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Introduction

Infectious diseases are a global public health problem. It is estimated that 75% of human infectious diseases originate from an animal reservoir and the majority are caused by viruses, bacteria, or parasites [START_REF] Taylor | Risk factors for human disease emergence[END_REF]. Among these diseases, leishmaniasis is predominantly observed, where 350 million people are at risk of contracting it and approximately 2 million new cases are reported each year [START_REF] Arenas | Leishmaniasis: A review[END_REF]. Cutaneous leishmaniasis (CL) is a cutaneous infection caused by a unicellular parasite (Leishmania), transmitted by the bites of a female insect called phlebotome or sandfly [START_REF] Dedet | Leishmanies, leishmanioses : biologie, clinique et thérapeutique[END_REF].

In Tunisia, zoonotic cutaneous leishmaniasis (ZCL) is caused by the parasite Leishmania major (L. major) (Ben [START_REF] Ismail | Epidemic cutaneous leishmaniasis in tunisia: biochemical characterization of parasites[END_REF], with its vector Phlebotomus papatasi (P. papatasi) (Killick-Kendrick, 1999). The latter's reservoir species include rodents Psammomys (obesus) (Cretzschmar, 1828), Meriones (shawi) (Duvernoy, 1842), and Meriones (libycus) (Lichtenstein, 1823).

The spatial dynamics of rodent populations involve several endogenous processes, such as the availability of food resources or exogenous processes such as environmental and climatic processes [START_REF] Chaves | Mathematical modelling of American Cutaneous Leishmaniasis: Incidental hosts and threshold conditions for infection persistence[END_REF][START_REF] Bellali | Effect of temperature, rainfall and relative density of rodent reservoir hosts on zoonotic cutaneous leishmaniasis incidence in Central Tunisia[END_REF][START_REF] Bellali | Using Ecosystem Approach to Address Infection with Leishmania Major in Central Tunisia[END_REF]. According to the literature, P. obesus is known for its dietary restrictions, and feeds mainly on chenopodiaceae [START_REF] Ghawar | Leishmania major infection among psammomys obesus and meriones shawi: Reservoirs of zoonotic cutaneous leishmaniasis in sidi bouzid (Central Tunisia)[END_REF]. It is considered a sedentary rodent with small home ranges [START_REF] Daly | Behavior of psammomys obesus (rodenth: Gerbillinae) in the algerian sahara[END_REF][START_REF] Ghawar | Leishmania major infection among psammomys obesus and meriones shawi: Reservoirs of zoonotic cutaneous leishmaniasis in sidi bouzid (Central Tunisia)[END_REF]. Furthermore, M. shawi is an opportunistic rodent that is able to adapt to its diet according to the development of cultivated cereals [START_REF] Adamou-Djerbaoui | Étude Du Régime Alimentaire D'Un Rongeur Nuisible (Meriones Shawii Duvernoy, 1842, Mammalia, Rodentia) En Algérie[END_REF]; it is considered more mobile compared to P. obesus [START_REF] Ghawar | Spatiotemporal dispersal of meriones shawi estimated by radio-telemetry[END_REF].

The Geographic Information System (GIS) data and machine learning are important for the management of epidemics because they allow the collection, analysis and display of epidemic spatiotemporal information [START_REF] Tabasi | Development of an agent-based model for simulation of the spatiotemporal spread of leishmaniasis in gis (case study: Maraveh tappeh)[END_REF][START_REF] Mollalo | Machine learning approaches in gis-based ecological modeling of the sand fly phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in golestan province, iran[END_REF]. These approaches were used to study the distribution of rodent reservoirs and sandfly.

In particular, the effect of the environment on the distribution of ZCL has extensively investigated. Various studies have been conducted to describe the niche suitability of vectors (Hanafi-Bojd et al., 2015), reservoirs [START_REF] Gholamrezaei | Ecological Niche Modeling of main reservoir hosts of zoonotic cutaneous leishmaniasis in Iran[END_REF], or both [START_REF] Shiravand | Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran[END_REF][START_REF] Shiravand | Climate change and potential distribution of zoonotic cutaneous leishmaniasis in Central Iran: Horizon 2030 and 2050[END_REF] using the MaxEnt algorithm model.

Particularly, (Hanafi-Bojd et al., 2015) proved that moisture, precipitation, and temperature are determining factors when assessing sandfly density. Furthermore, [START_REF] Bellali | Effect of temperature, rainfall and relative density of rodent reservoir hosts on zoonotic cutaneous leishmaniasis incidence in Central Tunisia[END_REF]; [START_REF] Talmoudi | Modeling zoonotic cutaneous leishmaniasis incidence in central Tunisia from 2009-2015: Forecasting models using climate variables as predictors[END_REF] have shown a significant correlation between climate variables (precipitation and temperature) and the incidence of ZCL and rodent and sandfly density. One possible explanation for the latter ob-servation is the correlation between that rodents and chenopodiaceous densities [START_REF] Toumi | Temporal dynamics and impact of climate factors on the incidence of Zoonotic Cutaneous Leishmaniasis in central Tunisia[END_REF].

Various deterministic models have already been developed for epidemics of leishmaniasis from different perspectives. [START_REF] Carpenter | Mathematical modelling and theory for estimating the basic reproduction number of canine leishmaniasis[END_REF] and [START_REF] Burattini | Modelling the dynamics of leishmaniasis considering human, animal host and vector populations[END_REF] developed structured models for canine leishmaniasis considering human and sandflies. [START_REF] Chaves | Mathematical modelling of American Cutaneous Leishmaniasis: Incidental hosts and threshold conditions for infection persistence[END_REF] presented a model for the dynamics of transmission of American Cutaneous Leishmaniasis. They obtained expressions that allow computing the threshold conditions for the persistence of the infection. [START_REF] Roy | Transmission dynamics of cutaneous leishmaniasis: a delay-induced mathematical study[END_REF] used the same approach, but rather, considered the effect of the time lag between the biting of a sandfly and the human infection.

In the other hand, [START_REF] Nadeem | Modeling and control of zoonotic cutaneous leishmaniasis[END_REF] proposed a mathematical model of ZCL concerning humans, reservoirs, and sandflies. They describe ZCL transmission and estimate the basic reproduction number R 0 using the next-generation matrix threshold condition. In addition, they tested different strategies to control the disease based on the indices of parameters.

Even though numerous studies were conducted on this topic, rarely those who considered the temperature as a factor influencing the ZCL transmission. Up to our knowledge, only [START_REF] Bacaër | The epidemic threshold of vector-borne diseases with seasonality: The case of cutaneous leishmaniasis in Chichaoua, Morocco[END_REF] and [START_REF] Mejhed | Development of mathematical models predicting the density of vectors: case of sandflies vectors of leishmaniasis[END_REF] have integrated this factor in their deterministic models.

In all these mathematical models, the population and individual interactions are considered homogeneous. This assumption results in difficulties in representing the variants of individual microscopic attributes and behaviors and implicitly assumes that all individuals are subject to the same process [START_REF] Duan | Mathematical and computational approaches to epidemic modeling: a comprehensive review[END_REF]Hunter et al., 2018).

An agent-based model (ABM) is an integrative approach that takes into account the individual behavior diversity. The model is defined as a system comprising several entities or agents (e.g. individual) that operate in an environment, in which they are located. This agent is characterized by attributes, behaviors, capacities of perception, and communication [START_REF] Treuil | Modélisation et simulation à base d'agents: exemples commentés, outils informatiques et questions théoriques[END_REF][START_REF] Grignard | Modèles de visualisation à base d'agents[END_REF].

In this context, ABM makes it possible to represent and link different levels of detail, such as the effect of the spatial dynamics of the reservoir on the transmission of vector-borne diseases (Grimm et al., 2006) or the integration of the metapopulation model in the context of rodent dynamics (Marilleau et al., 2018). [START_REF] Rajabi | A spatially explicit agent-based modeling approach for the spread of Cutaneous Leishmaniasis disease in central Iran, Isfahan[END_REF] used an ABM with two types of agents, which are the sandfly and the human in a structured environment (road, land cover, river,. . . ), knowing that the infection probability depends on the environmental. They were able to confirm that desertification zones are the main source of ZCL and local populations are the most exposed to sandflies.

Recently, [START_REF] Rajabi | A spatially explicit agent-based simulation model of a reservoir host of cutaneous leishmaniasis, Rhombomys opimus[END_REF] used an ABM to simulate authority interventions on Rhombomys opimus (rodent reservoir of ZCL in Iran) population, to minimize ZCL incidence. They showed the impact of habitat configurations and humanmade changes on rodent communities and their dynamics.

More recently, [START_REF] Tabasi | A spatio-temporal agent-based approach for modeling the spread of zoonotic cutaneous leishmaniasis in northeast iran[END_REF] used an ABM to represent the complete cycle of ZCL disease, i.e. human, sandfly, rodent, and environmental behaviors using an hybrid model. They showed that the spread of ZCL is important in some regions like the desert, low altitude areas, and, riverside population centers. They also confirmed that restricted human movement is an important factor contributing to the reduction of transmission frequency .

In our study, we developed an ABM to determine how the rodents (i.e. M. shawi) movement types can affect transmission ZCL transmission taking into account time dependent environmental (i.e. vegetation cover) and climate constraints (i.e. temperature). Indeed, we assumed that vegetation cover is updated each month using NDVI values and may vary depending on rodent consumption.

In addition, we supposed that rodents decisions (e.g. decision to move, choice of directions . . . ) are affected by the vegetation cover [START_REF] Mollalo | Spatial and statistical analyses of the relations between vegetation cover and incidence of cutaneous leishmaniasis in an endemic province, northeast of iran[END_REF][START_REF] Ghawar | Spatiotemporal dispersal of meriones shawi estimated by radio-telemetry[END_REF]. We simulated two types of rodents movement, a random movement and a so-called "thoughtful" movement, where rodents can choose their direction after evaluating the state of vegetation based on their memories. In addition, we have tested NDVI effects on the transmission of the epidemic.

In Section 2, we present the background and hypothesis used in the model.

In Section 3, we describe the model according to the Overview, Design concepts, and Details (ODD) protocol (Grimm et al., 2010) to standardize its description.

In Section 4, we present the main results. In Section 5, we discuss our results.

Finally, in Section 6, we present the conclusion of our work.

Background

Climatic and environmental factors impact rodents distribution (Hamidi et al., 2018). In fact, the rodents reproductive cycle is indirectly influenced by climatic conditions as the latter influence such as the resource availability [START_REF] Stenseth | Population cycles in voles and lemmings: density dependence and phase dependence in a stochastic world[END_REF][START_REF] Stenseth | Mice and rats: the dynamics and bioeconomics of agricultural rodents pests[END_REF]. [START_REF] Marstona | Spatio-temporal modelling of small mammal distributions using modis ndvi time-series data[END_REF] and [START_REF] Chidodo | Application of normalized difference vegetation index (ndvi) to forecast rodent population abundance in smallholder agro-ecosystems in semi-arid areas in tanzania[END_REF] showed a correlation between vegetation cover and rodent distribution. When the resource is abundant, rodents tend to be close to foraging areas. Otherwise, their movement is random when the food became rare [START_REF] Ghawar | Spatiotemporal dispersal of meriones shawi estimated by radio-telemetry[END_REF]. This is probably resulting from rodents ability to assess to food through the information they have on the occupied area.

At the vector level, sandflies are characterized as thermophilic, requiring high temperatures for their development and survival (Koch et al., 2017) (see Fig. 1).

At the parasite level (L.major), an increase in temperature increases the rate at which parasites approach maturity and multiply, which promotes transmission of the infection [START_REF] Clémence | La Leishmaniose Canine : ce que doit savoir le Pharmacien d ' officine[END_REF]. However, when the parasite is in the intestine of infected sandflies, it remains at the same temperature as his host [START_REF] Zilberstein | The role of ph and temperature in the development of leishmania parasites[END_REF], which considered as the environment temperature (see Fig. 1).

Considering temperature or humidity explicitly in the population dynamics model through the sandfly life cycle is difficult. To overcome this, we assumed that there is a positive correlation between NDVI and temperature on the one hand [START_REF] Wang | Temporal responses of ndvi to precipitation and temperature in the central great plains, usa[END_REF], and infection probability, on the other [START_REF] Mollalo | Spatial and statistical analyses of the relations between vegetation cover and incidence of cutaneous leishmaniasis in an endemic province, northeast of iran[END_REF][START_REF] Shiravand | Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran[END_REF]. More precisely, we suppose that the ZCL infection probability depends linearly on the sandfly density, which depends on temperature via a bell-like function. The height of the bell depends on NDVI. This hypothesis is not meaningless as [START_REF] Mollalo | Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in golestan province, North-East of Iran[END_REF]; [START_REF] Garni | Remote sensing, land cover changes, and vectorborne diseases: Use of high spatial resolution satellite imagery to map the risk of occurrence of cutaneous leishmaniasis in Ghardaïa, Algeria[END_REF]; [START_REF] Shiravand | Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran[END_REF] developed a model to discuss the associations between NDVI and the incidence of cutaneous leishmaniasis. Therefore, temperature and NDVI can be considered as good proxies for the 146 presence probability of both vectors and reservoirs [START_REF] Shiravand | Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran[END_REF].
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Our study presents a simulation of M. shawi activity in a spatially heterogeneous environment, incorporating individual-based interactions. We used empirical data on rodents and their habitat and ZCL incidence in El Manara region (average altitude 80, 8483 m; lat 35 • 12'36"N, Long 9 • 49'14"E) in Nasrallah, Kairouan, Central Tunisia (see Fig. 2). The area is a semiarid plain located at an altitude of 205, 1304 m and is composed of Arthrophytum sp., Retama sp., Ziziphus mound, and Opuntia hedges [START_REF] Ghawar | Leishmania major infection among psammomys obesus and meriones shawi: Reservoirs of zoonotic cutaneous leishmaniasis in sidi bouzid (Central Tunisia)[END_REF]. Additionally, El Manara has long been known as one of the most important endemic areas of ZCL [START_REF] Bettaieb | Prevalence and determinants of Leishmania major infection in emerging and old foci in Tunisia[END_REF] 

The model

The model description follows ODD protocol for describing agent-based models (Grimm et al., 2010). In the remainder of this section and after a brief overview of the model components and process (see subsection 3.1), the key concepts of model design, including emergence, objective, sensing, adaptation, stochasticity, and observation , are described (see subsection 3.2). Next, the details of the model implementation are presented (see subsection 3.3).

Overview

Our main objective is to design a spatial ABM of the ZCL spread among rodents, including environmental and climatic data and agent objects. The model was developed in the GAMA 1.7 platform [START_REF] Taillandier | Building, composing and experimenting complex spatial models with the gama platform[END_REF].

Purpose

The model was developed to provide a spatiotemporal simulation of the spread of ZCL between rodents (M. shawi). We assumed two types of movement: random and thoughtful. The thoughtful movement depends on the vegetation density where the rodent is able to evaluate the "best" destination. The model includes climatic factors (e.g., temperature), and environmental (e.g., NDVI) factors influence the movement and spread of the ZCL between rodents.

Entity, state variables, and scales

There are two types of agents in the model, rodent agent and field unit agent representing part of the space (see Fig. 3).

The rodent agents : They are described by their identifier, position, and epidemiological status concerning ZCL (susceptible or infected) and by two matrices M inf o and M f ood (see Table 1) .

The field unit agents : They form the grid and represent the environment of the ABM. They are attributed by their identifier and by F cell , representing the quantity of food present in the cell, it changes according to the quantity consumed by the rodent agent and is updated each month according to the integrated NDVI values.

The grid contains 1530 field units (the area of each unit is 895 m 2 ), and its surface is 1.37 km 2 . The choice of the value is based on our observations on the field for a project to be conducted in 2012 [START_REF] Ghawar | Spatiotemporal dispersal of meriones shawi estimated by radio-telemetry[END_REF].

Regarding temporal resolution, the time step of the simulation was fixed to 1 h. The model has been designed to perform simulations for up to 5 years. 

Process overview and scheduling

The simulation time-step represents one hour. Except for the recovery process, which is operated every week.

Rodent agent: First, rodent agents appear in the landscape at different random locations. Then, rodent agents are processed using the consumption process under particular conditions. When the quantity of food becomes insufficient, the rodent agents choose a destination and move to another cell. Then, the matrix-update process is activated. Subsequently, the memory loss process is operated (see Fig. 4). Subsequently, and at each week, the recovery process is performed (see Fig. 5 and6). 

Design concepts

Emergence

Depending on the evolution of F cell , we observe a spread of the epidemic that takes into account the mobility, interactions and, characteristics of the rodent agents.

Objective

The objective of the agent is to find and consume food. The way to find food depends on the type of rodents movement (random or thoughtful).

Sensing

Rodent agents know how to identify suitable habitats within the environment, and they perceive the cell information status from M f ood . In addition, they can perceive other rodent agents located in the same field unit.

Adaptation

The agents adapt their type of movement (random or thoughtful) to the amount of food in cells. This adaptation depends on the value of minimum food detection AF min .

Stochasticity

The agents move randomly through space by one spatial unit (e.g., grid cells), and they choose one of the cells in the proximity. The infection probability follows a Gaussian law. In the recovery process, the agent choice of the direction all includes elements of stochasticity.

Observation

Spatiotemporal variations in the rodent-level process have been observed in the model. These included the number of susceptible and infected rodents at each step of the time. We also monitored the number of times the rodent agents passed through each agent cell. Moreover, at the end of each simulation, we reported the infected density ( prevalence) as P = N inf N 0 , and the susceptible density noted S = Ns N 0 , N inf is the number of infected rodent agents, N s is the number of susceptible rodents, and N 0 is the total number of rodent agents.

We also report the entropy H of the occupied site distribution. We assumed that the random variable X = (X 1 , . . . , X m ), where X i is "the number of times the site i ≤ m is visited" random variable follows a multinomial distribution of parameter (N, p 1 , ..., p m ), where m is the site number (m = 1531), X 1 + ... + X m = N , N is the total number of rodent movements, and p i , i ≤ m is the probability that a rodent has occupied site i, we have m i=1 p i = 1. Therefore, we have:

f (x 1 , . . . , x k ; n, p 1 , . . . , p k ) = Pr(X 1 = x 1 and . . . and X k = x k ), (1) 
=    N ! x 1 ! • • • x k ! p x 1 1 • • • p x k k , when k i=1 x i = N 0 otherwise, (2) 
In the case where sites are chosen equiprobably -e.g. no food on site and rodents have no sensory organs or memory and move randomly, the law is an equi-distributed multinomial and p i = p = 1/m. We have:

f (x 1 , . . . , x k ; n, p, . . . , p) = Pr(X 1 = x 1 and . . . and

X k = x k ), (3) 
=    N ! x 1 ! • • • x k ! p N , when k i=1 x i = N 0 otherwise, (4) 
To evaluate the values of p i , and as each simulation has a different total number of movements, we normalize N to 5000. A good estimator of

p i is pi = N i /N ,
where N i is the normalized number of site visits i calculated from either field observation data or simulation data. 

Input Data

At the beginning of each month, a satellite map is included containing the NDVI values of each cell, representing the amount of resources produced. The maps (with a surface area of 1.37 km 2 ) were downloaded for each month using the Landsat 8 sensor (30 m resolution), and processed in ArcGis 10.3. We calculated the monthly NDVI values for each cell (between 0 and 1). To test their effects on the model simulation, we integrated three types of NDVI:

• N DV I max : These are the maximum monthly values of the NDVI (collected on 2014) whose plant density is considered the highest.

• N DV I mean : These are the average monthly values of the NDVI between 2013 and 2017.

• N DV I min : These are the minimum monthly values of the NDVI (collected on 2015) whose plant density is considered the lowest.

Average monthly temperatures were obtained from a weather forecasting station that was implemented in the study area in 2012 (data not shown).

Submodels

Consumption submodel. If F cell is ≥ AF min , the rodent agent consumes food with a consumption rate of AF consum . The variation in food quantity F cell is governed by the following equation:

F cell (t + δt) = F cell (t) -min(F cell , AF consum ) (5) 
Matrices update process:. For each time step, the following algorithm, which describes the matrices update, is run :

Algorithm 1 Algorithm represents the update of M f ood and M inf o . For each field unit i, we note that (i x , i y ) for the coordinates in the matrix M f ood and M inf o associated with i. We recall that M f ood is the matrix containing information about the presence of food and M inf o is the matrix containing the perception of the food values of each cell, both have the same dimension as field units. N eighb(i) represents the neighboring field unit i. M yCell: is the field unit where agent rodents are.

M inf o (M yCell x , M yCell y ) ← 1 if F cell (M yCell) > F min then M f ood (M yCell x , M yCell y ) ← F cell (M yCell) else M f ood (M yCell x , M yCell y ) ← 0 end if M inf ormation ← M inf o M f ood ← M f ood for i in N eighb(M yCell) do M inf o(i x , i y ) ← max(mean k∈N eighb(i) (M inf o (k x , k y )), M inf o (i x , i y )) if M inf o (i x , i y ) = 1 then M f ood(i x , i y ) ← mean k∈N eighb(i) (M f ood (k x , k y )) end if end for M inf o ← M inf ormation M f ood ← M f ood
Movement submodel. We performed the two scenarios of movement by setting parameters that affect the type of movement (random versus thoughtful) AF consum , AF min , and L memory . Two different dispersal behaviors were identified:

• Random: The rodent agent moves cell by cell. From a cell, the rodent randomly chooses the next neighboring cells. This behavior is applied to each agent at each step when AF min is high (AF min = 0.7). In this case, the minimum quantity of food that the agent must detect (in order to move) is greater than that available in neighboring cells, so the rodent moves randomly.

• Thoughtful: The rodent agent makes a selection of a neighboring cell. This choice is made with regard to the values of M f ood and M inf o . Rodent moves according to the information collected on the vegetation status of neighboring cells. The cell chosen is the one that maximizes the forward term prod-uct of the two matrices M inf o and M f ood . If this maximum is less than a certain value previously set (noted V min ), the movement will be random.

Memory loss submodel. In the model, we assumed that the rodent agent can forget information about a cell that has visited before. For this purpose, the values of the M f ood matrix are multiplied by a previously set rate, L memory .

Infection submodel. At every step, susceptible rodent agents can be contaminated with an infection probability p that depends on the temperature and NDVI, since these two factors have an impact on the transmission of the epidemic. p follows a Gaussian law based on the assumption that plants grow if the temperature increases, except that above a set value, plant density decreases. On the other hand, we supposed that each susceptible agent observes at the infected agents in its proximity at a distance of R inf ection (set at 0), we assumed that the transmission of the epidemic can only occur if a susceptible and an infected agent occupy the same cell.

p = α(NDVI) σ √ 2π exp ( -(T -T optimal ) 2 2σ 2 ) ( 6 
)
where σ =

(Tmax-T optimal ) 2 +(T min -T optimal ) 2 2
, T is the field temperature, T optimal is the average temperature, T max is the maximum temperature, T min is the minimum temperature and α is the infection factor.

Recovery submodel. At the end of each week, infected rodents can be recovered with a fixed recovery probability γ.

Food evolution submodel. The evolution of F cell is related to the values of the integrated NDVI, which represents the initial quantity of food (at the beginning of each month F cell = NDVI). NDVI is integrated in the form of a monthly satellite map of the EL Manara region. These images provide us with information on the vegetation status of the field. This process is operated every month; once the consumption process is activated, F cell decreases with the agent consumption.

Results

Simulations were performed using the Gama 1.7.0 platform to develop the agent-based simulator Python 3 to generate the experiment plan and sensitivity analysis.

To see the movement effect (ı.e., random or thoughtful) and the NDVI choice (ı.e., N DV I min , N DV I mean , and N DV I max ) on the spread of the epidemic (i.e., the infected versus susceptible rodents), we performed a simulation of 50 agents over 5 years. Each simulation was repeated 30 times. We have represented on Fig. 7 and Fig. 8 the average of infected density and susceptible density on the simulations. In the thoughtful movement, we set AF consum = 0.001, AF min = 0.2, and L memory = 0.8. However, to obtain a random movement, we fixed AF min = 0.7.

We tested the model using an exhaustive method that consists all the possible combinations of the parameters (basic and modified) and reviewing those that give prevalence close to that of reality. To the best of our knowledge, there is only one study in Central Tunisia that demonstrated the prevalence of L. major infection among M. shawi rodents [START_REF] Ghawar | Leishmania major infection among psammomys obesus and meriones shawi: Reservoirs of zoonotic cutaneous leishmaniasis in sidi bouzid (Central Tunisia)[END_REF]. The prevalence of L. major for indirect fluorescent antibody test was 0.33. We noted that the type of movement affects the variation in infected density.

In the random movement case, all rodents become infected (see Fig. 7). The same behavior can also be observed in the case of N DV I min when the movement is thoughtful (Fig. 8c). In the N DV I mean case (thoughtful movement), the majority of rodents are infected (between 94% and 98%). We also observed a slight decrease in the infected density over the last 2 years (see Fig. 8b). In N DV I max case when the movement is thoughtful (Fig. 8a), there is a small increase in the infected density with a stability at the end of the simulation (30% of rodents are infected).

We calculated the average prevalence (in the last 3 years) that P max , P mean , and P min (corresponding to N DV I max , N DV I mean , and N DV I min , respectively).

It can be seen that they are greater in the first scenario (random movement). Thus, we noticed that the average prevalence is inversely proportional to the NDVI values in the case of thoughtful movement (see Table 3). corresponding to the second scenario (thoughtful movement). We calculated the entropy ratio r = H H f ield (H f ield is the entropy of the real distribution of rodents in the field) to compare the model entropies and field data (Fig. 9).

The results showed that when the movement is random, the entropy ratio is almost equal to the maximum entropy ratio r unif orm (the most disordered state).

Moreover, we noted that when the movement is thoughtful, the entropy ratio is close to that of the field. The value of the entropy ratio closest to that of the field is in the case of NDVI = N DV I max , and it has been noted that if the simulation time is greater, the ratio entropy r th max is close to the value 1 (r f ield ).

Figure 9: The entropy ratios: All entropies are normalized with respect to the field entropy H f ield ,

r f ield = H f ield H f ield = 1, r th max = H th max H f ield , r th mean = H th mean H f ield , r th min = H th min H f ield , r th max = H r max H f ield , r r mean = H r mean H f ield , r r min = H r min H f ield , r unif orm = H unif orm H f ield .
H unif orm denotes the uniform distribution entropy. In the description of the entropy ratios, the following symbols are used: r: random movement, th: thoughtful movement, max: N DV I max , mean: N DV I mean and min: N DV I min .

Finally, we performed a sensitivity analysis to determine the parameters that could influence the prevalence. This analysis was applied in the thoughtful movement case when the NDVI was maximum. Thus, we used the one-factor-at-a-time [START_REF] Cariboni | The role of sensitivity analysis in ecological modelling[END_REF][START_REF] Saltelli | Global sensitivity analysis: The primer[END_REF] sensitivity analysis method that consists of selecting a base parameter setting and varying one parameter by ±10% at a time while keeping all other parameters fixed. Each simulation was repeated 30 times. The infection factor α, recovery probability γ, consumption rate AF consum , minimum food detected AF min , and loss memory rate L memory parameters were tested. Fig. 10 shows the variations in prevalence and standard deviation according to the modified parameters. In addition, a linear regression analysis was performed for each case. We estimated the coefficient of determination, slope, and intercept for each curve (Table 4)

The results show the effect of seasonality on the variation in prevalence and standard deviation. In addition, we noted that practically all the curves have the same slope, which is very low (in the order of 10 -4 ). This weakness can be explained by the stability of prevalence in the last 3 years.

In addition, we noted the impact of the parameters on prevalence and SD values. For example, in Fig. 10c, when the recovery probability γ is high, the prevalence value becomes lower. In the figure, when AF consum is high, the prevalence value increases. We then performed a sensitivity analysis to determine the effect of the 5 parameters on the mean prevalence over the last 3 years. We observe that the minimum food detected AF min has a major effect on the mean prevalence, which increases by 0.2. The minimum food detected, AF min , and the loss memory rate L memory have a positive effect ; however, the recovery probability γ has a negative effect. (see Fig. 11a and Fig. 11b). 

Discussion

Our results highlight the importance of considering the type of movement (random or thoughtful) of reservoir rodents considering their influence on the transmission of the epidemic. In the first scenario (random movement), the prevalence values were higher than those in the second scenario. This difference can be explained by the activity of rodents who forage randomly. The fact that the movement is random implies that the probability of an encounter is a product of the frequencies of the infected and susceptible rodents (i.e., mass action law). Thus, in this case, our model is "close" to an SIS model (susceptible-infected-susceptible epidemiological model). The term "close" refers to the fact that rodents spend the maximum of their time foraging i.e. , the case where N DV I = N DV I mean and N DV I = N DV I min . In the case where N DV I = N DV I max , the fluctuations may be due to the fact that rodents spend more time consuming food; thus, there is a lower possibility of being infected.

In the second scenario, when rodents accessed food more rapidly, the risk of infection was reduced because the probability of an encounter was lower. This explanation is supported by the fact that in the case where NDVI is weak (ı.e.,

N DV I = N DV I min ), the number of infected rodents becomes high again. If food is scarce, the information on feeding sites is low; therefore, the rodents adopt random movement.

Regarding temperature, its effect can only appear through the infection probability p (see formula ( 6)). Note that the effect of NDVI also appears through the movement of rodents (which influences the probability of encounter). In the model, the simulations show that NDVI has a more dominant effect than temperature. Moreover, in the second scenario, we noticed that the effect of temperature is observed in the fluctuations in Fig. 8a and Fig. 8b. Additionally, when NDVI increases, the prevalence decreases (Fig. 8).

This result was also observed by [START_REF] Shirzadi | Dynamic relations between incidence of zoonotic cutaneous leishmaniasis and climatic factors in golestan province, iran[END_REF] and [START_REF] Shiravand | Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran[END_REF], which showed that the incidence of leishmaniasis increased in areas where vegetation coverage was low. In the same context, [START_REF] Mollalo | Spatial and statistical analyses of the relations between vegetation cover and incidence of cutaneous leishmaniasis in an endemic province, northeast of iran[END_REF] showed that the decrease of the vegetation cover is accompanied by increase of epidemic occurrence and vice versa.

The prevalence and rodents strategies that provides closest results to those observed in the field, are when the rodents movement is thoughtful and when N DV I = N DV I max [START_REF] Ghawar | Leishmania major infection among psammomys obesus and meriones shawi: Reservoirs of zoonotic cutaneous leishmaniasis in sidi bouzid (Central Tunisia)[END_REF].

Moreover, figure 9 demonstrated that the thoughtful movement is similar to the field rodents motion. These results are consistent with [START_REF] Rajabi | A spatially explicit agent-based simulation model of a reservoir host of cutaneous leishmaniasis, Rhombomys opimus[END_REF].

The latter found that rodents adapt their direction and movement depending on food suitability and availability. Field observation of [START_REF] Ghawar | Spatiotemporal dispersal of meriones shawi estimated by radio-telemetry[END_REF] showed that the higher vegetation cover is, the more new actives burrows are detected, indicating that M.shawi is able to assess the vegetation abundance.

Even though relevant findings are reported in this current study, a more comprehensive multispecies model which includes human and sandflies parameters would provide a deeper understanding of the ZCL transmission cycle. The lack of data on sandfly densities in Tunisia and on its association with plant density (NDVI) makes such the achievement of such study currently difficult. Moreover, no studies have been conducted on the demographic processes (births, deaths) in rodent reservoirs.

Other climatic factors, such as rainfall and humidity, which influence the transmission of ZCL are also important. However, in our case, these data were insufficient; thus, we used NDVI as an environmental factor (which depends on rainfall and humidity). It can be used when climate data as well as environmental characteristics of the site are not available [START_REF] Gaudart | Modelling malaria incidence with environmental dependency in a locality of sudanese savannah area, mali[END_REF].

Conclusion

In conclusion, our study provides an overview of the effects of climate (i.e. temperature) and environmental (i.e. NDVI) parameters on the rodents movements in a limited geographical area by using an ABM in order to simulate the transmission of ZCL among rodents. We considered two types of rodents movement (random or thoughtful). We observed that NDVI has a more dominant effect than temperature, and the transmission of ZCL was increased by decreasing the value of NDVI.

The findings reported in this current study would improve comprehension of the ZCL spread dynamics in larger areas, and thus to be subsequently used to implement prevention and control strategies of the epidemic.
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 1 Figure 1: Cycle life of L.major and factors influencing sandfly and rodent.

  , and M. shawi is the main reservoir host of ZCL in this area. The annual incidence rate in Kairouan has been high in recent decades, including approximately 34.4/100, 000 inhabits, and the disease has recently emerged in non-endemic regions of the province (Chraiet-Rezgani et al., 2016). Our model does not incorporate humans as agents. However, human-induced changes are included to explore the consequences of disease evolution among rodent population dynamics. As such, the model can be a useful tool for informing healthcare authorities in planning intervention strategies to control the spread of ZCL.

Figure 2 :

 2 Figure 2: Study area at EL Manara, Nasrallah, Kairouan governorate.

Figure 3 :

 3 Figure 3: UML (unified modeling language) class diagram represents our ABM, there are two types of agents: rodent agent and field unit agent. Rodent agents are located in field units.

Field

  unit agent: First, the field unit values are updated according to the environmental parameters (NDVI). At each time step, the values of the quantity of food decrease according to the number of rodent agents present in the cell and their consumption speed AF consum . At each month, the field unit values are reupdated according to the values of the integrated NDVI. The model simulates the interactions between rodent agents on the one hand and between rodent agents and field unit agents on the other hand over time. The infected agent rodents perceive susceptible rodents in the same cell. Then, the infection process is activated.

Figure 4 :

 4 Figure 4: Conceptual view of movement, consumption, and update matrices: the diagram represents an outline of the sequence of processes and the schedule of interactions between agents at each discrete time step.

Figure 5 :Figure 6 :

 56 Figure 5: Conceptual view of the infection process (it is activated each time step).

  randomly created throughout the environment with a susceptible status. Only one infected rodent were randomly selected; the initial values of M f ood and M inf o were 0.

Figure 7 :

 7 Figure 7: Figures representing the dynamics of infected rodents (red curve) and susceptible rodents (green curve) with varying NDVI in random movement case.

Figure 8 :

 8 Figure 8: Figures representing the dynamics of infected rodents (red curve) and susceptible rodents (green curve) with varying NDVI in thoughtful movement case.

Figure 10 :

 10 Figure 10: Figures (a), (c), (e), (g), and (i) represent the prevalence for different values of parameters α, γ, AF min , AF consum , and L memory respectively. Figures (b), (d), (f), (h), and (j) represent SD for different values of α, γ, AF min , AF consum , and L memory , respectively

Figure 11 :

 11 Figure 11: Factors influencing the mean prevalence

  

Table 1 :

 1 Summary of attributes and variables with definitions. In the description of the dimensions, the following symbols are used:indicates no dimensions, J: Joule, t: time.

	Agent	Symbol	Type Description	Unit Update period
		R xy	Point Position of the rodent agent	-	1 hour
		AF consum	R	Speed of food consumption	J.t -1	1 hour
	Rodent			made by the rodent agent at each step of the time	
		AF min	R	Minimum quantity of food de-	J	1 hour
				tected by the rodent agent to	
				move	
		q	R	Quantity of food consumed by	J	1 hour
				rodent agent	
		L memory	R	Loss memory rate	t -1	1 hour
		M inf o	Matrix Matrix containing information	-	1 hour
				about the presence of food. Its	
				values are between 0 (no infor-	
				mation) and 1 (complete infor-	
				mation). The size of the matrix	
				corresponds to that of the envi-	
				ronment (1530 cells)	
		M f ood	Matrix Matrix containing the perception	J	1 hour
				of the food values of each cell.	
				The size of the matrix corre-	
				sponds to that of the environ-	
				ment (1530 cells)	
		V min	R	Minimum forward term product	J	Fixed
				of the two matrices M inf o and	
				M f ood	
		p	R	Infection probability, which de-	-	1 month
				pends on temperature and NDVI	
		γ	R	Recovery probability	-	1 week
		α	R	Infection factor	-	Fixed
	Field unit	F xy	Point Position of the field unit agent	-	Fixed
		F cell	R	Quantity of food present in each	J	1 hour
				field unit	

Table 2 :

 2 

	Symbol Default value	Range Unit Source
	N 0	50	Fixed	-	A
	N inf	1	Fixed	-	A
	γ	0.001	0.009 -0.011	-	E
	α	1	0.9 -1.1	-	A
	AF consum 0.001	0.009 -0.011 J.t -1	E
	L memory 0.8	0.79 -0.81	t -1	E
	AF min	{0.2; 0.7}	0.19 -0.21	J	A
	V min	0.0001	Fixed	J	A

Parameters and input values of the rodent agent and field unit agent. In the description of the dimensions, the following symbols are used:indicates no dimensions, J: Joule, t:Time, A: Authors' estimation, E: Experts' judgments.

Table 3 :

 3 Mean prevalence and standard deviation (SD) values calculated over the last 3 years.

	Type of movement Type of prevalence Value of prevalence	SD
		P max	0.99	0.06
	Random	P mean	0.99	0.06
		P min	0.99	0.06
		P max	0.34	0.006
	Thoughtful	P mean	0.92	0.01
		P min	0.99	0.006
	To examine the distribution of rodents in the cells and compare them with
	those in the field, we calculated the entropies noted H r max , H r mean , and H r min cor-
	responding to the first scenario (random movement) and H th max , H th mean , and H th min

Table 4 :

 4 Coefficient of determination, slope, and intercept of linear regression line for each modified parameter. In the case of based parameters, R 2 = 0.93, slope = 10 -4 , and intercept = 11.33

	Parameter Variation Coefficient of determination Slope Intercept
	α	+10% -10%	0.79 0.92	8.10 -5 8.10 -5	11.74 10.23
	γ	+10% -10%	0.85 0.88	9.10 -5 10 -4	11 12.46
	AF consum	+10% -10%	0.85 0.88	10 -4 9.10 -5	12.88 10.48
	AF min	+10% -10%	0.86 0.8	10 -4 10 -4	14.12 10.34
	L memory	+10% -10%	0.88 0.93	10 -4 10 -4	11.25 10.82

Table 5 :

 5 Screening parameters for the mean prevalence. b i correspond to the model regression coefficients. Y = b 0 + b 1 γ + b 1 α + b 3 AF consum + b 4 L memory + b 5 AF min .

	Parameter Coefficient	Value	Inflation factor	SD
		b 0	0.2808	1	0.0062
	γ	b 1	-0.0301	1	0.0062
	α	b 2	-0.0027	1	0.0062
	AF consum	b 3	0.0162	1	0.0062
	L memory	b 4	0.0380	1	0.0062
	AF min	b 5	0.0814	1	0.0062
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