | Sharp constants in the Paneyah-Logvinenko-Sereda theorem[END_REF] for sharp constants in some particular geometric settings). Such a dependence is used for example in control theory (see [START_REF] Egidi | Sharp geometric condition for null-controllability of the heat equation on R d and consistent estimates on the control cost[END_REF][START_REF] Egidi | An abstract Logvinenko-Sereda type theorem for spectral subspaces[END_REF][START_REF] Beauchard | Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] and the references therein). Kovrijkine's method involves Remez-type and Bernstein inequalities. It has been used in several spaces in which the Bernstein inequality holds (see for instance [START_REF] Hartmann | Quantitative estimates of sampling constants in model spaces[END_REF] for the model space, [START_REF] Beauchard | Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations[END_REF] for spaces spanned by Hermite functions, or [START_REF] Egidi | An abstract Logvinenko-Sereda type theorem for spectral subspaces[END_REF] for general spectral subspaces), and also to settings where a Bernstein inequality is not at hand (e.g. Fock and polyanalytic Fock spaces [START_REF] Jaming | Planar sampling sets for the short-time Fourier transform[END_REF] or Bergman spaces [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF][START_REF] Green | Dominating Sets in Bergman Spaces on Strongly Pseudoconvex Domains[END_REF]). In [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF], the authors developed a machinery based on a covering argument to circumvent Bernstein's inequality and the aim of this paper is to adapt this method to doubling Fock spaces. 1.3. Main results. It can be deduced from Lou and Zhuo's result [LZ19, Theorem A] that if E is (γ, r)-dense then there exist some constants 0 < ε 0 < 1 and c > 0 depending only on r such that inequality (1.2) holds for every

C p ≤ cγε 2(p+2) γ 0 .
This last estimate gives an exponential dependence on γ. In the spirit of the work [START_REF] Kovrijkine | Some results related to the Logvinenko-Sereda theorem[END_REF], we improve it providing a polynomial estimate in γ with a power depending suitably on r.

Theorem 1.1. Let φ be a doubling subharmonic function and 1 ≤ p < +∞. Given r > 1, there exists L such that for every measurable set E ⊂ C which is (γ, r)-dense, we have

f L p φ (E) ≥ γ c L f L p φ (C) (1.3) for every f ∈ F p φ .
Here, the constants c and L depend on r, and for L we can choose

L r log 2 (Cµ) + 1 p (1 + log(r))
where C µ is the doubling constant (see (1.1)) and the implicit constant depends only on the space (i.e. only on φ).

Remark 1.2. When φ(z) = |z| 2 , we have log 2 (C µ ) = 2 and we get the same result as that given in [JS21, Theorem 4.6] for the classical Fock space with an explicit dependence on p in addition.

Observe that we are mainly interested in the case when r is big, for instance r ≥ 1 (in case E is (γ, r)-dense for some r < 1 we can also show that E is ( γ, 1)-dense for some γ γ where underlying constants are universal).

The proof of Theorem 1.1 follows the scheme presented in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF]. We will recall the necessary results from that paper. The main new ingredients come from [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF] and concern a finite overlapping property and a lemma allowing us to express the subharmonic weight locally as (the real part of) a holomorphic function.

We should mention that in [LZ19, Theorem 7], in the course of proving that the relative density is a necessary condition for domination, it is shown that γ C p . Hence, we cannot expect better than a polynomial dependence in γ of the sampling constant C. In this sense, our result is optimal.

As noticed in a remark in [START_REF] Luecking | Inequalities on Bergman spaces[END_REF]p.11] and after Theorem 2 in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF] for the Bergman space, there is no reason a priori why a holomorphic function for which the integral E |f | p e -pφ dA is bounded for a relative dense set E should be in F p φ . Outside the class F p φ relative density is in general not necessary for domination. For this reason, we always assume that we test on functions f ∈ F p φ .

As a direct consequence of Theorem 1.1, we obtain a bound for the norm of the inverse of a Toeplitz operator T ϕ . We remind that for any bounded measurable function ϕ, the Toeplitz operator T ϕ is defined on F 2 φ by T ϕ f = P(ϕf ) where P denotes the orthogonal projection from L 2 φ (C) onto F 2 φ . As remarked in [LZ19, Theorem B], for a non-negative function ϕ, T ϕ is invertible if and only if E s = {z ∈ C : ϕ(z) > s} is a dominating set for some s > 0. Tracking the constants we obtain Corollary 1.3. Let ϕ be a non-negative bounded measurable function. The operator T ϕ is invertible if and only if there exists s > 0 such that E s = {z ∈ C : ϕ(z) > s} is (γ, r)-dense for some γ > 0 and r > 0. In this case, we have

||T -1 ϕ || ≤ ϕ -1 ∞ 1 -1 - s ϕ ∞ 2 γ c 2L .
Notice that the right-hand side behaves as γ -2L as γ → 0. For the sake of completeness, we will give a proof of the reverse implication at the end of Section 4.

The paper is organized as follows. In Section 2 we recall several results from [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF] concerning doubling measures and subharmonic functions. In Section 3, we introduce planar Remez-type inequalities which will be a key ingredient in the proof of Theorem 1.1. Finally, we prove the covering lemma and Theorem 1.1 in Section 4 and deduce Corollary 1.3.

Reminders on doubling measures

A non-negative doubling measure µ (see (1.1) for the definition) determines a metric on C to which the usual notions have to be adapted. In this section, we recall several geometric measure theoretical tools in connection with doubling measures that we will need later and which come essentially from the paper [MMOC03, Chapter 2]. Actually, the results of the present section can be translated in terms of the distance induced by the metric ρ(z) -2 dz ⊗ dz but we will not exploit this point of view here.

We start with a standard geometric estimate whose main part is due to [Chr91, Lemma 2.1].

Lemma 2.1. [MMOC03, Lemma 1] Let µ be a doubling measure on C. For any disks D(z, r) and D(z , r ) such that r > r and z ∈ D(z, r), we have

1 2C µ r r κ ≤ µ(D(z, r)) µ(D(z , r )) ≤ C 2 µ r r log 2 (Cµ)
.

where κ = 1 C 2 µ +2 . Here x denotes the smallest integer bigger or equal to x and correspondingly, x is the biggest integer less or equal to x. The paper [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF] refers to [START_REF] Christ | On the ∂ equation in weighted L 2 norms in C 1[END_REF] for the proof of this result. We mention that this latter paper only contains the left hand side estimate. For the convenience of the reader and in order to better understand the constants, we provide a detailed proof completing Christ's argument.

Proof. Let us start with the right hand side inequality. By the triangular inequality, we have D(z, r) ⊂ D(z , 2r). Now, note that

2r = 2 log 2 ( r r )+1 r ≤ 2 log 2 ( r r ) +1 r .
Hence iterating the doubling inequality (1.1), we get

µ(D(z, r)) ≤ µ(D(z , 2r)) ≤ C log 2 ( r r ) +1 µ µ(D(z , r )) ≤ C 2 µ r r log 2 (Cµ)
µ(D(z , r )).

As mentioned above, the left hand side inequality is given in [Chr91, Lemma 2.1]. We reproduce the proof here making the constant κ more precise. Since z ∈ D(z, r), we have D(z , r) ⊂ D(z, 2r) and so

µ(D(z, r)) µ(D(z , r )) ≥ C -1 µ µ(D(z, 2r)) µ(D(z , r )) ≥ C -1 µ µ(D(z , r)) µ(D(z , r )) . (2.1)
Hence it suffices to prove that for any z ∈ C, µ(D(z , r)) µ(D(z , r )) ≥ 1 2 r r κ whenever r > r . Let k ≥ 3 be an integer to be fixed later. First assume that r r = 2 k . Then we can construct pairwise disjoint disks D 1 , D 2 , . . . D k-2 such that D j has radius 2 j r , D(z , r ) ⊂ 3D j and D j ⊂ D(z , r). A way to do that is to choose the disks D j centered along a radius of D(z , r) and ordered in such a way that the radius increases away from z (see Figure 1). 

Now, since µ(D(z , r )) ≤ µ(3D j ) ≤ C 2 µ µ(D j ), we get µ(D(z , r)) ≥ k-2 j=1 µ(D j ) + µ(D(z , r )) ≥ [(k -2)C -2 µ + 1]µ(D(z , r )).
Hence, fixing k to be the smallest integer such that (k -2)C -2 µ + 1 ≥ 2 i.e k = C 2 µ + 2 , we obtain µ(D(z , r)) ≥ 2µ(D(z , r )) whenever r r = 2 k . Let us treat the general case r > r now. If r r ≥ 2 k , we reduce the problem to the previous setting decomposing D(z , r) into a chain of disks

D(z , r ) = D(z , r 0 ) ⊂ D(z , r 1 ) ⊂ • • • ⊂ D(z , r m ) ⊂ D(z , r)
where r i = 2 k r i-1 for 1 ≤ i ≤ m, and m = log 2 (r/r ) k . Hence we can iterate the process and get for every z ∈ C,

µ(D(z , r)) ≥ µ(D(z , r m )) ≥ 2µ(D(z , r m-1 )) ≥ . . . ≥ 2 m µ(D(z , r )) = 2 log 2 ( r r )/k µ(D(z , r )) ≥ 1 2 r r 1/k µ(D(z , r )).
Combined with (2.1), this leads to the left hand side inequality of Lemma 2.1 with

κ = 1 k = 1 C 2 µ + 2 . If r r < 2 k , then it is clear that 1 2 r r κ < 1 ≤ µ(D(z ,r))
µ(D(z ,r )) since r > r . Again, combined with (2.1), this yields the expected constant in the left hand side inequality.

Remark 2.2. If instead of z ∈ D(z, r), we have D(z, r) ∩ D(z , r ) = ∅ as in [MMOC03,
Lemma 1], we get the same inequalities with C µ replaced by C 2 µ in the left hand inequality and C 2 µ replaced by C 3 µ in the right hand inequality. Also, when z = z , we can remove C µ from the left hand side and replace C 2 µ by C µ in the right hand side. Remark 2.3. In the classical Fock space, µ is the Lebesgue measure (up to a multiplicative constant) and so C µ = 4. Note that in this case, we obtain an equality with the right hand side and the factor C 2 µ disappears. This is due to the invariance by translation and the homogeneity of Lebesgue measure.

As a direct consequence of Lemma 2.1 and Remark 2.2, picking z = z, and replacing r by rρ(z) and r by ρ(z), we get the following useful estimate: for all z ∈ C and r > 1,

1 2 r κ ≤ µ(D r (z)) ≤ C µ r log 2 (Cµ) .
(2.2)

We are now looking for an upper bound and a lower bound for ρ(z) ρ(w) whenever w ∈ D r (z). Lemma 2.4. For every z ∈ C, we have

∀r > 0, ∀w ∈ D r (z), ρ(z) ρ(w) ≥ 1 1 + r . (2.3) and ∀r > 1, ∀w ∈ D r (z), ρ(z) ρ(w) max r log 2 (Cµ) κ -1 , 1 = r max log 2 (Cµ) κ -1, 0 . (2.4) Proof. A classical fact is that ρ is a 1-Lipschitz function (see [OP16, equation 2.4] for a simple proof): |ρ(z) -ρ(w)| ≤ |z -w|, ∀z, w ∈ C.
Hence, for every z ∈ C, we get inequality (2.3) by the triangular inequality. To obtain the upper bound, we use both inequalities of Lemma 2.1 distinguishing the cases rρ(z) ≥ ρ(w) and rρ(z) < ρ(w). We get for every w ∈ D r (z),

rρ(z) ρ(w) max µ(D r (z)) 1/κ , µ(D r (z)) 1/ log 2 (Cµ) .
Therefore inequality (2.2) implies for r > 1

rρ(z) ρ(w) max r log 2 (Cµ) κ , r ,
and hence (2.4) follows.

Notice that for C µ large enough, we have log 2 (Cµ) κ -1 ≥ 0, which means that the maximum in the last inequality (2.4) is equal to r log 2 (Cµ) κ

-1 . This holds exactly when

C µ ≥ 4 √ 2.
In the proof of our main theorem, we will need a particular covering of the complex plane. Let us explain how we can construct it. We say that a sequence (a n ) n∈N is ρ-separated if there exists δ > 0 such that

|a i -a j | ≥ δ max (ρ(a i ), ρ(a j )), ∀i = j.
This means that the disks D δ (a n ) are pairwise disjoint. We will cover C by disks satisfying a finite overlapping property and such that the sequence formed by their centers is ρseparated. In [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF], the authors construct a decomposition of C into rectangles R k : C = k R k , and two such rectangles can intersect at most along sides. For these rectangles, so-called quasi-squares, there exists a constant e > 1 depending only on C µ such that the ratio of sides of every R k lies in the interval [1/e, e]. Denoting by a k the center of R k , Theorem 8(c) of [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF] claims in particular that there is r 0 ≥ 1, such that for every k, ρ(a k )

r 0 ≤ diam R k ≤ r 0 ρ(a k ).
In other words

D 1/(2Cr 0 ) (a k ) ⊂ R k ⊂ D r 0 /2 (a k ) (2.5) with C = √ 1 + e 2 .
As a consequence we get the required covering C = D r 0 /2 (a k ) and the sequence (a k ) is ρ-separated (take δ = 1/(2Cr 0 )).

We end this section by focusing on the particular case of a doubling measure µ given by the Laplacian ∆φ of a subharmonic function φ which is the case of interest in this paper. We will need to control the value of φ in a disk by the value at its center. For this, we can use [MMOC03, Lemma 13] that we state as follows: for every σ > 0, there exists A = A(σ) > 0 such that for all k ∈ N,

sup z∈D σ (a k ) |φ(z) -φ(a k ) -h a k (z)| ≤ A(σ) (2.6)
where h a k is a harmonic function in D σ (a k ) with h a k (a k ) = 0. Moreover, in view of the proof of [MMOC03, Lemma 13] we have

A(σ) sup k∈N µ (D σ (a k )) σ log 2 (Cµ) (2.7)
where the inequalities come from [MMOC03, Lemma 5(a)] and the estimate (2.2). This last result will allow us to translate the subharmonic weight locally into a holomorphic function.

Remez-type inequalities

Let us introduce a central result of the paper [START_REF] Andrievskii | Remez-type inequalities in the complex plane[END_REF]. Let G be a (bounded) domain in C and let 0 < s < |G| (Lebesgue measure of G). Denoting Pol n the space of complex polynomials of degree at most n ∈ N, we introduce the set

P n (G, s) = {p ∈ Pol n : |{z ∈ G : |p(z)| ≤ 1}| ≥ s}. Next, let R n (z, s) = sup p∈Pn(G,s) |p(z)|.
This expression gives the biggest possible value at z of a polynomial p of degree at most n and being at most 1 on a set of measure at least s. In particular Theorem 1 from [START_REF] Andrievskii | Remez-type inequalities in the complex plane[END_REF] claims that for z ∈ ∂G, we have

R n (z, s) ≤ c s n (3.1)
where the constant c depends only on the (square of the) diameter of G. This result corresponds to a generalization to the two-dimensional case of the Remez inequality which is usually given in dimension 1. In what follows we will essentially consider G to be a disk or a rectangle. By the maximum modulus principle, the above constant gives an upper estimate on G for an arbitrary polynomial of degree at most n which is bounded by one on a set of measure at least s. Obviously, if this set is small (s close to 0), i.e. p is controlled by 1 on a small set, then the estimate has to get worse.

Remark 3.1. Let us make another observation. If c is the constant in (3.1) associated with the unit disk G = D = D(0, 1), then a simple argument based on homothety shows that the corresponding constant for an arbitrary disk D(0, r) is cr 2 (considering D(0, r) as underlying domain, the constant c appearing in [AR07, Theorem 1] satisfies c > 2m 2 (D(0, r))). So, in the sequel we will use the estimate

R n (z, s) ≤ cr 2 s n , (3.2) 
where c does not depend on r.

Up to a translation, the following counterpart of Kovrijkine's result for the planar case has been given in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF]: Lemma 3.2. Let 0 < r < R be fixed. There exists a constant η > 0 such that the following holds. Let w ∈ C, let E ⊂ D r (w) be a planar measurable set of positive measure and let

z 0 ∈ D r (w). For every φ analytic in D R (w), if |φ(z 0 )| ≥ 1 and M = sup z∈D R (w) |φ(z)| then sup z∈D r (w) |φ(z)| ≤ cr 2 ρ(w) 2 |E| η log M sup z∈E |φ(z)|,
where c does not depend on r, and

η ≤ c R 4 (R -r) 4 log R R -r
for an absolute constant c .

The corresponding case for p-norms is deduced exactly as in Kovrijkine's work.

Corollary 3.3. Let 0 < r < R be fixed. There exists a constant η > 0 such that the following holds. Let w ∈ C, let E ⊂ D r (w) be a planar measurable set of positive measure and let z 0 ∈ D r (w). For every

φ analytic in D R (w), if |φ(z 0 )| ≥ 1 and M = sup z∈D R (w) |φ(z)| then for p ∈ [1, +∞) we have φ L p (D r (w)) ≤ cr 2 ρ(w) 2 |E| η log M + 1 p φ L p (E) .
The estimates on η are the same as in the lemma. The constant c does not depend on r.

Proof of Theorem 1.1

The key ingredient in the proof of Theorem 1.1 and a main contribution of this paper is the existence and the estimate of the covering constant. Indeed, we have shown in Section 2 that the disks (D s (a k )) k∈N cover the complex plane C for s > r 0 /2. Now, we shall prove that there exists a covering constant N depending on the covering radius s ≥ r 0 /2. This means that the number of overlapping disks cannot exceed N . We denote by χ F the characteristic function of a measurable set F in D. We are now in a position to prove the covering lemma.

Lemma 4.1. For s > 1, there exists a constant N := N (s) such that

k χ D s (a k ) ≤ N.
Moreover, there exists some universal constant c ov := c ov (φ) > 0 such that

N ≤ c ov s α where α = min 2 max 1 + log 2 (C µ ) κ , 2 ; max log 2 (C µ ) κ , 1 log 2 (C µ ) ,
C µ is the doubling constant and κ is given in Lemma 2.1.

Obviously, the constant N is at least equal to 1 and since N is non-decreasing in s, we are only interested in the behavior when s goes to ∞. We also remind the reader that in order to cover the complex plane C, we need to require that s ≥ r 0 /2. Proof of Lemma 4.1. The proof is inspired by that of [AS11, Lemma 2.5]. Let s > 1 and z ∈ C. Denote Γ(z) = {k ∈ N, z ∈ D s (a k )}. Our goal is to estimate #Γ(z). Write θ = log 2 (Cµ) κ . Recall that for z ∈ D s (a k ), we have by (2.3) and (2.4)

ρ(z) 1 + s ≤ ρ(a k ) ρ(z) max(s θ-1 , 1). (4.1)
Now, pick δ > 0 such that the disks D δ (a n ) are disjoint (recall that (a n ) n∈N is ρ-separated).

By the triangular inequality, there exists a constant C > 0 such that D δ (a k ) ⊂ D C max(s θ ,s) (z) whenever z ∈ D s (a k ) (see Figure 2). Indeed, if w ∈ D δ (a k ) then

|w -z| ≤ |w -a k | + |z -a k | ≤ δρ(a k ) + sρ(a k ) (δ + s)ρ(z) max(s θ-1 , 1) ρ(z) max(s θ , s),
where we have used that δ > 0 is fixed and s > 1. Hence, since D δ (a k ) are disjoint and with (4.1) in mind, it follows

#Γ(z) ≤ # k ∈ N, D δ (a k ) ⊂ D C max(s θ ,s) (z) ≤ D C max(s θ ,s) (z) inf k∈Γ(z) |D δ (a k )| = sup k∈Γ(z) C max(s θ , s)ρ(z) 2 (δρ(a k )) 2 max(s θ , s)(1 + s) 2 s 2 max(1+θ, 2)
where we have used that max(s θ , s) = s max(θ,1) for s > 1. Moreover, notice that µ D δ (a k ) 1 since 0 < δ < 1 is fixed. Hence an analogous computation, replacing the Lebesgue measure by the measure µ and using the right hand side of inequality (2.2), leads to

#Γ(z) ≤ # k ∈ N, D δ (a k ) ⊂ D C max(s θ ,s) (z) ≤ µ D C max(s θ ,s) (z) inf k∈Γ(z) µ [D δ (a k )] max(s θ , s) log 2 (Cµ)
s max(θ, 1) log 2 (Cµ) .

Finally, taking the minimum between the two estimates, we get for s > 1 #Γ(z) min s 2 max(1+θ, 2) , s max(θ, 1) log 2 (Cµ) = s min[2 max(1+θ, 2), max(θ, 1) log 2 (Cµ)] .

Since the estimates are uniform in z, the lemma follows.

As in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF] for the Bergman space, we now introduce good disks. Fix r 0 /2 ≤ s < t where r 0 /2 is the radius such that the disks D r 0 /2 (a k ) cover the complex plane. For K > 1 the set

I K-good f = {k : f L p φ (D t (a k )) ≤ K f L p φ (D s (a k
)) } will be called the set of K-good disks for (t, s) (in order to keep notation light we will not include s and t as indices). This set depends on f .

The following proposition has been shown in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF] for the Bergman space, but its proof, implying essentially the finite overlapping property, is exactly the same. Proposition 4.2. Let r 0 /2 ≤ s < t. For every constant c ∈ (0, 1), there exists K such that for every f ∈ F p φ we have

k∈I K-good f f p L p φ (D s (a k )) ≥ c f p L p φ (C) .
One can pick K p = N (t)/(1 -c) where N (t) corresponds to the overlapping constant from Lemma 4.1 for the radius t.

We are now in a position to prove the theorem.

Proof of Theorem 1.1. Take s = max(r, r 0 /2) and t = 4s. As noted in [START_REF] Hartmann | Dominating sets in Bergman spaces and sampling constants[END_REF], if E is (γ, r)-dense then E is ( γ, s)-dense, where γ = cγ and c is a multiplicative constant. Hence we can assume that E is (γ, s)-dense instead of (γ, r)-dense.

Let h a k be the harmonic function introduced in (2.6) for σ = t. Since h a k is harmonic on D t (a k ), there exists a function H a k holomorphic on D t (a k ) with real part h a k . Now, given f with f L p φ (C) = 1, let g = f e -(Ha k +φ(a k )) for k ∈ I K-good f , and set

h = c 0 g, c 0 = πs 2 ρ(a k ) 2 D s (a k ) |g| p dA 1/p .
Clearly there is z 0 ∈ D s (a k ) with |h(z 0 )| ≥ 1. Set R = 2s. We have to estimate the maximum modulus of h on D R (a k ) in terms of a local integral of h. To that purpose, we use that h ∈ A p (D t (a k )). Indeed, applying (2.6) we have

D t (a k ) |h| p dA = πs 2 ρ(a k ) 2 D s (a k ) |g| p dA D t (a k ) |g| p dA = πs 2 ρ(a k ) 2 D s (a k ) |f | p e -p(ha k +φ(a k )) dA D t (a k ) |f | p e -p(ha k +φ(a k )) dA ≤ πs 2 ρ(a k ) 2 e 2pA(t) D s (a k ) |f | p e -pφ(z) dA(z) D t (a k ) |f | p e -pφ(z) dA(z). ≤ πs 2 ρ(a k ) 2 e 2pA(t) K p
where the last inequality comes from the fact that k is K-good for (s, t). Therefore, taking into account this last estimate, the subharmonicity of |h| p yields where C , C depend only on the space. In view of (2.7), we get log M s log 2 (Cµ) + 1 p (1 + log(s)).

M p := max z∈D R (a k ) |h(z)| p ≤ 1 πs 2 ρ(a k ) 2 D t (a k ) |h| p dA ≤ c s K p
Finally, noticing that r s = max(r, r 0 /2) for r > 1, this implies log M r log 2 (Cµ) + 1 p (1 + log(r)).

Finally, we give a short proof of the reverse implication in Corollary 1.3 which is a straightforward adaptation to the doubling Fock space of Luecking's proof of [Lue81, Corollary 3].

Proof. First, assume that ϕ ≤ 1. Therefore s ≤ 1. Since E is (γ, r)-dense, it is a dominating set. So

C ϕ 2 |f | 2 e -2φ dA ≥ s 2 E |f | 2 e -2φ dA ≥ s 2 C 2 f 2 L 2 φ (C) ,
where C is the sampling constant. Then

(I -T ϕ )f 2 L 2 φ (C) = T 1-ϕ f 2 L 2 φ (C) = P[(1 -ϕ)f ] 2 L 2 φ (C) ≤ (1 -ϕ)f 2 L 2 φ (C) ≤ C (1 -ϕ 2 )|f | 2 e -2φ dA ≤ (1 -s 2 C 2 ) f 2 L 2 φ (C)
Hence I -T ϕ < 1. So T ϕ is invertible and

T -1 ϕ ≤ 1 1 -I -T ϕ ≤ 1 1 - √ 1 -s 2 C 2 .
Using Theorem 1.1, we obtain

||T -1 ϕ || ≤ 1 1 -1 -s 2 γ c 2L .
Finally, for a general ϕ, let ψ = ϕ ϕ ∞ . Then ψ ≤ 1, E = {ψ ≥ s ϕ ∞ = s } and T ϕ = ϕ ∞ T ψ . So, applying the previous discussion to ψ, it follows

T -1 ϕ = T -1 ψ ϕ -1 ∞ ≤ ϕ -1 ∞ 1 -1 -(s ) 2 γ c 2L = ϕ -1 ∞ 1 -1 - s ϕ ∞ 2 γ c 2L
.

Figure 1 .

 1 Figure 1. The disks D j , D(z , r ) and D(z , r).

Figure 2 .

 2 Figure 2. The disks D s (a k ), D C max(s θ ,s) (z) and D δ (a k ).

  where c s = e 2pA(4s) since t = 4s. Now, setting E = E ∩ D s (a k ) we get using Corollary 3.3 applied to h:D s (a k ) |h(z)| p dA(z) ≤ cs 2 ρ(a k ) 2 | E| pη log M +1 E |h(z)| p dA(z)Again, by homogeneity we can replace in the above inequality h by g. Note also that πs 2 ρ(a k ) 2 /| E| is controlled by 1/γ. This yieldsD s (a k ) |f | p e -pφ(z) dA(z) ≤ e pA(t) D s (a k ) |g(z)| p dA(z) ≤ e pA(t) cs 2 ρ(a k ) 2 | E| pη log M +1 E |g(z)| p dA(z) ≤ e pA(t) c 1 γ pη log M +1 E |g(z)| p dA(z) ≤ e 2pA(t) c 1 γ pη log M +1 E |f (z)| p e -pφ(z) dA(z),where c 1 is an absolute constant. Summing over all K-good k, and using Lemma 4.1 and Proposition 4.2 we obtain the required resultc f L p φ (C) c 1 γ η log M +1/p f L p φ (E)where in view of Lemma 3.2 η ≤ c × 2 4 log 2 and log(M ) ≤ log(c 1/p s K)Here c comes from Proposition 4.2, and c ov and α from Lemma 4.1. In particular, fixing c ∈ (0, 1) we obtain log M ≤ 2A(4s) + 1 p (C + C log(s))
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