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Abstract15

Meriones shawi (M.shawi) is the main reservoir host for zoonotic cutaneous leish-
maniasis (ZCL) in Central Tunisia. The incorporation of environmental and cli-
matic effects on the spread of ZCL in M. shawi remains difficult. This study
presents an agent-based model (ABM) to overcome these difficulties and examine
the impact of environment (i.e. vegetation cover) and climate (i.e. temperature) on
M. shawi movement and prevalence. The model simulation considers two agents
type: rodent agent and field unit agent. We tested the model according to two
types of rodent movement: random and thoughtful. We integrated time dependent
normalized difference vegetation index (NDVI) in order to test the land cover ef-
fects on rodent movement and ZCL transmission. The results confirmed that the
spread of the disease depends on rodent movement. We observed that prevalence
and distribution are the closest to field data when the vegetation cover is high-
est and that rodents go for thoughtful movement. In addition, we found that the
nature of movement (random or thoughtful) and prevalence depends strongly on
minimum food detection.
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1. Introduction18

Infectious diseases are a global public health problem. It is estimated that 75%19

of human infectious diseases originate from an animal reservoir and the majority20

are caused by viruses, bacteria, or parasites (Taylor et al., 2001). Among these21

diseases, leishmaniasis is predominantly observed, where 350 million people are22

at risk of contracting it and approximately 2 million new cases are reported each23

year (Arenas et al., 2017). Cutaneous leishmaniasis (CL) is a cutaneous infection24

caused by a unicellular parasite (Leishmania), transmitted by the bites of a female25

insect called phlebotome or sandfly (Dedet, 2009).26

In Tunisia, zoonotic cutaneous leishmaniasis (ZCL) is caused by the parasite27

Leishmania major (L. major) (Ben Ismail et al., 1986), with its vector Phleboto-28

mus papatasi (P. papatasi) (Killick-Kendrick, 1999). The latter’s reservoir species29

include rodents Psammomys (obesus) (Cretzschmar, 1828), Meriones (shawi) (Du-30

vernoy, 1842), and Meriones (libycus) (Lichtenstein, 1823).31

The spatial dynamics of rodent populations involve several endogenous pro-32

cesses, such as the availability of food resources or exogenous processes such as33

environmental and climatic processes (Chaves and Hernandez, 2004; Bellali et al.,34

2017, 2019). According to the literature, P. obesus is known for its dietary restric-35

tions, and feeds mainly on chenopodiaceae (Ghawar et al., 2011). It is considered36

a sedentary rodent with small home ranges (Daly and Daly, 1975; Ghawar et al.,37

2011). Furthermore, M. shawi is an opportunistic rodent that is able to adapt to its38

diet according to the development of cultivated cereals (Adamou-Djerbaoui et al.,39

2013); it is considered more mobile compared to P. obesus (Ghawar et al., 2015).40

The Geographic Information System (GIS) data and machine learning are im-41

portant for the management of epidemics because they allow the collection, anal-42

ysis and display of epidemic spatiotemporal information (Tabasi and Alesheikh,43

2019; Mollalo et al., 2018). These approaches were used to study the distribution44

of rodent reservoirs and sandfly.45

In particular, the effect of the environment on the distribution of ZCL has ex-46

tensively investigated. Various studies have been conducted to describe the niche47

suitability of vectors (Hanafi-Bojd et al., 2015), reservoirs (Gholamrezaei et al.,48

2016), or both (Shiravand et al., 2018, 2019) using the MaxEnt algorithm model.49

Particularly, (Hanafi-Bojd et al., 2015) proved that moisture, precipitation, and50

temperature are determining factors when assessing sandfly density. Furthermore,51

Bellali et al. (2017); Talmoudi et al. (2017) have shown a significant correlation52

between climate variables (precipitation and temperature) and the incidence of53

ZCL and rodent and sandfly density. One possible explanation for the latter ob-54
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servation is the correlation between that rodents and chenopodiaceous densities55

(Toumi et al., 2012).56

Various deterministic models have already been developed for epidemics of57

leishmaniasis from different perspectives. Carpenter et al. (1992) and Burattini58

et al. (1998) developed structured models for canine leishmaniasis considering59

human and sandflies. Chaves and Hernandez (2004) presented a model for the60

dynamics of transmission of American Cutaneous Leishmaniasis. They obtained61

expressions that allow computing the threshold conditions for the persistence of62

the infection. Roy et al. (2015) used the same approach, but rather, considered63

the effect of the time lag between the biting of a sandfly and the human infection.64

In the other hand, Nadeem et al. (2019) proposed a mathematical model of ZCL65

concerning humans, reservoirs, and sandflies. They describe ZCL transmission66

and estimate the basic reproduction number R0 using the next-generation matrix67

threshold condition. In addition, they tested different strategies to control the68

disease based on the indices of parameters.69

Even though numerous studies were conducted on this topic, rarely those who70

considered the temperature as a factor influencing the ZCL transmission. Up to71

our knowledge, only Bacaër and Guernaoui (2006) and Mejhed et al. (2009) have72

integrated this factor in their deterministic models.73

In all these mathematical models, the population and individual interactions74

are considered homogeneous. This assumption results in difficulties in represent-75

ing the variants of individual microscopic attributes and behaviors and implicitly76

assumes that all individuals are subject to the same process (Duan et al., 2015;77

Hunter et al., 2018).78

An agent-based model (ABM) is an integrative approach that takes into ac-79

count the individual behavior diversity. The model is defined as a system com-80

prising several entities or agents (e.g. individual) that operate in an environment,81

in which they are located. This agent is characterized by attributes, behaviors, ca-82

pacities of perception, and communication (Treuil et al., 2008; Grignard, 2015).83

In this context, ABM makes it possible to represent and link different levels of84

detail, such as the effect of the spatial dynamics of the reservoir on the trans-85

mission of vector-borne diseases (Grimm et al., 2006) or the integration of the86

metapopulation model in the context of rodent dynamics (Marilleau et al., 2018).87

Rajabi et al. (2016) used an ABM with two types of agents, which are the88

sandfly and the human in a structured environment (road, land cover, river,. . . ),89

knowing that the infection probability depends on the environmental. They were90

able to confirm that desertification zones are the main source of ZCL and local91

populations are the most exposed to sandflies.92
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Recently, Rajabi et al. (2018) used an ABM to simulate authority interventions93

on Rhombomys opimus (rodent reservoir of ZCL in Iran) population, to minimize94

ZCL incidence. They showed the impact of habitat configurations and human-95

made changes on rodent communities and their dynamics.96

More recently, Tabasi et al. (2020) used an ABM to represent the complete97

cycle of ZCL disease, i.e. human, sandfly, rodent, and environmental behaviors98

using an hybrid model. They showed that the spread of ZCL is important in some99

regions like the desert, low altitude areas, and, riverside population centers. They100

also confirmed that restricted human movement is an important factor contributing101

to the reduction of transmission frequency .102

In our study, we developed an ABM to determine how the rodents (i.e. M.103

shawi) movement types can affect transmission ZCL transmission taking into104

account time dependent environmental (i.e. vegetation cover) and climate con-105

straints (i.e. temperature). Indeed, we assumed that vegetation cover is updated106

each month using NDVI values and may vary depending on rodent consumption.107

In addition, we supposed that rodents decisions (e.g. decision to move, choice of108

directions . . . ) are affected by the vegetation cover (Mollalo et al., 2014; Ghawar109

et al., 2015). We simulated two types of rodents movement, a random movement110

and a so-called ”thoughtful” movement, where rodents can choose their direction111

after evaluating the state of vegetation based on their memories. In addition, we112

have tested NDVI effects on the transmission of the epidemic.113

In Section 2, we present the background and hypothesis used in the model.114

In Section 3, we describe the model according to the Overview, Design concepts,115

and Details (ODD) protocol (Grimm et al., 2010) to standardize its description.116

In Section 4, we present the main results. In Section 5, we discuss our results.117

Finally, in Section 6, we present the conclusion of our work.118

2. Background119

Climatic and environmental factors impact rodents distribution (Hamidi et al.,120

2018). In fact, the rodents reproductive cycle is indirectly influenced by climatic121

conditions as the latter influence such as the resource availability (Stenseth, 1999,122

2003). Marstona et al. (2007) and Chidodo et al. (2020) showed a correlation123

between vegetation cover and rodent distribution. When the resource is abundant,124

rodents tend to be close to foraging areas. Otherwise, their movement is random125

when the food became rare (Ghawar et al., 2015). This is probably resulting from126

rodents ability to assess to food through the information they have on the occupied127

area.128
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At the vector level, sandflies are characterized as thermophilic, requiring high129

temperatures for their development and survival (Koch et al., 2017) (see Fig. 1).130

At the parasite level (L.major), an increase in temperature increases the rate at131

which parasites approach maturity and multiply, which promotes transmission of132

the infection (Clémence, 2009). However, when the parasite is in the intestine of133

infected sandflies, it remains at the same temperature as his host (Zilberstein and134

Shapira, 1994), which considered as the environment temperature (see Fig. 1).135

Considering temperature or humidity explicitly in the population dynamics136

model through the sandfly life cycle is difficult. To overcome this, we assumed137

that there is a positive correlation between NDVI and temperature on the one hand138

(Wang et al., 2003), and infection probability, on the other (Mollalo et al., 2014;139

Shiravand et al., 2018). More precisely, we suppose that the ZCL infection proba-140

bility depends linearly on the sandfly density, which depends on temperature via a141

bell-like function. The height of the bell depends on NDVI. This hypothesis is not142

meaningless as Mollalo et al. (2015); Garni et al. (2014); Shiravand et al. (2018)143

developed a model to discuss the associations between NDVI and the incidence144

of cutaneous leishmaniasis.145
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Figure 1: Cycle life of L.major and factors influencing sandfly and rodent.

Therefore, temperature and NDVI can be considered as good proxies for the146

presence probability of both vectors and reservoirs (Shiravand et al., 2018).147
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Our study presents a simulation of M. shawi activity in a spatially heteroge-148

neous environment, incorporating individual-based interactions. We used empiri-149

cal data on rodents and their habitat and ZCL incidence in El Manara region (aver-150

age altitude 80, 8483 m; lat 35◦12’36”N, Long 9◦49’14”E) in Nasrallah, Kairouan,151

Central Tunisia (see Fig. 2). The area is a semiarid plain located at an altitude of152

205, 1304 m and is composed of Arthrophytum sp., Retama sp., Ziziphus mound,153

and Opuntia hedges (Ghawar et al., 2011). Additionally, El Manara has long been154

known as one of the most important endemic areas of ZCL (Bettaieb et al., 2014),155

and M. shawi is the main reservoir host of ZCL in this area. The annual inci-156

dence rate in Kairouan has been high in recent decades, including approximately157

34.4/100, 000 inhabits, and the disease has recently emerged in non-endemic re-158

gions of the province (Chraiet-Rezgani et al., 2016). Our model does not incorpo-159

rate humans as agents. However, human-induced changes are included to explore160

the consequences of disease evolution among rodent population dynamics. As161

such, the model can be a useful tool for informing healthcare authorities in plan-162

ning intervention strategies to control the spread of ZCL.163

Figure 2: Study area at EL Manara, Nasrallah, Kairouan governorate.

3. The model164

The model description follows ODD protocol for describing agent-based mod-165

els (Grimm et al., 2010). In the remainder of this section and after a brief overview166

of the model components and process (see subsection 3.1), the key concepts of167
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model design, including emergence, objective, sensing, adaptation, stochasticity,168

and observation , are described (see subsection 3.2). Next, the details of the model169

implementation are presented (see subsection 3.3).170

3.1. Overview171

Our main objective is to design a spatial ABM of the ZCL spread among172

rodents, including environmental and climatic data and agent objects. The model173

was developed in the GAMA 1.7 platform (Taillandier et al., 2019).174

3.1.1. Purpose175

The model was developed to provide a spatiotemporal simulation of the spread176

of ZCL between rodents (M. shawi). We assumed two types of movement: ran-177

dom and thoughtful. The thoughtful movement depends on the vegetation density178

where the rodent is able to evaluate the ”best” destination. The model includes179

climatic factors (e.g., temperature), and environmental (e.g., NDVI) factors influ-180

ence the movement and spread of the ZCL between rodents.181

3.1.2. Entity, state variables, and scales182

There are two types of agents in the model, rodent agent and field unit agent183

representing part of the space (see Fig. 3).184

The rodent agents : They are described by their identifier, position, and epi-185

demiological status concerning ZCL (susceptible or infected) and by two matrices186

Minfo and Mfood (see Table 1) .187

The field unit agents : They form the grid and represent the environment of the188

ABM. They are attributed by their identifier and by Fcell, representing the quantity189

of food present in the cell, it changes according to the quantity consumed by the190

rodent agent and is updated each month according to the integrated NDVI values.191

The grid contains 1530 field units (the area of each unit is 895m2), and its surface192

is 1.37 km2. The choice of the value is based on our observations on the field for193

a project to be conducted in 2012 (Ghawar et al., 2015).194

Regarding temporal resolution, the time step of the simulation was fixed to 1195

h. The model has been designed to perform simulations for up to 5 years.196
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Table 1: Summary of attributes and variables with definitions. In the description of the dimensions,
the following symbols are used: − indicates no dimensions, J: Joule, t: time.

Agent Symbol Type Description Unit Update period

Rodent

Rxy Point Position of the rodent agent − 1 hour
AFconsum R Speed of food consumption

made by the rodent agent at each
step of the time

J.t−1 1 hour

AFmin R Minimum quantity of food de-
tected by the rodent agent to
move

J 1 hour

q R Quantity of food consumed by
rodent agent

J 1 hour

Lmemory R Loss memory rate t−1 1 hour
Minfo Matrix Matrix containing information

about the presence of food. Its
values are between 0 (no infor-
mation) and 1 (complete infor-
mation). The size of the matrix
corresponds to that of the envi-
ronment (1530 cells)

− 1 hour

Mfood Matrix Matrix containing the perception
of the food values of each cell.
The size of the matrix corre-
sponds to that of the environ-
ment (1530 cells)

J 1 hour

Vmin R Minimum forward term product
of the two matrices Minfo and
Mfood

J Fixed

p R Infection probability, which de-
pends on temperature and NDVI

− 1 month

γ R Recovery probability − 1 week
α R Infection factor − Fixed

Field unit Fxy Point Position of the field unit agent − Fixed
Fcell R Quantity of food present in each

field unit
J 1 hour
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Figure 3: UML (unified modeling language) class diagram represents our ABM, there are two
types of agents: rodent agent and field unit agent. Rodent agents are located in field units.

3.1.3. Process overview and scheduling197

The simulation time-step represents one hour. Except for the recovery process,198

which is operated every week.199

Rodent agent: First, rodent agents appear in the landscape at different random200

locations. Then, rodent agents are processed using the consumption process under201

particular conditions. When the quantity of food becomes insufficient, the rodent202
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agents choose a destination and move to another cell. Then, the matrix-update203

process is activated. Subsequently, the memory loss process is operated (see Fig.204

4).205

Field unit agent: First, the field unit values are updated according to the en-206

vironmental parameters (NDVI). At each time step, the values of the quantity of207

food decrease according to the number of rodent agents present in the cell and208

their consumption speed AFconsum. At each month, the field unit values are re-209

updated according to the values of the integrated NDVI. The model simulates the210

interactions between rodent agents on the one hand and between rodent agents211

and field unit agents on the other hand over time. The infected agent rodents per-212

ceive susceptible rodents in the same cell. Then, the infection process is activated.213

Subsequently, and at each week, the recovery process is performed (see Fig. 5 and214

6).215
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Figure 4: Conceptual view of movement, consumption, and update matrices: the diagram repre-
sents an outline of the sequence of processes and the schedule of interactions between agents at
each discrete time step.
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Figure 5: Conceptual view of the infection process (it is activated each time step).
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Figure 6: Conceptual view of the recovery process (it is activated each week).

3.2. Design concepts216

3.2.1. Emergence217

Depending on the evolution of Fcell, we observe a spread of the epidemic218

that takes into account the mobility, interactions and, characteristics of the rodent219

agents.220

3.2.2. Objective221

The objective of the agent is to find and consume food. The way to find food222

depends on the type of rodents movement (random or thoughtful).223

14



3.2.3. Sensing224

Rodent agents know how to identify suitable habitats within the environment,225

and they perceive the cell information status from Mfood. In addition, they can226

perceive other rodent agents located in the same field unit.227

3.2.4. Adaptation228

The agents adapt their type of movement (random or thoughtful) to the amount229

of food in cells. This adaptation depends on the value of minimum food detection230

AFmin.231

3.2.5. Stochasticity232

The agents move randomly through space by one spatial unit (e.g., grid cells),233

and they choose one of the cells in the proximity. The infection probability follows234

a Gaussian law. In the recovery process, the agent choice of the direction all235

includes elements of stochasticity.236

3.2.6. Observation237

Spatiotemporal variations in the rodent-level process have been observed in238

the model. These included the number of susceptible and infected rodents at each239

step of the time. We also monitored the number of times the rodent agents passed240

through each agent cell. Moreover, at the end of each simulation, we reported the241

infected density ( prevalence) as P = Ninf

N0
, and the susceptible density noted S =242

Ns

N0
, Ninf is the number of infected rodent agents, Ns is the number of susceptible243

rodents, and N0 is the total number of rodent agents.244

We also report the entropy H of the occupied site distribution. We assumed
that the random variable X = (X1, . . . , Xm), where Xi is ”the number of times
the site i ≤ m is visited” random variable follows a multinomial distribution of
parameter (N, p1, ..., pm), where m is the site number (m = 1531), X1 + ... +
Xm = N , N is the total number of rodent movements, and pi, i ≤ m is the
probability that a rodent has occupied site i, we have

∑m
i=1 pi = 1. Therefore, we

have:

f(x1, . . . , xk;n, p1, . . . , pk) = Pr(X1 = x1 and . . . and Xk = xk), (1)

=


N !

x1! · · ·xk!
px1
1 · · · p

xk
k , when

∑k
i=1 xi = N

0 otherwise,
(2)
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In the case where sites are chosen equiprobably - e.g. no food on site and245

rodents have no sensory organs or memory and move randomly, the law is an246

equi-distributed multinomial and pi = p = 1/m. We have:247

f(x1, . . . , xk;n, p, . . . , p) = Pr(X1 = x1 and . . . and Xk = xk), (3)

=


N !

x1! · · ·xk!
pN , when

∑k
i=1 xi = N

0 otherwise,
(4)

To evaluate the values of pi, and as each simulation has a different total number248

of movements, we normalize N to 5000. A good estimator of pi is p̃i = Ni/N ,249

where Ni is the normalized number of site visits i calculated from either field250

observation data or simulation data.251

3.3. Details252

3.3.1. Initialization253

50 rodents were randomly created throughout the environment with a suscep-254

tible status. Only one infected rodent were randomly selected; the initial values of255

Mfood and Minfo were 0. Table 2 represents the model initialization parameters.256

Table 2: Parameters and input values of the rodent agent and field unit agent. In the description of
the dimensions, the following symbols are used: − indicates no dimensions, J: Joule, t:Time, A:
Authors’ estimation, E: Experts’ judgments.

Symbol Default value Range Unit Source
N0 50 Fixed − A
Ninf 1 Fixed − A
γ 0.001 0.009− 0.011 − E
α 1 0.9− 1.1 − A

AFconsum 0.001 0.009− 0.011 J.t−1 E
Lmemory 0.8 0.79− 0.81 t−1 E
AFmin {0.2; 0.7} 0.19− 0.21 J A
Vmin 0.0001 Fixed J A

3.3.2. Input Data257

At the beginning of each month, a satellite map is included containing the258

NDVI values of each cell, representing the amount of resources produced. The259
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maps (with a surface area of 1.37 km2) were downloaded for each month using the260

Landsat 8 sensor (30 m resolution), and processed in ArcGis 10.3. We calculated261

the monthly NDVI values for each cell (between 0 and 1). To test their effects on262

the model simulation, we integrated three types of NDVI:263

• NDV Imax: These are the maximum monthly values of the NDVI (collected264

on 2014) whose plant density is considered the highest.265

• NDV Imean: These are the average monthly values of the NDVI between266

2013 and 2017.267

• NDV Imin: These are the minimum monthly values of the NDVI (collected268

on 2015) whose plant density is considered the lowest.269

Average monthly temperatures were obtained from a weather forecasting station270

that was implemented in the study area in 2012 (data not shown).271

3.3.3. Submodels272

Consumption submodel. If Fcell is≥AFmin, the rodent agent consumes food with273

a consumption rate of AFconsum. The variation in food quantity Fcell is governed274

by the following equation:275

Fcell(t+ δt) = Fcell(t)−min(Fcell, AFconsum) (5)

Matrices update process:. For each time step, the following algorithm, which276

describes the matrices update, is run :277
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Algorithm 1 Algorithm represents the update of Mfood and Minfo. For each field
unit i, we note that (ix, iy) for the coordinates in the matrix Mfood and Minfo

associated with i. We recall that Mfood is the matrix containing information about
the presence of food and Minfo is the matrix containing the perception of the
food values of each cell, both have the same dimension as field units. Neighb(i)
represents the neighboring field unit i. MyCell: is the field unit where agent
rodents are.
Minfo(MyCellx,MyCelly)← 1
if Fcell(MyCell) > Fmin then
Mfood(MyCellx,MyCelly)← Fcell(MyCell)

else
Mfood(MyCellx,MyCelly)← 0

end if
Minformation←Minfo

Mfood←Mfood

for i in Neighb(MyCell) do
Minfo(ix, iy)← max(meank∈Neighb(i)(Minfo(kx, ky)),Minfo(ix, iy))
if Minfo(ix, iy) 6= 1 then
Mfood(ix, iy)← meank∈Neighb(i)(Mfood(kx, ky))

end if
end for
Minfo ←Minformation
Mfood ←Mfood

Movement submodel. We performed the two scenarios of movement by setting278

parameters that affect the type of movement (random versus thoughtful)AFconsum,279

AFmin, and Lmemory. Two different dispersal behaviors were identified:280

• Random: The rodent agent moves cell by cell. From a cell, the rodent ran-281

domly chooses the next neighboring cells. This behavior is applied to each282

agent at each step whenAFmin is high (AFmin = 0.7). In this case, the mini-283

mum quantity of food that the agent must detect (in order to move) is greater284

than that available in neighboring cells, so the rodent moves randomly.285

• Thoughtful: The rodent agent makes a selection of a neighboring cell. This286

choice is made with regard to the values ofMfood andMinfo. Rodent moves287

according to the information collected on the vegetation status of neighbor-288

ing cells. The cell chosen is the one that maximizes the forward term prod-289
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uct of the two matrices Minfo and Mfood. If this maximum is less than a290

certain value previously set (noted Vmin), the movement will be random.291

Memory loss submodel. In the model, we assumed that the rodent agent can forget292

information about a cell that has visited before. For this purpose, the values of the293

Mfood matrix are multiplied by a previously set rate, Lmemory.294

Infection submodel. At every step, susceptible rodent agents can be contaminated295

with an infection probability p that depends on the temperature and NDVI, since296

these two factors have an impact on the transmission of the epidemic. p follows297

a Gaussian law based on the assumption that plants grow if the temperature in-298

creases, except that above a set value, plant density decreases. On the other hand,299

we supposed that each susceptible agent observes at the infected agents in its prox-300

imity at a distance of Rinfection (set at 0), we assumed that the transmission of the301

epidemic can only occur if a susceptible and an infected agent occupy the same302

cell.303

p =
α(NDVI)
σ
√
2π

exp (
−(T − Toptimal)

2

2σ2 ) (6)

where σ =
√

(Tmax−Toptimal)2+(Tmin−Toptimal)2

2
, T is the field temperature, Toptimal304

is the average temperature, Tmax is the maximum temperature, Tmin is the mini-305

mum temperature and α is the infection factor.306

Recovery submodel. At the end of each week, infected rodents can be recovered307

with a fixed recovery probability γ.308

Food evolution submodel. The evolution of Fcell is related to the values of the309

integrated NDVI, which represents the initial quantity of food (at the beginning of310

each month Fcell = NDVI). NDVI is integrated in the form of a monthly satellite311

map of the EL Manara region. These images provide us with information on the312

vegetation status of the field. This process is operated every month; once the313

consumption process is activated, Fcell decreases with the agent consumption.314

4. Results315

Simulations were performed using the Gama 1.7.0 platform to develop the316

agent-based simulator Python 3 to generate the experiment plan and sensitivity317

analysis.318

To see the movement effect (ı.e., random or thoughtful) and the NDVI choice319

(ı.e., NDV Imin, NDV Imean, and NDV Imax) on the spread of the epidemic (i.e.,320
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the infected versus susceptible rodents), we performed a simulation of 50 agents321

over 5 years. Each simulation was repeated 30 times. We have represented on Fig.322

7 and Fig. 8 the average of infected density and susceptible density on the simula-323

tions. In the thoughtful movement, we set AFconsum = 0.001, AFmin = 0.2, and324

Lmemory = 0.8. However, to obtain a random movement, we fixed AFmin = 0.7.325

We tested the model using an exhaustive method that consists all the possible326

combinations of the parameters (basic and modified) and reviewing those that give327

prevalence close to that of reality. To the best of our knowledge, there is only one328

study in Central Tunisia that demonstrated the prevalence of L. major infection329

among M. shawi rodents (Ghawar et al., 2011). The prevalence of L. major for330

indirect fluorescent antibody test was 0.33.331
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(a) NDVImax

(b) NDVImean

(c) NDVImin

Figure 7: Figures representing the dynamics of infected rodents (red curve) and susceptible rodents
(green curve) with varying NDVI in random movement case.
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(a) NDVImax

(b) NDVImean

(c) NDVImin

Figure 8: Figures representing the dynamics of infected rodents (red curve) and susceptible rodents
(green curve) with varying NDVI in thoughtful movement case.
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We noted that the type of movement affects the variation in infected density.332

In the random movement case, all rodents become infected (see Fig. 7). The same333

behavior can also be observed in the case of NDV Imin when the movement is334

thoughtful (Fig. 8c). In the NDV Imean case (thoughtful movement), the majority335

of rodents are infected (between 94% and 98%). We also observed a slight de-336

crease in the infected density over the last 2 years (see Fig. 8b). In NDV Imax337

case when the movement is thoughtful (Fig. 8a), there is a small increase in the338

infected density with a stability at the end of the simulation (30% of rodents are339

infected).340

We calculated the average prevalence (in the last 3 years) that Pmax, Pmean,341

and Pmin (corresponding toNDV Imax,NDV Imean, andNDV Imin, respectively).342

It can be seen that they are greater in the first scenario (random movement). Thus,343

we noticed that the average prevalence is inversely proportional to the NDVI val-344

ues in the case of thoughtful movement (see Table 3).345

Table 3: Mean prevalence and standard deviation (SD) values calculated over the last 3 years.

Type of movement Type of prevalence Value of prevalence SD

Random
Pmax 0.99 0.06
Pmean 0.99 0.06
Pmin 0.99 0.06

Thoughtful
Pmax 0.34 0.006
Pmean 0.92 0.01
Pmin 0.99 0.006

To examine the distribution of rodents in the cells and compare them with346

those in the field, we calculated the entropies noted Hr
max, Hr

mean, and Hr
min cor-347

responding to the first scenario (random movement) and H th
max, H th

mean, and H th
min348

corresponding to the second scenario (thoughtful movement). We calculated the349

entropy ratio r = H
Hfield

(Hfield is the entropy of the real distribution of rodents in350

the field) to compare the model entropies and field data (Fig. 9).351

The results showed that when the movement is random, the entropy ratio is352

almost equal to the maximum entropy ratio runiform (the most disordered state).353

Moreover, we noted that when the movement is thoughtful, the entropy ratio is354

close to that of the field. The value of the entropy ratio closest to that of the field355

is in the case of NDVI = NDV Imax, and it has been noted that if the simulation356

time is greater, the ratio entropy rthmax is close to the value 1 (rfield).357
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Figure 9: The entropy ratios: All entropies are normalized with respect to the field entropyHfield,

rfield = Hfield

Hfield
= 1, rthmax = Hth

max

Hfield
, rthmean = Hth

mean

Hfield
, rthmin = Hth

min

Hfield
, rthmax = Hr

max

Hfield
, rrmean =

Hr
mean

Hfield
, rrmin = Hr

min

Hfield
, runiform = Huniform

Hfield
. Huniform denotes the uniform distribution entropy.

In the description of the entropy ratios, the following symbols are used: r: random movement, th:
thoughtful movement, max: NDV Imax, mean: NDV Imean and min: NDV Imin.

Finally, we performed a sensitivity analysis to determine the parameters that358

could influence the prevalence. This analysis was applied in the thoughtful move-359

ment case when the NDVI was maximum. Thus, we used the one-factor-at-a-time360

(Cariboni et al., 2007; Saltelli et al., 2008) sensitivity analysis method that con-361

sists of selecting a base parameter setting and varying one parameter by ±10% at362

a time while keeping all other parameters fixed. Each simulation was repeated 30363

times. The infection factor α, recovery probability γ, consumption rate AFconsum,364

minimum food detected AFmin, and loss memory rate Lmemory parameters were365

tested.366

Fig. 10 shows the variations in prevalence and standard deviation according to367

the modified parameters. In addition, a linear regression analysis was performed368

for each case. We estimated the coefficient of determination, slope, and intercept369

for each curve (Table 4)370

The results show the effect of seasonality on the variation in prevalence and371

standard deviation. In addition, we noted that practically all the curves have the372

same slope, which is very low (in the order of 10−4). This weakness can be ex-373

plained by the stability of prevalence in the last 3 years.374

In addition, we noted the impact of the parameters on prevalence and SD val-375

ues. For example, in Fig. 10c, when the recovery probability γ is high, the preva-376

lence value becomes lower. In the figure, when AFconsum is high, the prevalence377

value increases.378
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 10: Figures (a), (c), (e), (g), and (i) represent the prevalence for different values of parame-
ters α, γ, AFmin, AFconsum, and Lmemory respectively. Figures (b), (d), (f), (h), and (j) represent
SD for different values of α, γ, AFmin, AFconsum, and Lmemory , respectively
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Table 4: Coefficient of determination, slope, and intercept of linear regression line for each modi-
fied parameter. In the case of based parameters, R2 = 0.93, slope = 10−4, and intercept = 11.33

Parameter Variation Coefficient of determination Slope Intercept

α
+10% 0.79 8.10−5 11.74
−10% 0.92 8.10−5 10.23

γ
+10% 0.85 9.10−5 11
−10% 0.88 10−4 12.46

AFconsum
+10% 0.85 10−4 12.88
−10% 0.88 9.10−5 10.48

AFmin
+10% 0.86 10−4 14.12
−10% 0.8 10−4 10.34

Lmemory
+10% 0.88 10−4 11.25
−10% 0.93 10−4 10.82

We then performed a sensitivity analysis to determine the effect of the 5 pa-379

rameters on the mean prevalence over the last 3 years. We observe that the min-380

imum food detected AFmin has a major effect on the mean prevalence, which381

increases by 0.2. The minimum food detected, AFmin, and the loss memory rate382

Lmemory have a positive effect ; however, the recovery probability γ has a negative383

effect. (see Fig. 11a and Fig. 11b).384
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(a)

(b)

Figure 11: Factors influencing the mean prevalence
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Table 5: Screening parameters for the mean prevalence. bi correspond to the model regression
coefficients. Y = b0 + b1 γ + b1 α + b3 AFconsum + b4 Lmemory + b5 AFmin .

Parameter Coefficient Value Inflation factor SD
b0 0.2808 1 0.0062

γ b1 −0.0301 1 0.0062
α b2 −0.0027 1 0.0062

AFconsum b3 0.0162 1 0.0062
Lmemory b4 0.0380 1 0.0062
AFmin b5 0.0814 1 0.0062

5. Discussion385

Our results highlight the importance of considering the type of movement (ran-386

dom or thoughtful) of reservoir rodents considering their influence on the trans-387

mission of the epidemic. In the first scenario (random movement), the prevalence388

values were higher than those in the second scenario. This difference can be389

explained by the activity of rodents who forage randomly. The fact that the move-390

ment is random implies that the probability of an encounter is a product of the fre-391

quencies of the infected and susceptible rodents (i.e., mass action law). Thus, in392

this case, our model is ”close” to an SIS model (susceptible-infected-susceptible393

epidemiological model). The term ”close” refers to the fact that rodents spend the394

maximum of their time foraging i.e. , the case where NDV I = NDV Imean and395

NDV I = NDV Imin. In the case where NDV I = NDV Imax, the fluctuations396

may be due to the fact that rodents spend more time consuming food; thus, there397

is a lower possibility of being infected.398

In the second scenario, when rodents accessed food more rapidly, the risk of399

infection was reduced because the probability of an encounter was lower. This400

explanation is supported by the fact that in the case where NDVI is weak (ı.e.,401

NDV I = NDV Imin), the number of infected rodents becomes high again. If402

food is scarce, the information on feeding sites is low; therefore, the rodents adopt403

random movement.404

Regarding temperature, its effect can only appear through the infection prob-405

ability p (see formula (6)). Note that the effect of NDVI also appears through406

the movement of rodents (which influences the probability of encounter). In the407

model, the simulations show that NDVI has a more dominant effect than temper-408

ature. Moreover, in the second scenario, we noticed that the effect of temperature409

is observed in the fluctuations in Fig. 8a and Fig. 8b. Additionally, when NDVI410
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increases, the prevalence decreases (Fig. 8).411

This result was also observed by Shirzadi et al. (2015) and Shiravand et al.412

(2018), which showed that the incidence of leishmaniasis increased in areas where413

vegetation coverage was low. In the same context, Mollalo et al. (2014) showed414

that the decrease of the vegetation cover is accompanied by increase of epidemic415

occurrence and vice versa.416

The prevalence and rodents strategies that provides closest results to those417

observed in the field, are when the rodents movement is thoughtful and when418

NDV I = NDV Imax (Ghawar et al., 2011).419

Moreover, figure 9 demonstrated that the thoughtful movement is similar to420

the field rodents motion. These results are consistent with Rajabi et al. (2018).421

The latter found that rodents adapt their direction and movement depending on422

food suitability and availability. Field observation of Ghawar et al. (2015) showed423

that the higher vegetation cover is, the more new actives burrows are detected,424

indicating that M.shawi is able to assess the vegetation abundance.425

Even though relevant findings are reported in this current study, a more com-426

prehensive multispecies model which includes human and sandflies parameters427

would provide a deeper understanding of the ZCL transmission cycle. The lack428

of data on sandfly densities in Tunisia and on its association with plant density429

(NDVI) makes such the achievement of such study currently difficult. Moreover,430

no studies have been conducted on the demographic processes (births, deaths) in431

rodent reservoirs.432

Other climatic factors, such as rainfall and humidity, which influence the trans-433

mission of ZCL are also important. However, in our case, these data were insuffi-434

cient; thus, we used NDVI as an environmental factor (which depends on rainfall435

and humidity). It can be used when climate data as well as environmental charac-436

teristics of the site are not available (Gaudart et al., 2009).437

6. Conclusion438

In conclusion, our study provides an overview of the effects of climate (i.e.439

temperature) and environmental (i.e. NDVI) parameters on the rodents move-440

ments in a limited geographical area by using an ABM in order to simulate the441

transmission of ZCL among rodents. We considered two types of rodents move-442

ment (random or thoughtful). We observed that NDVI has a more dominant effect443

than temperature, and the transmission of ZCL was increased by decreasing the444

value of NDVI.445
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The findings reported in this current study would improve comprehension of446

the ZCL spread dynamics in larger areas, and thus to be subsequently used to447

implement prevention and control strategies of the epidemic.448
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Haj Hamida, N., Chemkhi, J., Diouani, M.F., Ben, S.A., 2011. Leishmania527

major infection among psammomys obesus and meriones shawi: Reservoirs of528

zoonotic cutaneous leishmaniasis in sidi bouzid (Central Tunisia). Vector-Borne529

and Zoonotic Diseases 11, 1561–1568. doi:doi: 10.1089/vbz.2011.0712.530

Ghawar, W., Zaätour, W., Chlif, S., Bettaieb, J., Chelghaf, B., Snoussi, M.A.,531

Salah, A.B., 2015. Spatiotemporal dispersal of meriones shawi estimated by532

radio-telemetry. International Journal of Multidisciplinary Research and De-533

velopment 2, 211–216. URL: www.allsubjectjournal.com.534

Gholamrezaei, M., Mohebali, M., Hanafi-Bojd, A.A., Sedaghat, M.M.,535

Shirzadi, M.R., 2016. Ecological Niche Modeling of main reservoir hosts of536

zoonotic cutaneous leishmaniasis in Iran. Acta Tropica 160, 44–52. URL:537

http://dx.doi.org/10.1016/j.actatropica.2016.04.014,538

doi:doi: 10.1016/j.actatropica.2016.04.014.539
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