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SAMPLING CONSTANTS IN GENERALIZED FOCK SPACES

S. KONATE & M.-A. ORSONI

Abstract. We discuss sampling constants for dominating sets in generalized Fock spaces.

1. Introduction

Sampling problems are central problems in signal theory, and cover, for instance, sam-
pling sequences and so-called dominating sets which allow to recover the norm of a signal
— defined by an integration over a given domain — from the integration on a subdomain
(precise definitions will be given later). In this paper we will focus on the second class of
problems, i.e. dominating sets. Once conditions established for being dominating, a second
central question is to know whether the sampling constants can be estimated. Conditions
guaranteeing that a set is dominating have been established rather long ago (in the 70’s
for the Paley-Wiener space and in the 80’s for the Bergman and Fock spaces, see e.g. the
survey [FHR17] and references therein). More recently, people got interested in estimates
of the sampling constants which give an information on the tradeoff between the cost of
the sampling and the precision of the estimates. The central paper in this connection is by
Kovrijkine [Kov01] who gave a method to consider this problem in the Paley-Wiener space
establishing a polynomial dependence of the sampling constant on an underlying density
(see also [Rez10]). His method involves Remez-type and Bernstein inequalities. Subse-
quently, his method was adapted to other spaces (see for instance [HJK17] for the model
space where weighted Bernstein inequalities hold), and also to settings where a Bernstein
inequality is not at hand (e.g., Fock and polyanalytic Fock spaces [JS] and Bergman spaces
[HKKO20]). In this paper, inspired by methods in [HKKO20], which are based on an
Andrievskii-Ruscheweyh estimate replacing the Remez inequality and an alternate cover-
ing argument to circumvent Bernstein’s inequality, we will discuss the case of generalized
Fock spaces. As it turns out, the machinery from [HKKO20] applies to this more general
setting. Indeed, the paper [MMOC03] contains a wealth of results for generalized Folk
spaces that allow to translate the main steps of [HKKO20] to this new framework.

We recall that sampling problems have been considered in a large setting of situations,
including the Fock space and its generalized version (see e.g. the survey [FHR17]). In
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classical Fock spaces, sampling sequences have been characterized by Seip (see e.g. the
book [Sei04]), and for their generalized counterparts this had been done in [MMOC03].
Dominating sets have been characterized by Jansen, Peetre and Rochberg in [JPR87] for
the classical Fock space and by Lou and Zhuo in [LZ19] for doubling Fock spaces (see
definitions below). More general sampling measures have been discussed by Ortega-Cerdà
[OC98]. We would also like to mention some work by Lindholm [Lin00].

Let us introduce some notation. For a subharmonic function φ : C −→ R, and 1 < p <
+∞, we define the generalized Fock space by

Fpφ = {f ∈ Hol(C) : ‖f‖pp,φ =

∫
C
|f |pe−pφdA < +∞}

where dA is planar Lebesgue measure on C. A measurable set E ⊂ C will be called
dominating if there exists C > 0 such that∫

E

|f |pe−pφdA ≥ Cp

∫
C
|f |pe−pφdA, ∀f ∈ Fpφ. (1.1)

We will use the notation Lpφ(F ) for the Lebesgue space on a measurable set F ⊂ C with

respect to e−pφdA.
We need some more notation. A subharmonic function φ : C −→ R is called doubling if

the measure ∆φ is doubling, i.e., there exists a constant Cµ such that for every z ∈ C and
r > 0,

µ(D(z, 2r)) ≤ Cµµ(D(z, r)).

We will sometimes call Fpφ doubling if φ is doubling. We can associated with φ a function

ρ : C −→ R+, such that

µ(D(z, ρ(z))) = 1.

Here D(z, r) is a standard euclidean disk. Assuming φ suitably regularized, we can assume
∆φ = ρ−2 (see [MMOC03]?). We denote Dr(z) = D(z, rρ(z)), and D(z) = D1(z). With
these definitions in mind we can introduce the following natural density. A measurable set
E is (γ, r)-dense, if

|E ∩Dr(z)|
|Dr(z)|

≥ γ.

Here |F | denotes planar Lebesgue measure of a measurable set F . We will just say that the
set is relatively dense if there is some γ > 0 and some r > 0 such that the set is (γ, r)-dense.

It follows from Lou, Zhuo’s result [LZ19, Theorem A] that a set E is dominating if and
only if it is relatively dense. More precisely, they proved that if E is (γ, r)-dense then there
exist some constants ε0 and c > 0 depending only on r such that inequality (1.1) holds for
every

Cp ≥ cγε
2(p+2)
γ

0 .

Our main result is the following
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Theorem 1. Let φ be a subharmonic function and 1 ≤ p < +∞. Given r > 1, there exists
L such that for every measurable set E ⊂ C which is (γ, r)-dense, we have

‖f‖p
Lpφ(E)

≥
(γ
c

)L
‖f‖pp,φ (1.2)

for every f ∈ Fpφ. Here, the constants c and L depend on r, and for L we can choose

L ≤ λr
1
κ +

1

p
(λ′ + λ′′ ln(1 + r))

where κ is a constant given in (3.2) depending on the space; and λ, λ′, λ′′ are some universal
constants depending also only on the space.

Observe that we are mainly interested in the case when r is big, for instance r ≥ 1 (in
case E is (γ, r)-dense for some r < 1 we can also show that E is (γ̃, 1)-dense for some
γ̃ ' γ where underlying constants are universal).

It should be noted that there is a competing relation between γ and r. The density γ
can be as small as we want for a given r (take E = C \D(0, r

√
1− ε) for 0 < ε < 1, then

γ = ε), but fixing a relative dense set E (and so the sampling constant C) it can become
rather big when we choose a bigger radius. In a sense one needs to optimize L ln γ, and L
depends on r.

Here is another observation. Though this might be obvious, it should be observed that
there is no reason a priori why a holomorphic function for which the integral

∫
E
|f |pe−pφdA

is bounded for a relative dense set E should be in Fpφ. Outside the class Fpφ relative density
is in general not necessary for domination (see also a remark in [Lue81, p.11]).

In [LZ19, Theorem 7], proving that the relative density is a necessary condition for
domination, it is shown that γ & Cp. Hence, we cannot expect more than a polynomial
dependance in γ of the sampling constant C. In this sense, our result is optimal.

As a direct consequence, we obtain a bound for the norm of the inverse of a Toeplitz
operator Tϕ. We remind that for any bounded measurable function ϕ, the Toeplitz operator
Tϕ is defined on F2

φ by Tϕf = P(ϕf) where P denotes the orthogonal projection from L2
φ(C)

onto F2
φ. As remarked in [LZ19, Theorem B], for a non-negative function ϕ, Tϕ is invertible

if and only if Es = {z ∈ C : ϕ(z) > s} is a dominating set for some s > 0. Tracking the
constant we obtain

Corollary 1. Let ϕ be a non-negative bounded measurable function. The operator Tϕ is
invertible if and only if there exists s > 0 such that Es = {z ∈ C : ϕ(z) > s} is (γ, r)-dense
for some γ > 0 and r > 0. In this case, we have

||T−1ϕ || ≤
‖ϕ‖∞

1−
√

1−
(

s
‖ϕ‖∞

)2 (
γ
c

)L .
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Notice that the right-hand side behaves as γ−L as γ → 0.
For the sake of completeness, we give a proof of the reverse implication which is a straight-
forward adaptation to the doubling Fock space of Luecking’s proof of [Lue81, Corollary
3].

Proof. First, assume that ϕ ≤ 1. Therefore s ≤ 1. Since E is (γ, r)-dense, it is a dominating
set. So ∫

C
ϕ2|f |2e−2φdA ≥ s2

∫
E

|f |2e−2φdA ≥ s2C2‖f‖22,φ.

Then

‖(I − Tϕ)f‖22,φ = ‖T1−ϕf‖22,φ
= ‖P[(1− ϕ)f ]‖22,φ
≤ ‖(1− ϕ)f‖22,φ

≤
∫
C
(1− ϕ2)|f |2e−2φdA

≤ (1− s2C2)‖f‖22,φ

Hence ‖I − Tϕ‖ < 1. So Tϕ is invertible and

‖T−1ϕ ‖ ≤
1

1− ‖I − Tϕ‖
≤ 1

1−
√

1− s2C2
.

Using Theorem 1, we obtain

||T−1ϕ || ≤
1

1−
√

1− s2
(
γ
c

)L .
Finally, for a general ϕ, let ψ = ϕ

‖ϕ‖∞ . Then ψ ≤ 1, E = {ψ ≥ s
‖ϕ‖∞ = s′} and Tϕ =

‖ϕ‖∞Tψ. So, applying the previous discussion to ψ, the results follows.

‖T−1ϕ ‖ = ‖T−1ψ ‖‖ϕ‖∞ ≤
‖ϕ‖∞

1−
√

1− (s′)2
(
γ
c

)L =
‖ϕ‖∞

1−
√

1−
(

s
‖ϕ‖∞

)2 (
γ
c

)L
�

The proof of Theorem 1 follows the scheme presented in [HKKO20]. We will recall the
necessary results from that paper. The main new ingredients come from [MMOC03] and
concern a finite overlap property and and a Lemma allowing to translate the (subharmonic)
weight locally into a holomorphic function.
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2. Remez-type inequalities

Let us introduce a central results of the paper [AR07]. Let G be a (bounded) domain
in C. Let 0 < s < |G| (Lebesgue measure of G). Denoting Poln the space of complex
polynomials of degree at most n ∈ N, we introduce the set

Pn(G, s) = {p ∈ Poln : |{z ∈ G : |p(z)| ≤ 1}| ≥ s}.
Next, let

Rn(z, s) = sup
p∈Pn(G,s)

|p(z)|.

This expression gives the biggest possible value at z of a polynomial p of degree at most n
and being at most 1 on a set of measure at least s. In particular Theorem 1 from [AR07]
claims that for z ∈ ∂G, we have

Rn(z, s) ≤
(c
s

)n
. (2.1)

This result corresponds to a generalization to the two-dimensional case of the Remez in-
equality which is usually given in dimension 1. In what follows we will essentially consider
G to be a disk or a rectangle. By the maximum modulus principle, the above constant
gives an upper estimate on G for an arbitrary polynomial of degree at most n which is
bounded by one on a set of measure at least s. Obviously, if this set is small (s close to 0),
i.e. p is controlled by 1 on a small set, then the estimate has to get worse.

Remark 1. Let us make another observation. If c is the constant in (2.1) associated
with the unit disk G = D = D(0, 1), then a simple argument based on homothecy shows
that the corresponding constant for an arbitrary disk D(0, r) is cr2 (considering D(0, r)
as underlying domain, the constant c appearing in [AR07, Theorem 1] satisfies c > 2 ×
m2(D(0, r))). So, in the sequel we will use the estimate

Rn(z, s) ≤
(
cr2

s

)n
, (2.2)

where c does not depend on r.

Up to a translation, the following counterpart of Kovrijkine’s result for the planar case
has been given in [HKKO20]:

Lemma 1. Let 0 < r < R be fixed. Let w ∈ C. There exists a constant η > 0 such that the
following holds. Let φ be analytic in DR(w), and let E ⊂ Dr(w) be a planar measurable set
of positive measure, and let z0 ∈ Dr(w). If |φ(z0)| ≥ 1 and M = maxz∈DR(w) |φ(z)| then

sup
z∈Dr(w)

|φ(z)| ≤
(
cr2ρ(w)2

|E|

)η lnM
sup
z∈E
|φ(z)|,

where c does not depend on r, and

η ≤ c′′
R4

(R− r)4
ln

R

R− r
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for an absolute constant c′′.

The corresponding case for p-norms is deduced exactly as in Kovrijkine’s work.

Corollary 2. Let 0 < r < R be fixed. Let w ∈ C. There exists a constant η > 0 such that
following holds. Let φ be analytic in DR(w) and let E ⊂ Dr(w) be a planar measurable set
of positive measure and let z0 ∈ Dr(w). If |φ(z0)| ≥ 1 and M = maxz∈DR(w) |φ(z)| then for
p ∈ [1,+∞) we have

‖φ‖Lp(Dr(w)) ≤
(
cr2ρ(w)2

|E|

)η lnM+ 1
p

‖φ‖Lp(E).

The estimates on η are the same as in the lemma. The constant c does not depend on r.

3. Proof of Theorem 1

We will cover C by disks satisfying certain properties and satisfying a finite covering
property. Denote by χF the characteristic function of a measurable set F in D.

In [MMOC03], the authors construct a decomposition of C into so-called quasi-squares
Rk: C =

⋃
k Rk, and two such quasi-squares can intersect at most along sides. Quasi-

squares are rectangles for which the ratio between length and height is uniformly controlled,
but this will not be of importance here. Denoting by ak the center of Rk, Theorem 8(c) of
[MMOC03] claims in particular that there is r0 ≥ 1, such that for every k,

ρ(ak)

r0
≤ diamRk ≤ r0ρ(ak).

In other words

D1/(2Cr0)(ak) ⊂ R(ak) ⊂ Dr0/2(ak) (3.1)

with C =
√

1 + e2 and 1/e ≤ L/l ≤ e. Hence C =
⋃
Dr0/2(ak).

We will say that a sequence (an)n∈N is ρ−separated if there exists δ > 0 such that

|ai − aj| ≥ δmax (ρ(ai), ρ(aj)), ∀i 6= j.

This means that the disks Dδ(an) are pairwise disjoint.
Now, we shall prove that there exists a covering constant N depending on the cover-

ing radius s ≥ r0. For that, the key point is the following geometric estimate given by
[MMOC03, Equation (4)]. There exists κ > 0 such that for all z ∈ C and r > 1,

rκ . µ(Dr(z)) . r
1
κ . (3.2)

This permits to prove the following lemma which is essentially contained in the proof of
[MMOC03, Lemma 6] and [MMOC03, Lemma 5.b)].

Lemma 2. Let m > 1 + 1
κ

. There exists C(φ,m) > 0 such that for every r ≥ 1

sup
z∈C

∑
ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ C(φ,m)r

1
κ
− m

1+κ .
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It will be shown in the proof that C(φ,m) ∼ 1
m−1− 1

κ

when m tends to 1 + 1
κ
. The proof

shows that r ≥ 1 is a rather technical condition and can be replaced by r ≥ r̂ > 0.

Proof. We will use Corollary 3 of [MMOC03] that we recall here.

Corollary 3 (of [MMOC03]). For every r > 0, there exists κ ≥ 0 such that if ζ ∈ Dr(z),
then

ρ(z) . ρ(ζ)(1 + r)κ.

Let us start with r > 1 large, to be fixed later. Since the sequence (ak)k∈N is separated,
we can assume 0 < δ < 1/4 such that the disks (Dδ(ak))k∈N are pairwise disjoint.∑

ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
=

∑
ak /∈Dr(z)

1

µ(Dδ(ak))

∫
Dδ(ak)

(
ρ(ak)

|z − ak|

)m
dµ(ζ)

There exists i ≥ 3 such that 1
2i
< δ. Therefore 1 = µ(D1(ak)) ≤ Cµ

i µ(Dδ(ak)) where Cµ
is the doubling constant. Hence∑

ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ Cµ

i
∑

ak /∈Dr(z)

∫
Dδ(ak)

(
ρ(ak)

|z − ak|

)m
dµ(ζ). (3.3)

Now, we claim that if ak /∈ Dr(z) then z /∈ Dδ(ak). Indeed, if z ∈ Dδ(ak) then Dr(z) ⊂
D2δ(ak) (see Figure 1). Therefore 1 < µ(Dr(z)) ≤ µ(D2δ(ak)) < 1 which is a contradiction.

akz

rρ(z)
δρ(ak)

Figure 1. The disks Dδ(ak) and Dr(z).

Thus, if ak /∈ Dr(z) and ζ ∈ Dδ(ak), we have

|z − ζ| ≤ |z − ak|+ |ak − ζ| ≤ 2|z − ak|. (3.4)

Also, by Corollary 3, if ζ ∈ Dδ(ak) then there exists C > 0 such that ρ(ak) ≤ C(1+δ)κρ(ζ).
With inequality (3.3), we obtain∑

ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ Cµ

i(2C(1 + δ)κ)m
∑

ak /∈Dr(z)

∫
Dδ(ak)

(
ρ(ζ)

|z − ζ|

)m
dµ(ζ)
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Now, setting α = 1−2δ < 1 we have Dαr(z)∩Dδ(ak) = ∅. Indeed, if ζ ∈ Dαr(z)∩Dδ(ak),
then |ζ − z| ≤ αrρ(z) and |ak − ζ| ≤ δρ(ak). Let R = rρ(z) and s = δρ(ak), then
s > (1− α)R, since ak /∈ Dr(z) = D(z, R) (see Figure 2).

z

αR

R = rρ(z)

ak

s = δρ(ak)
(1− α)R×

ζ

Figure 2. The disks D(ak, s), D(z,R) and D(z, αR).

Therefore, |z − ζ| ≤ αR < sα
1−α and it follows by the triangular inequality

|z − ak| ≤ |ζ − ak|+ |ζ − z| ≤ δρ(ak) +
sα

1− α

= δρ(ak) +
δρ(ak)α

1− α

=
δρ(ak)

1− α
.

So z ∈ D
δ

1−α (ak). Since, ak /∈ Dr(z) this implies Dr(z) ⊂ D
2δ

1−α (ak). But

1 = µ(D1(z)) < µ(Dr(z)) ≤ µ(D
2δ

1−α (ak)) = µ(D1(ak)) = 1.

Contradiction. Hence,

∑
ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ Cµ

i(2C(1 + δ)κ)m
∑

ak /∈Dr(z)

∫
Dδ(ak)

(
ρ(ζ)

|z − ζ|

)m
dµ(ζ)

≤ Cµ
i(2C(1 + δ)κ)m

∫
ζ /∈Dαr(z)

(
ρ(ζ)

|z − ζ|

)m
dµ(ζ).
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This leads by Fubini’s theorem∑
ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ Cµ

i(2C(1 + δ)κ)m
∫
ζ /∈Dαr(z)

m

∫ ρ(ζ)/|z−ζ|

0

tm−1dtdµ(ζ)

= Cµ
i(2C(1 + δ)κ)m

∫
ζ /∈Dαr(z)

m

∫ ∞
0

1{0<t<ρ(ζ)/|z−ζ|} t
m−1dtdµ(ζ)

= Cµ
i(2C(1 + δ)κ)m

∫ ∞
0

mtm−1
∫
ζ /∈Dαr(z)

1{ζ∈C | 0<t<ρ(ζ)/|z−ζ|} dµ(ζ)dt

Note that

|z − ζ| < ρ(ζ)

t
(3.5)

is equivalent to z ∈ D1/t(ζ).
Now, we claim that t < 1 for r large enough when 0 < t < ρ(ζ)/|z − ζ| and ζ /∈ Dαr(z).

Indeed, if t ≥ 1 and z ∈ D1/t(ζ) then by Corollary 3 there exists C > 0 such that
ρ(ζ) ≤ Cρ(z)(1+ 1

t
)κ. Replacing in (3.5), we obtain |z−ζ| < Cρ(z)(1+ 1

t
)κ/t ≤ Cρ(z)2κ/t.

Moreover, since ζ /∈ Dαr(z), we have

ρ(z)αr ≤ |z − ζ| < C2κ/tρ(z).

Hence, αr < C2κ/t or equivalently

t <
C2κ

αr
.

Finally, fixing r > r′ := C2κ

α
, we obtain a contradiction with t ≥ 1, so that indeed t < 1.

Now, since 0 < t < 1 and repeating the same arguments, by Corollary 3 we have
ρ(ζ) ≤ Cρ(z)(1 + 1

t
)κ ≤ Cρ(z)

(
2
t

)κ
, and with inequality (3.5), this leads to ζ ∈ Dβ(z)

where β = C
t

(
2
t

)κ
= C2κ

tκ+1 . Also,

ζ ∈ Dβ(z) \Dαr(z) ⇐⇒ ρ(z)αr ≤ |z − ζ| < βρ(z) =⇒
(
C2κ

αr

) 1
1+κ

> t.

Thus, 0 < t <
(
C2κ

αr

) 1
1+κ < 1 since r is fixed to be larger than r′ = C2κ

α
. It follows

∑
ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ Cµ

i(2C(1 + δ)κ)m
∫ (C2κ

αr )
1

1+κ

0

mtm−1
∫
ζ∈Dβ(z)\Dαr(z)

dµ(ζ)dt

≤ Cµ
i(2C(1 + δ)κ)m

∫ (C2κ

αr )
1

1+κ

0

mtm−1µ(Dβ(z))dt

≤ Cµ
i(2C(1 + δ)κ)m

∫ (C2κ

αr )
1

1+κ

0

mtm−1β
1
κdt
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where the last inequality comes from (3.2). Hence we obtain

∑
ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤ Cµ

i(2C(1 + δ)κ)m
∫ (C2κ

αr )
1

1+κ

0

mtm−1
(
C2κ

tκ+1

) 1
κ

dt

= Cµ
i(2C(1 + δ)κ)m2C

1
κ

∫ (C2κ

αr )
1

1+κ

0

mtm−2−
1
κdt

= Cµ
i(2C(1 + δ)κ)m2C

1
κ

m

m− 1− 1
κ

[
tm−1−

1
κ

](C2κ

αr )
1

1+κ

0

= Cµ
i(2C(1 + δ)κ)m2C

1
κ

m

m− 1− 1
κ

(
C2κ

α

)m−1− 1
κ

1+κ
(

1

r

)m−1− 1
κ

1+κ

= 2m(1+ κ
1+κ

)Cm+ m
1+κCµ

i(1 + δ)κm
m

m− 1− 1
κ

α
1
κ
− m

1+κ r
1
κ
− m

1+κ

= C1r
−m+1+ 1

κ
1+κ .

with C1 := 2m(1+ κ
1+κ

)Cm+ m
1+κCµ

i(1 + δ)κm m
m−1− 1

κ

α
1
κ
− m

1+κ and m > 1 + 1
κ
. In particular,

C1 ' 1/(m− 1− 1/κ), where the underlying constants (κ,Cµ, δ, etc.) only depend on the
space and the reference sequence (ak). Hence the result is proved for r > r′.

Let us prove now that the result holds for 1 ≤ r ≤ r′. Let z ∈ C. Pick z1 satisfying
D2r′(z) ∩D2r′(z1) = ∅.∑

ak /∈Dr(z)

(
ρ(ak)

|z − ak|

)m
≤
∑
k∈N

(
ρ(ak)

|z − ak|

)m
≤

∑
ak /∈D2r′ (z)

(
ρ(ak)

|z − ak|

)m
+

∑
ak /∈D2r′ (z1)

(
ρ(ak)

|z − ak|

)m
≤ 2C1(2r

′)
1
κ
− m

1+κ ≤ C2r
1
κ
− m

1+κ .

where, noticing that 1
κ
− m

1+κ
< 0, we write C2 := C12

1+ 1
κ
− m

1+κ . Thus, the proof is complete

for C(φ,m) = max(C1, C2) ∼ 1
m−1−1/κ . �

We are now in a position to prove the covering lemma.

Lemma 3. For s > 0, there exists a constant N such that∑
k

χDs(ak) ≤ N.

Moreover for every ε > 0, there exists some universal constant cov := cov(φ, ε) > 0 such
that

N ≤ cov(1 + s)1+
1
κ
+ κε

1+κ



SAMPLING CONSTANTS IN GENERALIZED FOCK SPACES 11

where κ is given in (3.2) and depends on φ. The constant cov satisfies cov(φ, ε) ' 1
ε

when
ε→ 0.

Obviously, the constant N is at least equal to 1. Remind that in order to cover the
complex plane C, we need to require that s ≥ r0.

Proof of Lemma 3. This is a consequence of Lemma 2. Indeed, let m > 1 + 1
κ

and write

Γ := sup
z∈C

∑
ak /∈Ds(z)

(
ρ(ak)

|z − ak|

)m
< +∞.

We start proving that for s > 1, # {k : ak ∈ Ds(z)} ≤ Cµ
i+1sκ for all z ∈ C. Take

0 < δ < 1
2

such that the disks (Dδ(ak))k∈N are pairwise disjoint. Since the measure is

doubling, for i ≥ 3 satisfying 1
2i
≤ δ we have

# {k : ak ∈ Ds(z)} =
∑

ak∈Ds(z)

µ(D1(ak)) ≤ Cµ
i
∑

ak∈Ds(z)

µ(Dδ(ak))

= Cµ
iµ

 ⊔
ak∈Ds(z)

Dδ(ak)

 (?)

where
⊔

means that the union is disjoint.
Since the disks Dδ(ak) are pairewise disjoint, the euclidean radii of Dδ(ak) are smaller

than that of Ds(z), i.e. δρ(ak) < sρ(z). Indeed, otherwise we have Ds(z) ⊂ D2δ(ak) which
leads to 1 < µ(Ds(z)) ≤ µ(D2δ(ak)) < 1, which is a contradiction. Hence, Dδ(ak) ⊂ D2s(z)
and so by (?) we have

# {k : ak ∈ Ds(z)} ≤ Cµ
iµ(D2s(z)) ≤ Cµ

i+1µ(Ds(z)).

Then the inequality follows from equation (3.2)

# {k : ak ∈ Ds(z)} ≤ Cµ
i+1Cs

1
κ

where Cµ is the doubling constant and C is a constant hidden in (3.2).
Now, given z ∈ C, set

Az = {k ∈ N : z ∈ Ds(ak)}.
We claim that

N ≤ 2Γsm + Cµ
i+1Cs

1
κ . (3.6)

This will imply that N ≤ (2C(φ,m) +Ci+1
µ C) s

1
κ
+ κm

1+κ since Γ ≤ C(φ,m)s
1
κ
− m

1+κ by Lemma

2. Thus, taking m = 1 + 1
κ

+ ε for ε > 0, we obtain N . s1+
1
κ
+ κε

1+κ for s > 1. Finally, we
obtain for s > 0,

N ≤ cov(ε)(1 + s)1+
1
κ
+ κε

1+κ

with an absolute constant cov(ε) := 2C(φ,m) + Ci+1
µ C > 0 which depends only on φ.

Moreover, since C(φ,m) ' 1
m−1− 1

κ

when m→ 1 + 1
κ
, we have cov(ε) ' 1

ε
when ε→ 0.



12 S. KONATE & M.-A. ORSONI

In order to show the claim (3.6), by contradiction we assume that it does not hold. Then
there exists z0 such that

#Az0 > 2Γsm + Cµ
i+1Cs

1
κ .

But then

Γ ≥
∑

ak /∈Ds(z0)

(
ρ(ak)

|z0 − ak|

)m
≥

∑
k∈Az0

ak /∈Ds(z0)

(
ρ(ak)

|z0 − ak|

)m
.

Since z0 ∈ Ds(ak) for k ∈ Az0 , we have

Γ ≥
∑
k∈Az0

ak /∈Ds(z0)

(
ρ(ak)

|z0 − ak|

)m
≥ #Az0 −# {k : ak ∈ Ds(z0)}

sm
>

2Γsm

sm
= 2Γ,

which is a contradiction.
�

As in the Bergman space, we introduce good disks. Fix r0 ≤ s < t where r0 is the radius
such that the disks Dr0(ak) cover the complex plane. For K > 1 the set

IK−goodf = {k : ‖f‖Lpφ(Dt(ak)) ≤ K‖f‖Lpφ(Ds(ak))}

will be called the set of K-good disks for (t, s) (in order to keep notation light we will not
include s and t as indices). This set depends on f .

The following proposition has been shown in [HKKO20] for the Bergman space, but its
proof, implying essentially the finite overlap property, is exactly the same.

Proposition 1. Let r0 ≤ s < t. For every constant c ∈ (0, 1), there exists K such that for
every f ∈ Fpφ we have ∑

k∈IK−goodf

‖f‖p
Lpφ(D

s(ak))
≥ c‖f‖pp,φ.

One can pick Kp = N(t)/(1 − c) where N(t) corresponds to the overlapping constant
from Lemma 3 for the “radius” t.

Finally, we need to control the value of φ in a disk by the value at the center. For this,
we can use [MMOC03, Lemma 13] which we state as follows: for every σ > 0, there exists
A = A(σ) > 0 such that for all k ∈ N,

sup
z∈Dσ(ak)

|φ(z)− φ(ak)− hak(z)| ≤ A(σ) (3.7)

where hak is a harmonic function in Dσ(ak) with hak(ak) = 0. Moreover, in view of the
proof of [MMOC03, Lemma 13] we have

A(σ) ≤ C sup
k∈N

µ (Dσ(ak)) ≤ C̃σ
1
κ (3.8)
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with C̃ depending only on the space and where the inequalities come from [MMOC03,
Lemma 5(a)] and the estimate (3.2).

Notice that, since hak is harmonic on Dσ(ak), there exists a function Hak holomorphic
on Dσ(ak) with real part hak .

We are now in a position to prove the theorem. Take s = max(r, r0) and t = 4s. As
noted in [HKKO20], E is (γ̃, s)-dense, where γ̃ = cγ and c is a multiplicative constant.
Hence we can assume that E is (γ, s)-dense.

Now, given f with ‖f‖p,φ = 1, let g = fe−(Hak+φ(ak)) for k ∈ IK−goodf , and set

h = c0g, c0 =

(
πs2ρ(ak)

2∫
Ds(ak)

|g|pdA(z)

)1/p

.

Again there is z0 ∈ Ds(ak) with |h(z0)| ≥ 1.
Set R = 2s and apply (3.7) with σ = t = 4s. We have to estimate the maximum

modulus of h on DR(ak) in terms of a local integral of h. To that purpose, we can assume
h ∈ Ap(Dt(ak)) . Indeed, we have∫

Dt(ak)

|h|pdA =
πs2ρ(ak)

2∫
Ds(ak)

|g|pdA

∫
Dt(ak)

|g|pdA

=
πs2ρ(ak)

2∫
Ds(ak)

|f |pe−p(hak+φ(ak))dA

∫
Dt(ak)

|f |pe−p(hak+φ(ak))dA

≤ πs2ρ(ak)
2e2pA(t)∫

Ds(ak)
|f |pe−pφ(z)dA(z)

∫
Dt(ak)

|f |pe−pφ(z)dA(z).

≤ πs2ρ(ak)
2e2pA(t)Kp

where the last inequality comes from the fact that k isK-good for (s, t). Hence h ∈ Ap(Dt(ak))
and it follows

Mp := max
z∈DR(ak)

|h(z)|p ≤ C

s2ρ(ak)2

∫
Dt(ak)

|h|pdA ≤ csK
p

where cs = Ce2pA(4s), A(4s) comes from (3.7) and C is an absolute constant.

Now, setting Ẽ = (E ∩Ds(ak)) we get using Corollary 2 applied to h:

∫
Ds(ak)

|h(z)|pdA(z) ≤

(
cs2ρ(ak)

2

|Ẽ|

)pη lnM+1 ∫
Ẽ

|h(z)|pdA(z)

The factor s2ρ(ak)
2 appearing inside the brackets is a rescaling factor (see Remark 1).

Again, by homogeneity we can replace in the above inequality h by g. Note also that

πs2ρ(ak)
2/|Ẽ| is controlled by 1/γ. This yields
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∫
Ds(ak)

|f |pe−pφ(z)dA(z) ≤ epA(t)
∫
Ds(ak)

|g(z)|pdA(z)

≤ epA(t)

(
cs2ρ(ak)

2

|Ẽ|

)pη lnM+1 ∫
Ẽ

|g(z)|pdA(z)

≤ epA(t)
(
c1
γ

)pη lnM+1 ∫
Ẽ

|g(z)|pdA(z)

= e2pA(t)
(
c1
γ

)pη lnM+1 ∫
Ẽ

|f(z)|pe−pφ(z)dA(z),

where c1 is an absolute constant.
Summing over all K-good k, and using Lemma 3 and Proposition 1 we obtain the

required result

c‖f‖p, φ .
(
c1
γ

)η lnM+1/p

‖f‖Lpφ(E)

where

ln(M) ≤ ln(c1/ps K) = ln

((
cs
N(4s)

1− c

) 1
p

)
≤ 1

p
ln

(
Ce2pA(4s)cov(ε)

(1 + 4s)1+
1
κ
+ κε

1+κ

1− c

)

≤ 2A(4s) +
1

p

[
ln(Ccov(ε)) +

(
1 +

1

κ
+

κε

1 + κ

)
ln(1 + 4s)− ln(1− c)

]
and in view of Lemma 1

η ≤ c′′ × 24 ln 2

c comes from Proposition 1, cov(ε) ' 1
ε

from Lemma 3, κ from (3.2) and C is absolute. In
particular, fixing ε > 0 and c ∈ (0, 1), and noticing that r ' s = max(r, r0) for r > 1, we
obtain

lnM ≤ 2A(4r) +
1

p
(C ′ + C ′′ ln(1 + r))

where C ′ and C ′′ depends only on the space. In view of (3.8), we finally obtain

lnM ≤ Ĉr
1
κ +

1

p
(C ′ + C ′′ ln(1 + r))

with Ĉ depending only on the space. Notice that we can optimize the constants C ′ and
C ′′ in ε > 0 depending on r (C ′ involves cov(ε) ' 1

ε
and C ′′ involves 1 + 1

κ
+ κε

1+κ
). However,

this optimization will not really improve the result.
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