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Introduction

A classical approach to study a mathematical structure is to associate to it invariants. Among these, cohomology theories occupy a central position as they enable for example to control deformations or extension problems. In particular, cohomology theories of various kinds of algebras have been developed with a great success ( [START_REF] Chevalley | Cohomology theory of Lie groups and Lie algebras[END_REF][START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF][START_REF] Harrison | Commutative algebras and cohomology[END_REF][START_REF] Hochschild | On the cohomology groups of an associative algebra[END_REF]). The deformation of algebraic structures began with the seminal work of Gerstenhaber ([16]) for associative algebras and followed by its extension to Lie algebras by Nijenhuis and Richardson ([26]). After that, deformation of algebra morphisms and simultaneous deformations are widely studied ([11, 12, 13, 14, 17, 24, 25, 30]).

On the other hand, algebras are also useful via their derivations. For example one can mention their use in control theory ( [START_REF] Ayala | On an algorithm for finding derivations of Lie algebras[END_REF][START_REF] Ayala | Linear control systems on Lie groups and controllability[END_REF]). One can also mention the higher derived bracket construction of Voronov in [START_REF] Th | Higher derived brackets for arbitrary derivations[END_REF] that produces out of some special derivation of a graded Lie algebra a homotopy Lie algebra. Moreover, algebras and their derivations have proven to be a very efficient tool to encode, via Koszul duality of operads of [START_REF] Ginzburg | Koszul duality for operads[END_REF], many different types of structures as homological vector fields (formal geometry and Q-manifolds) ( [START_REF] Stasheff | Homotopy associativity of H-spaces. I[END_REF][START_REF] Yu | Lie algebroids and homological vector fields[END_REF]). They turn out to also play a fundamental role in the study of gauge theories in quantum field theory via the BV-formalism of [START_REF] Batalin | Gauge algebra and quantization[END_REF]. Indeed, this formalism relies on a Q-vector field (S, •) which is a derivation of the 1-shifted bracket (•, •). In [START_REF] Loday | On the operad of associative algebras with derivation[END_REF], Loday studied the operad of associative algebras with derivation.

These facts motivate us to construct in this paper a cohomology theory that controls, among other things, simultaneous deformations of a Lie algebra with a derivation.

We begin by introducing in Section 2 a convenient categorical framework by defining the category LieDer whose objects are Lie algebras with a derivation. The point is that this enables us to introduce representations and semi-direct products in this category as "Beck-modules", i.e. monoid objects in the slice category. This is important since representations are a key ingredient in a cohomology theory.

We then define in Section 3 a complex associated to a LieDer pair and a representation over it, and prove that it is indeed a complex. We also exhibit a graded Lie algebra structure on the underlying graded vector space of the complex, such that one recovers the LieDer pairs as Maurer-Cartan elements and the associate differentials as adjoint operators of the Maurer-Cartan elements. The rest of the paper is devoted to show that the usual interpretations of different cohomology groups are still valid in this framework. We first show in Section 4 that the second cohomology group governs infinitesimal deformations modulo equivalences, and that obstructions to extension to higher order deformations are given by 3-cocycles. We then consider in Section 5 the classical problem of central extensions and its characterization in terms of second cohomology groups. In Section 6 we study the extension problem of a pair of derivations. Finally we show in Section 7 that third cohomology groups classify certain categorifications (skeletal 2-objects).

There are many questions left open. We expect to be able to recover the graded Lie algebra whose Maurer-Cartan elements characterize deformations of a LieDer pair via the theory of operads and extend our results to homotopy Lie algebras, by showing that the operad encoding LieDer pairs is Koszul, compute its Kozul dual and the associated cobar construction. Another line of research, suggested by the Beck-modules approach that we used to define our representations, could be to compare our complex with a complex that could be obtained by the Barr-Beck triple cohomology ( [START_REF] Barr | Homology and standard constructions[END_REF]). We intend to answer these questions in forth coming papers.

In this paper, we work over an algebraically closed field K of characteristic 0 and all the vector spaces are over K.

LieDer pairs and their representations

We need a suitable definition of representation in the category of LieDer pairs. We follow Quillen's approach who characterized representations as monoid objects in slice categories ( [START_REF] Doubek | Deformation theory (lecture notes)[END_REF]). This is why we start by introducing in Subsection 2.1 the category of interest for us. We then recall in Subsection 2.2 the notion of slice category and monoid objects. We show that, given a Lie algebra g, monoid objects in the slice category of Lie algebras over g are equivalent to g-modules. This result is apparently well known to experts ( [START_REF] Barr | Cartan-Eilenberg cohomology and triples[END_REF]), but we were not able to find its details in print. We then build on this result to obtain the LieDer version of module.

The category of LieDer pairs

Let g be a Lie algebra. A derivation of g is a linear map ϕ : g → g which satisfies the Leibniz relation:

ϕ[x, y] = [ϕ(x), y] + [x, ϕ(y)]. (1) 
One denotes by Der(g) the set of derivations of the Lie algebra g.

Definition 2.1. A LieDer pair is a Lie algebra g with a derivation ϕ ∈ Der(g). One denotes it by (g, ϕ).

It is called abelian if the Lie bracket of g is trivial, that is [x, y] = 0 for all x, y ∈ g. Notation 2.2. We will use [•, •] g instead of [•, •] if precision is needed. The same goes for ϕ g instead of ϕ. Definition 2.3. Let (g, ϕ g ) and (h, ϕ h ) be LieDer pairs. A morphism f from (g, ϕ g ) to (h, ϕ h ) is a Lie algebra morphism f : g → h such that f • ϕ g = ϕ h • f. (2) 
We denote by LieDer the category of LieDer pairs and their morphisms.

Monoid objects in slice categories

Definition 2.4. For a category C and an object A in C. The slice category C/A is the category whose

• objects (B, π) are C-morphisms π : B → A, B ∈ C, and 
• morphisms (B , π ) f → (B , π ) are commutative diagrams of C-morphisms: B f ----→ B π     π A A.
Definition 2.5. Let C be a category with finite products and a terminal object T . A monoid object in C is an object X ∈ Ob(C) together with two morphisms µ : X × X → X and η : T → X such that following diagrams commute:

• the associativity of µ :

X × X × X µ×Id X ----→ X × X Id X ×µ     µ X × X ----→ µ X,
• the neutrality of η :

X × X µ ----→ X µ ← ----X × X Id X ×η     η×Id X X × T ← ------ (Id X ,t X ) X ------→ (t X ,Id X ) T × X,
where t X : X → T is the unique map.

Let C m be the category whose objects are monoid objects (X, µ, η) in C as above and the hom-set

Hom Cm ((X, µ, η), (X , µ , η )) is the set of all f ∈ Hom C (X, X ) for which µ • (f × f ) = f • µ and η = f • η.

The Lie case

Denote by Lie the category of Lie algebras. Let g be a Lie algebra. We show in Subsection 2.3.1 how monoid objects in Lie/g give rise to g-representations. We then show in the following subsection that they form equivalent categories.

Deciphering the definition of a monoid object in the Lie case

It is obvious that the terminal object of the slice category Lie/g is T = g Id → g. Let X = k κ → g be a monoid object in Lie/g with µ and η as above. The information contained in η gives this first result: Lemma 2.6. There exists a vector space V such that k = s(g) ⊕ V.

Proof. It suffices to prove that κ is a splitting epimorphism and take V := ker(κ). But remark that η : T → X in the slice category actually means that there exists a commutative diagram

g k g, s Id κ i.e. κ • s = Id, so we have k = s(g) ⊕ V .
The rest of this section aims to show that V is an abelian Lie algebra and that it comes with a representation of g. But for that we need an expression of µ in terms of s, the section of κ that appeared in the previous proof.

First, notice that X × X is given by k

× g k κ → g, where k × g k = {(t, t ) ∈ k ⊕ k | κ(t) = κ(t )}
, with bracket defined by [(t, t ), (r, r )] := ([t, r], [t , r ]) and κ(t, t ) := κ(t). In the slice category, X × X µ → X amounts to the commutative diagram

k ×g k k g. M κ κ
Lemma 2.7. With the above notations, we have

M (t, t ) = t + t -s(κ(t)). (3) 
Proof. In terms of M , the neutrality of η amounts to the set of equations

M • (s × Id) • (κ, Id) = Id M • (Id × s) • (Id, κ) = Id.
We used here the fact that in the slice category, t X : X → T translates in the commutative diagram

k g g κ κ Id
Thus, for any t ∈ k we have

M (s(κ(t)), t) = M (t, s(κ(t))) = t. (4) 
Let (t, t ) ∈ k × g k, since k × g k is a vector space, we have

(t, t ) = t -s(κ(t)) + s(κ(t)), t -s(κ(t )) + s(κ(t )) = (s(κ(t)), s(κ(t ))) + (t -s(κ(t)), 0) + (0, t -s(κ(t ))).
Since M is a morphism in Lie, it is in particular linear, hence

M (t, t ) = M (s(κ(t)), s(κ(t ))) + M (t -s(κ(t)), 0) + M (0, t -s(κ(t ))).
By (4), we have

M (t, t ) = s(κ(t)) + t -s(κ(t)) + t -s(κ(t )) = t + t -s(κ(t)).
The proof is finished.

Remark 2.8. It can be seen from (3) that a µ satisfying this equation is automatically associative. Therefore, a monoid object in Lie/g is uniquely determined by the neutral map η.

Lemma 2.9. V := ker(κ) is an abelian sub Lie algebra of k.

Proof. Since k × g k M → k is a map in Lie, M ([(k, 0), (0, k )]) = [M (k, 0), M (0, k )] = [k, k ] by (3) if moreover k, k ∈ ker(κ).
On the left side, we have

M ([(k, 0), (0, k )]) = M ([k, 0], [0, k ]) = M (0, 0) = 0.
Thus, we have [k, k ] = 0 for all k, k ∈ ker(κ).

We recall that a representation of a Lie algebra g on a vector space V is a Lie algebra morphism ρ : g → gl(V ).

Lemma 2.10. The expression

ρ(x)(k) = [s(x), k] k , ∀x ∈ g, k ∈ V (5)
defines a representation of g on V .

Proof. Let us first check that ρ is well defined, i.e. that for all x ∈ g, k ∈ V , the right hand side of ( 5)

is in V . It follows from κ([s(x), k] k ) = [x, κ(k)] g = [x, 0] g = 0,
and V = ker(κ). We now show that ρ is a morphism. Recall that, by the Jacobi identity, ad : k → gl(k) is a Lie algebra morphism. One concludes by the remarks that ρ = ad • s and that s is also a Lie algebra morphism.

Remark We start with the functor ker : (Lie/g) m → g-Rep. Given X = k κ → g in (Lie/g) m , one defines ker(X) to be V := ker(κ). The previous section insures that ker(X) is in g-Rep. We leave it as an exercise for the reader to verify that the restrictions of morphisms to the kernels of the maps to g induce maps of representations.

We now construct the functor : g-Rep → (Lie/g) m . Recall [21] that one can associate to a representation (ρ, V ) of g the semi-direct product g V :

Proposition-definition 2.12. Let ρ : g → gl(V ) be a representation of g. The space g ⊕ V becomes a Lie algebra with the bracket

[x + u, y + v] ρ = [x, y] g + ρ(x)(v) -ρ(y)(u), ∀x, y ∈ g, u, v ∈ V.
We denote this Lie algebra by g V .

A first remark is that since the canonical projection p : g V → g is a morphism of Lie algebras, X := g V p → g is an object in Lie/g. It therefore suffices to equip X with a suitable product µ and unit η to complete the definition of the functor .

As already seen in the proof of Lemma 2.6, a map η : T → X amounts to a splitting of the map X = k κ → g. In the case X = g V p → g, such a splitting, and hence our map η, is given by the canonical inclusion i : g → g V .

By Lemma 2.7, µ is determined by

M : (g V ) × g (g V ) → g V , where (g V ) × g (g V ) = {(x + u, x + v)|x ∈ g, u, v ∈ V } and M (x + u, x + v) = x + u + v.
Therefore, g V p → g, with these η and µ is a monoid object in Lie/g, the image (V ) of V by the functor , which achieves the construction of this functor. Proof. It is straightforward to see that ker • = Id. On the other hand, for

X = k κ → g ∈ (Lie/g) m , we have ( • ker)(k κ → g) = (g ker(κ) p → g). We define Ψ X : k → g ⊕ ker(κ) by Ψ X (t) = κ(t) + t -(s • κ)(t). We deduce that Ψ X is a Lie algebra isomorphism from k to g ⊕ ker(κ) and p(Ψ X (t)) = p(κ(t) + t -(s • κ)(t)) = κ(t).
Thus, Ψ X is an isomorphism from the object X = k κ → g to the object g ker(κ) p → g in the slice category Lie/g. Moreover, for all (t, t ) ∈ k × g k, we have

Ψ X (M (t, t )) = Ψ X t + t -s(κ(t)) = κ t + t -s(κ(t)) + t + t -s(κ(t)) -(s • κ) t + t -s(κ(t)) = κ(t ) + t + t -(s • κ)(t + t ) = M κ(t) + t -(s • κ)(t), κ(t ) + t -(s • κ)(t ) = M (Ψ X (t), Ψ X (t )).
For all x ∈ g, we have

Ψ X (s(x)) = κ(s(x)) + s(x) -(s • κ)(s(x)) = x = i(x).
Thus, we obtain that Ψ X is an isomorphism in the category (Lie/g) m . Moreover, we can prove that Ψ is a natural isomorphism from Id (Lie/g) m to • ker. The proof is finished.

The LieDer case

There is a forgetful functor LieDer F → Lie which consists in forgetting the derivations and that the maps intertwine the derivations. Fix an object (g, ϕ g ) in LieDer. The functor F induces a functor (LieDer/(g, ϕ g )) m F → (Lie/g) m between monoid objects in the slice categories.

The aim of this section is to lift the equivalence of the previous section at the level of LieDer by completing the following diagram

(LieDer/(g, ϕg)) m ? (Lie/g) m g-Rep.

F ker

That is, by introducing the correct definition of representation in the category LieDer and understanding its relationship with the monoid object in LieDer/(g, ϕ g ).

Deciphering the definition of a monoid object in the LieDer case

According to Remark 2.11, an analysis of the monoid object in LieDer/(g, ϕ g ) should lead us to the correct definition of representation. We therefore consider an element

X = (k, ϕ k ) κ → (g, ϕ g ) in (LieDer/(g, ϕ g )) m
with µ and η as above.

The information contained in η gives this first result:

Lemma 2.14. One can decompose ϕ k as

ϕ k = ϕ k | s(g) ⊕ ϕ k | V
where s(g) and V are given by the decomposition k = s(g) ⊕ V , see Lemma 2.6.

Proof. The morphism η : T → X is given by the commutative diagram

(g, ϕg) (k, ϕ k ) (g, ϕg). s Id κ Since (k, ϕ k ) κ → (g, ϕ g ) is in LieDer, that is, κ • ϕ k = ϕ g • κ. For all v ∈ ker(κ) = V , we have κ(ϕ k (v)) = ϕ g (κ(v)) = 0. Thus, we deduce that ϕ k (V ) ⊂ V . Similarly, (g, ϕ g ) s → (k, ϕ k ) is in LieDer, for all x ∈ g, we have ϕ k (s(x)) = s(ϕ g (x)).
Thus, we deduce that ϕ k (s(g)) ⊂ s(g). The proof is finished.

We now interpret in terms of ϕ g and ϕ k | V the fact that ϕ k is a derivation.

Lemma 2.15. The following is satisfied

ϕ k | V [s(x), v] = [s(ϕ g (x)), v] + [s(x), ϕ k | V (v)].
Proof. Apply the Leibniz rule for

ϕ k = ϕ k | s(g) ⊕ ϕ k | V to the element [s(x), v] of k = s(g) ⊕ V and ϕ k • s = s • ϕ g .
We can now, according to Remark 2.11 and the previous two lemmas, give the following :

Definition 2.16. A representation of a LieDer pair (g, ϕ g ) on a vector space V with respect to ϕ V ∈ gl(V ) is a Lie algebra morphism ρ : g → gl(V ) such that for all x ∈ g, the following equality is satisfied:

ϕ V • ρ(x) = ρ(ϕ g (x)) + ρ(x) • ϕ V . (6) 
We denote a representation by (ρ, V, ϕ V ). For all x ∈ g, we define ad x : g → g by

ad x (y) = [x, y] g , ∀y ∈ g. (7) 
Then (ad, g, ϕ g ) is a representation of the LieDer pair (g, ϕ g ) on g with respect to ϕ g , which is called the adjoint representation.

A representation (ρ, V, ϕ V ) of a LieDer pair (g, ϕ g ) is said to be trivial if ρ = 0. A similar study of morphisms of monoid objects leads to the following Definition 2.17. Let (ρ, V, ϕ V ) and (ρ , V , ϕ V ) be two representations of the LieDer pair (g,

ϕ g ). A morphism from (ρ, V, ϕ V ) to (ρ , V , ϕ V ) is a morphism of Lie algebra representations f : V → V such that f • ϕ V = ϕ V • f. ( 8 
)
Notation 2.18. Let (g, ϕ g ) be a LieDer pair. We denote by (g, ϕ g )-Rep the category of the representations of the LieDer pair (g, ϕ g ) and their morphisms.

To sum-up the discussion and as an immediate corollary of Definition 2.16 and Lemmas 2.10, 2.14 and 2.15, one has We now focus on the task of showing that the functor can also be lifted, i.e. we want to show that it is compatible with derivations.

Corollary 2.19. Given a monoid object X = (k, ϕ k ) κ → (g, ϕ g ) in LieDer/(g, ϕ g ), the expression ρ(x)(k) = [s(x), k] k defines a representation of (g, ϕ g ) on V = ker(κ) with respect to ϕ k | V ∈ gl(V ).
Proposition 2.20. Given a representation (ρ, V, ϕ V ) of a LieDer pair (g, ϕ g ), define

ϕ g + ϕ V : g ⊕ V → g ⊕ V by (ϕ g + ϕ V )(x + u) = ϕ g (x) + ϕ V (u).
Then (g ⊕ V, ϕ g + ϕ V ), with the Lie structure of Proposition 2.12, is a LieDer pair which we call the semi-direct product of the LieDer pair (g, ϕ g ) by the representation (ρ, V, ϕ V ) and denote it by g LieDer V .

Proof. It suffices to show that ϕ g + ϕ V is a derivation. On one hand, we have

(ϕ g + ϕ V )[x + u, y + v] ρ = (ϕ g + ϕ V )([x, y] g + ρ(x)(v) -ρ(y)(u)) = ϕ g ([x, y] g ) + (ϕ V • ρ(x))(v) -(ϕ V • ρ(y))(u).
On the other hand, we have

[(ϕ g + ϕ V )(x + u), y + v] ρ + [x + u, (ϕ g + ϕ V )(y + v)] ρ = [ϕ g (x) + ϕ V (u), y + v] ρ + [x + u, ϕ g (y) + ϕ V (v)] ρ = [ϕ g (x), y] g + ρ(ϕ g (x))(v) -(ρ(y) • ϕ V )(u) + [x, ϕ g (y)] g + (ρ(x) • ϕ V )(v) -ρ(ϕ g (y))(u).
One concludes by ( 6) and the fact that ϕ g is a derivation.

Theorem 2.21. The functors (LieDer/(g, ϕ g )) m

(g, ϕ g )-Rep ker LieDer induce an equivalence of categories.

Proof. Let X = (k, ϕ k ) κ → (g, ϕ g
) be a monoid object in LieDer/(g, ϕ g ), by Theorem 2.13, we only need to prove that

Ψ X • ϕ k = (ϕ g ⊕ ϕ k | V ) • Ψ X .
Since s and κ are LieDer pairs morphisms. For all t ∈ k, we have

(ϕ g ⊕ ϕ k | V )(Ψ X (t)) = (ϕ g ⊕ ϕ k | V ) κ(t) + t -(s • κ)(t) = ϕ g (κ(t)) + ϕ k (t -(s • κ)(t)) = κ(ϕ k (t)) + ϕ k (t) -s(ϕ g (κ(t))) = κ(ϕ k (t)) + ϕ k (t) -s(κ(ϕ k (t))) = (Ψ X • ϕ k )(t).
The proof is finished.

Cohomologies of LieDer pairs

Let (ρ, V ) be a representation of a Lie algebra g. The Chevalley-Eilenberg cohomology of the Lie algebra g with the coefficient in (ρ, V ) is the cohomology of the cochain complex C n (g; V ) = Hom(∧ n g, V ) with the coboundary operator d :

C n (g; V ) → C n+1 (g; V ) defined by (df n )(x 1 , • • • , x n+1 ) = n+1 i=1 (-1) i+1 ρ(x i )(f (x 1 , • • • , x i , • • • , x n+1 )) + 1≤i<j≤n+1 (-1) i+j f ([x i , x j ], x 1 , • • • , x i , • • • , x j , • • • , x n+1 ).
We denoted the set of closed n-cochains by Z n (g; V ) and the set of exact n-cochains by B n (g; V ). We denote by H n (g; V ) = Z n (g; V )/B n (g; V ) the corresponding cohomology group. Let (ρ, V, ϕ V ) be a representation of a LieDer pair (g, ϕ g ). We define the set of LieDer pair 0-cochains to be 0, and define the set of LieDer pair 1-cochains to be C 1 LieDer (g; V ) = Hom(g, V ). For n ≥ 2, we define the set of LieDer pair n-cochains by

C n LieDer (g; V ) = C n (g; V ) × C n-1 (g; V ).
For n ≥ 1, we define an operator δ :

C n (g; V ) → C n (g; V ) by δf n = n i=1 f n • (Id ⊗ • • • ⊗ ϕ g ⊗ • • • ⊗ Id) -ϕ V • f n . Define ∂ : C 1 LieDer (g; V ) -→ C 2 LieDer (g; V ) by ∂f 1 = (df 1 , (-1) 1 δf 1 ), ∀f 1 ∈ Hom(g, V ). ( 9 
)
Then for n ≥ 2, we define ∂ :

C n LieDer (g; V ) → C n+1 LieDer (g; V ) by ∂(f n , g n-1 ) = df n , dg n-1 + (-1) n δf n , ∀f n ∈ C n (g; V ), g n-1 ∈ C n-1 (g; V ). (10) 
The following lemma gives the relation between the operator d and the operator δ, which plays important role in the proof of that ∂ is a coboundary operator. We omit the proof which is straightforward tedious computations. 

(∂ • ∂)(f n , g n-1 ) = ∂(df n , dg n-1 + (-1) n δf n ) = d(df n ), d(dg n-1 + (-1) n δf n ) + (-1) n+1 δ(df n ) = 0, (-1) n (d • δ -δ • d)(f n ) = 0.
Thus, the map ∂ is a coboundary operator.

Associated to the representation (ρ, V, ϕ V ), we obtain a complex (C * LieDer (g; V ), ∂). We denoted the set of closed n-cochains by Z n LieDer (g; V ) and the set of exact n-cochains by B n LieDer (g; V ). We define the corresponding cohomology group by

H n LieDer (g; V ) = Z n LieDer (g; V )/B n LieDer (g; V ).
Proposition 3.3. Let (ρ, V, ϕ V ) be a representation of a LieDer pair (g, ϕ g ). Then we have

H 1 LieDer (g; V ) = {f |f ∈ Z 1 (g; V ), f • ϕ g = ϕ V • f }, Proof. For any f ∈ C 1 LieDer (g; V ), we have ∂f = (df, -δf ).
Therefore, f is closed if and only if f ∈ Z 1 (g; V ) and f • ϕ g = ϕ V • f . The conclusion follows from the fact that there is no exact 1-cochain. Let V be a graded vector space. The suspension operator s assigns to V to the graded vector space sV with (sV) i := V i-1 . There is a natural degree 1 map s : V → sV that sends v ∈ V into its suspended copy sv ∈ sV.

Let (L, [•, •]) be a graded Lie algebra. We define a linear map ad : L → gl(sL) by

ad(x)(su) = (-1) |x| s[x, u].
Here x, u are homogeneous elements of L. Proof. For all x ∈ L i , y ∈ L j and su ∈ (sL) k , we have

ad([x, y])(su) = (-1) i+j s[[x, y], u].
On the other hand, we have

[ad(x), ad(y)](su) = ad(x)(ad(y)(su)) -(-1) ij ad(y)(ad(x)(su)) = ad(x)((-1) j s[y, u]) -(-1) ij ad(y)((-1) i s[x, u]) = (-1) i+j s([x, [y, u]] -(-1) ij [y, [x, u]]).

Since (L, [•, •]

) is a graded Lie algebra, we obtain that (ad, sL) is a representation of the graded Lie algebra (L, [•, •]). Let g be a vector space. We consider the graded vector space C * (g, g) = ⊕ +∞ k=0 C k+1 (g; g). It is known that C * (g, g) equipped with the Nijenhuis-Richardson bracket

[P, Q] NR = P • Q -(-1) pq Q • P, ∀P ∈ C p+1 (g; g), Q ∈ C q+1 (g; g), (11) 
is a graded Lie algebra, where P • Q ∈ C p+q+1 (g; g) is defined by

P • Q(x 1 , • • • , x p+q+1 ) = σ∈unsh(q+1,p) (-1) σ P (Q(x σ(1) , • • • , x σ(q+1) ), x σ(q+2) , • • • , x σ(p+q+1) ). (12) 
See [START_REF] Nijenhuis | Cohomology and deformations in graded Lie algebras[END_REF] for more details. In particular, for ω ∈ C 2 (g, g), we have

[ω, ω] NR (x, y, z) = 2(ω • ω)(x, y, z) = 2(ω(ω(x, y), z) + ω(ω(y, z), x) -ω(ω(x, z), y)) = 2(ω(ω(x, y), z) + ω(ω(y, z), x) + ω(ω(z, x), y)),
Thus, ω defines a Lie algebra structure if and only if ω is a Maurer-Cartan element of (C * (g; g), [•, •] NR ). Moreover, the Chevalley-Eilenberg coboundary operator d of the Lie algebra g with the coefficient in the adjoint representation can be reformulated as follows:

df = (-1) k-1 [ω, f ] NR , ∀f ∈ C k (g; g). (13) 
By Lemma 3.4 and the fact that (C * (g; g), [•, •] NR ) is a graded Lie algebra, there is a canonical graded Lie algebra C * (g; g) ad sC * (g; g). More precisely, let g be a vector space. We consider the graded vector space DC * (g; g) := C * (g; g) ⊕ sC * (g; g) = ⊕ +∞ n=0 Hom(∧ n+1 g, g) × Hom(∧ n g, g) . Define a skew-symmetric bracket operation

•, • : DC m (g; g) ⊗ DC n (g; g) -→ DC m+n (g; g) by (f m+1 , g m ), (f n+1 , g n ) := [f m+1 , f n+1 ] NR , (-1) m [f m+1 , g n ] NR -(-1) n(m+1) [f n+1 , g m ] NR . ( 14 
)
Theorem 3.5. With the above notations, (DC * (g; g), •, • ) is a graded Lie algebra. Its Maurer-Cartan elements are precisely the LieDer pair structures on g.

Proof.

Since ω ∈ Hom(∧ 2 g, g) and ϕ ∈ Hom(g, g), thus we have (ω, ϕ) ∈ DC 1 (g; g). Moreover, we have

(ω, ϕ), (ω, ϕ) = ([ω, ω] NR , -2[ω, ϕ] NR ).
Thus, (ω, ϕ) is a Maurer-Cartan element if and only if [ω, ω] NR = 0 and [ω, ϕ] NR = 0. For all x, y ∈ g, we have

[ω, ϕ] NR (x, y) = (ω • ϕ -(-1) |ω||ϕ| ϕ • ω)(x, y) = ω(ϕ(x), y) -ω(ϕ(y), x) -ϕ(ω(x, y))
= ω(ϕ(x), y) + ω(x, ϕ(y)) -ϕ(ω(x, y)).

Therefore, (ω, ϕ) is a Maurer-Cartan element if and only if (g, ω, ϕ) is a LieDer pair. Let (g, ω, ϕ) be a LieDer pair. Since (ω, ϕ) is a Maurer-Cartan element of the graded Lie algebra (DC * (g; g), •, • ) by Theorem 3.5, it follows from the graded Jacobi identity that the map

d (ω,ϕ) : DC n (g; g) -→ DC n+1 (g; g), d (ω,ϕ) (f n+1 , g n ) := (ω, ϕ), (f n+1 , g n ) , (15) 
is a graded derivation of the graded Lie algebra (DC * (g; g), •, • ) satisfying d (ω,ϕ) • d (ω,ϕ) = 0. Thus, we have Lemma 3.6. Let (g, ω, ϕ) be a LieDer pair. Then (DC * (g; g), •, • , d (ω,ϕ) ) is a differential graded Lie algebra.

This differential graded Lie algebra can control deformations of a LieDer pair.

Theorem 3.7. Let (g, ω, ϕ) be a LieDer pair. Then for two linear maps ω : g ∧ g → g and ϕ : g → g, (ω + ω , ϕ + ϕ ) is a LieDer pair if and only if (ω , ϕ ) is a Maurer-Cartan element of the differential graded Lie algebra (DC * (g; g), •, • , d (ω,ϕ) ), i.e. (ω , ϕ ) satisfies the Maurer-Cartan equation:

d (ω,ϕ) (ω , ϕ ) + 1 2 (ω , ϕ ), (ω , ϕ ) = 0.
Proof. By Theorem 3.5, (ω + ω , ϕ + ϕ ) is a LieDer pair if and only if

(ω + ω , ϕ + ϕ ), (ω + ω , ϕ + ϕ ) = 0.
Applying (ω, ϕ), (ω, ϕ) = 0, the above condition is equivalent to

2 (ω, ϕ), (ω , ϕ ) + (ω , ϕ ), (ω , ϕ ) = 0. That is, d (ω,ϕ) (ω , ϕ ) + 1 2 (ω , ϕ ), (ω , ϕ ) = 0.
Up to a sign, the coboundary operators ∂ with the coefficient in the adjoint representation of a LieDer pair (g, ω, ϕ) coincides with the differential operator d (ω,ϕ) defined by ( 15) using the Maurer-Cartan element (ω, ϕ). Proposition 3.8. Let (g, ω, ϕ) be a LieDer pair. Then we have

∂(f n , g n-1 ) = (-1) n-1 d (ω,ϕ) (f n , g n-1 ), ∀(f n , g n-1 ) ∈ Hom(∧ n g, g) × Hom(∧ n-1 g, g), n = 1, 2, • • • .
Proof. For (f n , g n-1 ) ∈ Hom(∧ n g, g) × Hom(∧ n-1 g, g), we have

d (ω,ϕ) (f n , g n-1 ) = (ω, ϕ), (f n , g n-1 ) = [ω, f n ] NR , -[ω, g n-1 ] NR -[f n , ϕ] NR .
By ( 13), we have [ω,

f n ] NR = (-1) n-1 df n and -[ω, g n-1 ] NR = (-1) n-1 dg n-1 . For all x 1 , • • • , x n ∈ g, we have -[f n , ϕ] NR (x 1 , • • • , x n ) = (ϕ • f n -f n • ϕ)(x 1 , • • • , x n ) = ϕ V (f n (x 1 , • • • , x n )) - n i=1 f n (x 1 , • • • , ϕ(x i ), • • • , x n ) = -(δf n )(x 1 , • • • , x n ).
Thus, we have

∂(f n , g n-1 ) = (-1) n-1 d (ω,ϕ) (f n , g n-1
). The proof is finished.

Remark 3.9. One can note, as suggested by the anonymous referee, that the above graded Lie algebra can elegantly be understood as a sub-Lie algebra of the Nijenhuis-Richardson graded Lie algebra Hom(Λ • g, g) associated to the Lie algebra g := g ⊕ K, namely :

Hom(Λ • g, g) Hom(Λ • g ⊕ Λ •-1 g, g).
The last isomorphism comes from the fact that Λ

• g = Λ • (g ⊕ K) Λ • g ⊗ Λ • K together with Λ • K = Λ 0 K ⊕ Λ 1 K K ⊕ K.
Remark 3.10. Let (g, ω, ϕ) be a LieDer pair and (ρ, V, ϕ V ) a representation. For all

(f n , g n-1 ) ∈ Hom(∧ n g, V ) × Hom(∧ n-1 g, V ), n = 1, 2, • • • , we have ∂(f n , g n-1 ) = (-1) n-1 d (ω+ρ,ϕ+ϕ V ) (f n , g n-1 ).
It gives an interpretation of the cohomology of a LieDer pair (g, ω, ϕ) with the coefficient in the representation (ρ, V, ϕ V ).

Deformations of a LieDer pair

In this section, we study formal deformations and deformations of order n of a LieDer pair.

Formal deformations of a LieDer pair

In this subsection, we study 1-parameter formal deformations of a LieDer pair. We show that if the second cohomology group of a LieDer pair with the coefficient in the adjoint representation is trivial, then the LieDer pair is rigid. Let (g, ϕ) be a LieDer pair. In the sequel, we will also denote the Lie bracket [•, •] by ω. Consider a t-parametrized family of linear operations 1 the LieDer-pair structure with (ω 0 , ϕ 0 ) = (ω, ϕ), we say that (ω t , ϕ t ) is a 1-parameter formal deformation of the LieDer pair (g, ϕ).

ω t = i≥0 ω i t i , ω i ∈ C 2 (g; g), ϕ t = i≥0 ϕ i t i , ϕ i ∈ C 1 (g; g). Definition 4.1. If all (ω t , ϕ t ) endow the K[[t]]-module g[[t]]
A pair (ω t , ϕ t ), as given above, is a 1-parameter formal deformation of the LieDer pair (g, ϕ) if and only if for all x, y, z ∈ g, the following equalities hold:

ω t (ω t (x, y), z) + ω t (ω t (y, z), x) + ω t (ω t (z, x), y) = 0, ( 16 
)
ϕ t (ω t (x, y)) -ω t (ϕ t (x), y) -ω t (x, ϕ t (y)) = 0. ( 17 
)
Expanding the equations in ( 16), ( 17) and collecting coefficients of t n , we see that ( 16) and ( 17) are equivalent to the system of equations i+j=n i,j≥0

ω i (ω j (x, y), z) + ω i (ω j (y, z), x) + ω i (ω j (z, x), y) = 0, ( 18 
) i+j=n i,j≥0 ϕ i (ω j (x, y)) -ω j (ϕ i (x), y) -ω j (x, ϕ i (y)) = 0. ( 19 
)
Remark 4.2. For n = 0, condition (18) is equivalent to the usual Jacobi identity of ω, and ( 19) is equivalent to the fact that ϕ is a derivation.

Proposition 4.3. Let (ω t , ϕ t ) be a 1-parameter formal deformation of the LieDer pair (g, ϕ). Then (ω 1 , ϕ 1 ) ∈ C2 LieDer (g; g) is a 2-cocycle of the LieDer pair (g, ϕ) with the coefficient in the adjoint representation.

Proof. For n = 1, ( 18) is equivalent to dω 1 = 0, and ( 19) is equivalent to dϕ 1 + δω 1 = 0. Thus for n = 1, ( 18) and ( 19) are equivalent to that (ω 1 , ϕ 1 ) is a 2-cocycle. Definition 4.4. The 2-cocycle (ω 1 , ϕ 1 ) is called the infinitesimal of the 1-parameter formal deformation (ω t , ϕ t ) of the LieDer pair (g, ϕ). Definition 4.5. Let (ω t , φt ) and (ω t , ϕ t ) be 1-parameter formal deformations of a LieDer pair (g, ϕ). A formal isomorphism from (ω t , φt ) to (ω t , ϕ t ) is a power series

Φ t = i≥0 φ i t i : g[[t]] → g[[t]], where φ i ∈ C 1 (g; g) with φ 0 = Id, such that Φ t • ωt = ω t • (Φ t × Φ t ), ( 20 
)
Φ t • φt = ϕ t • Φ t . ( 21 
)
Two 1-parameter formal deformations (ω t , φt ) and (ω t , ϕ t ) are said to be equivalent if there exists a formal isomorphism Φ t : (ω t , φt ) → (ω t , ϕ t ).

Deformations of order n of a LieDer pair

In this subsection, we introduce a cohomology class associated to any deformation of order n of a LieDer pair. We show that a deformation of order n of a LieDer pair is extensible if and only if this cohomology class is trivial. Thus we call this cohomology class the obstruction class of a deformation of order n being extensible.

Definition 4.10. A deformation of order n of a LieDer pair (g, ϕ) is a pair

(ω t , ϕ t ) such that ω t = n i=0 ω i t i and ϕ t = n i=0 ϕ i t i endow the K[[t]]/(t n+1 )-module g[[t]]/(t n+1
) the LieDer pair structure with (ω 0 , ϕ 0 ) = (ω, ϕ). Definition 4.11. Let (ω t , ϕ t ) be a deformation of order n of a LieDer pair (g, ϕ). If there exists a 2-cochain (ω n+1 , ϕ n+1 ) ∈ C 2 LieDer (g; g), such that the pair ( ω t , ϕ t ) with

ω t = ω t + ω n+1 t n+1 , ϕ t = ϕ t + ϕ n+1 t n+1
is a deformation of order n + 1 of the LieDer pair (g, ϕ), then we say that (ω t , ϕ t ) is extensible.

Let (ω t , ϕ t ) be a deformation of order n of a LieDer pair (g, ϕ). We define (Ob

3 (ωt,ϕt) , Ob 2 (ωt,ϕt) ) ∈ C 3 LieDer (g; g) by Ob 3 (ωt,ϕt) (x, y, z) = i+j=n+1 i,j>0 ω i (ω j (x, y), z) + ω i (ω j (y, z), x) + ω i (ω j (z, x), y) , (25) Ob 2 (ωt,ϕt) (x, y) 
= i+j=n+1 i,j>0 ϕ i (ω j (x, y)) -ω j (ϕ i (x), y) -ω j (x, ϕ i (y)) . (26) 
Proposition 4.12. Let (ω t , ϕ t ) be a deformation of order n of a LieDer pair (g, ϕ). The 3-cochain (Ob 3 (ωt,ϕt) , Ob 2 (ωt,ϕt) ) defined by [START_REF]Deformation of Leibniz algebra morphisms[END_REF] and ( 26) is a 3-cocycle of the LieDer pair (g, ϕ) with the coefficient in the adjoint representation.

Proof. We use the Nijenhuis-Richardson bracket to write Ob 3 (ωt,ϕt) and Ob 2 (ωt,ϕt) as follows:

Ob 3 (ωt,ϕt) = 1 2 i+j=n+1 i,j>0 [ω i , ω j ] NR , Ob 2 (ωt,ϕt) = i+j=n+1 i,j>0 [ϕ i , ω j ] NR . (27) 
Since (ω t , ϕ t ) is a deformation of order n of the LieDer pair (g, ϕ), for all 0 ≤ i ≤ n, we have

k+l=i k,l≥0 ω k (ω l (x, y), z) + ω k (ω l (y, z), x) + ω k (ω l (z, x), y) = 0, ( 28 
) k+l=i k,l≥0 ϕ k (ω l (x, y)) -ω l (ϕ k (x), y) -ω l (x, ϕ k (y)) = 0. (29) 
Thus, the equations ( 28) and ( 29) are equivalent to

1 2 k+l=i k,l>0 [ω k , ω l ] NR = -[ω, ω i ] NR , ( 30 
) k+l=i k,l>0 [ϕ k , ω l ] NR = -[ϕ, ω i ] NR + [ω, ϕ i ] NR . (31) 
Then we have

dOb 3 (ωt,ϕt) = (-1) 2 [ω, Ob 3 (ωt,ϕt) ] NR = 1 2 i+j=n+1 i,j>0 [ω, [ω i , ω j ] NR ] NR = 1 2 i+j=n+1 i,j>0 [[ω, ω i ] NR , ω j ] NR -[ω i , [ω, ω j ] NR ] NR (30) 
= -

1 4 i +i +j=n+1 i ,i ,j>0 [[ω i , ω i ] NR , ω j ] NR + 1 4 i+j +j =n+1 i,j ,j >0 [ω i , [ω j , ω j ] NR ] NR = 1 4 i +i +j=n+1 i ,i ,j>0 [ω j , [ω i , ω i ] NR ] NR + 1 4 i+j +j =n+1 i,j ,j >0 [ω i , [ω j , ω j ] NR ] NR = 1 2 i +i +j=n+1 i ,i ,j>0 [ω j , [ω i , ω i ] NR ] NR = 0.
Moreover, for all f ∈ C k (g; g) we have δf = -[ϕ, f ] NR . Thus, we have

dOb 2 (ωt,ϕt) + (-1) 3 δOb 3 (ωt,ϕt) = -[ω, Ob 2 (ωt,ϕt) ] NR + [ϕ, Ob 3 (ωt,ϕt) ] NR = - i+j=n+1 i,j>0 [ω, [ϕ i , ω j ] NR ] NR + 1 2 i+j=n+1 i,j>0 [ϕ, [ω i , ω j ] NR ] NR = - i+j=n+1 i,j>0 [[ω, ϕ i ] NR , ω j ] NR + [ϕ i , [ω, ω j ] NR ] NR + 1 2 i+j=n+1 i,j>0 [[ϕ, ω i ] NR , ω j ] NR + [ω i , [ϕ, ω j ] NR ] NR = - i+j=n+1 i,j>0 [[ω, ϕ i ] NR , ω j ] NR + [ϕ i , [ω, ω j ] NR ] NR + i+j=n+1 i,j>0 [[ϕ, ω i ] NR , ω j ] NR (30) 
= -

i+j=n+1 i,j>0 [[ω, ϕ i ] NR , ω j ] NR + 1 2 i+j +j =n+1 i,j ,j >0 [ϕ i , [ω j , ω j ] NR ] NR + i+j=n+1 i,j>0 [[ϕ, ω i ] NR , ω j ] NR (31) = - i +i +j=n+1 i ,i ,j>0 [[ϕ i , ω i ] NR , ω j ] NR - i+j=n+1 i,j>0 [[ϕ, ω i ] NR , ω j ] NR + 1 2 i+j +j =n+1 i,j ,j >0 [[ϕ i , ω j ] NR , ω j ] NR + 1 2 i+j +j =n+1 i,j ,j >0 [ω j , [ϕ i , ω j ] NR ] NR + i+j=n+1 i,j>0 [[ϕ, ω i ] NR , ω j ] NR = - i +i +j=n+1 i ,i ,j>0 [[ϕ i , ω i ] NR , ω j ] NR + i+j +j =n+1 i,j ,j >0 [[ϕ i , ω j ] NR , ω j ] NR = 0.
Proof. Let (ĝ, ϕ ĝ) be a central extension of (g, ϕ g ) by (h, ϕ h ). By choosing a section s : g → ĝ, we obtain a 2-cocycle (ψ, χ). Now we show that the cohomological class of (ψ, χ) does not depend on the choice of sections. In fact, let s 1 and s 2 be two different sections. We define φ : g → h by φ(x) = s 1 (x) -s 2 (x).

Then we have

ψ 1 (x, y) = [s 1 (x), s 1 (y)] ĝ -s 1 [x, y] g = [s 2 (x) + φ(x), s 2 (y) + φ(y)] ĝ -s 2 [x, y] g -φ([x, y] g ) = [s 2 (x), s 2 (y)] ĝ -s 2 [x, y] g -φ([x, y] g ) = ψ 2 (x, y) -φ([x, y] g ),
and

χ 1 (x) = ϕ ĝ(s 1 x) -s 1 (ϕ g (x)) = ϕ ĝ(s 2 (x) + φ(x)) -(s 2 + φ)(ϕ g (x)) = ϕ ĝ(s 2 (x)) -s 2 (ϕ g (x)) + ϕ h (φ(x)) -φ(ϕ g (x)) = χ 2 (x) + ϕ h (φ(x)) -φ(ϕ g (x)).
Thus, we obtain (ψ 1 , χ 1 ) = (ψ 2 , χ 2 )+∂(φ). Therefore, (ψ 1 , χ 1 ) and (ψ 2 , χ 2 ) are in the same cohomological class. Now we go on to prove that isomorphic central extensions give rise to the same element in H 2 LieDer (g; h). Assume that (ĝ 1 , ϕ ĝ1 ) and (ĝ 2 , ϕ ĝ2 ) are two isomorphic central extensions of (g, ϕ g ) by (h, ϕ h ), and ζ : (ĝ 1 , ϕ ĝ1 ) → (ĝ 2 , ϕ ĝ2 ) is a LieDer pair morphism such that we have the commutative diagram in Definition 5.2. Assume that s 1 : g → ĝ1 is a section of ĝ1 . By p 2 • ζ = p 1 , we have 

p 2 • (ζ • s 1 ) = p 1 • s 1 = Id.
ψ 2 (x, y) = [s 2 (x), s 2 (y)] ĝ2 -s 2 [x, y] g = [(ζ • s 1 )(x), (ζ • s 1 )(y)] ĝ2 -(ζ • s 1 )[x, y] g = ζ([s 1 (x), s 1 (y)] ĝ1 -s 1 [x, y] g ) = [s 1 (x), s 1 (y)] ĝ1 -s 1 [x, y] g = ψ 1 (x, y), and 
χ 2 (x) = ϕ ĝ2 (s 2 x) -s 2 (ϕ g (x)) = ϕ ĝ2 ((ζ • s 1 )(x)) -(ζ • s 1 )(ϕ g (x)) = ζ(ϕ ĝ1 (s 1 x) -s 1 (ϕ g (x))) = ϕ ĝ1 (s 1 x) -s 1 (ϕ g (x)) = χ 1 (x).
Thus, the isomorphic central extensions give rise to the same element in H 2 LieDer (g; h). Conversely, given two 2-cocycles (ψ 1 , χ 1 ) and (ψ 2 , χ 2 ), we can construct two central extensions (g ⊕ h, ϕ χ1 ) and (g ⊕ h, ϕ χ2 ), as in (38) and (39). If they represent the same cohomological class, i.e. there exists φ : g → h, such that (ψ 1 , χ 1 ) = (ψ 2 , χ 2 ) + ∂(φ), we define ζ : g ⊕ h → g ⊕ h by

ζ(x + h) = x + φ(x) + h.
Then we can deduce that ζ is an isomorphism between central extensions. This finishes the proof.

Extensions of a pair of derivations

In [START_REF] Bardakov | Extensions and automorphisms of Lie algebras[END_REF], the authors study extensions of a pair of automorphisms of Lie algebras. Since derivations are infinitesimals of automorphisms, we are interested in extensions of a pair of derivations. In this section, associated to a central extension ĝ of a Lie algebra g by an abelian Lie algebra h and a pair of derivations (ϕ h , ϕ g ) ∈ Der(h) × Der(g), we define a cohomology class [Ob ĝ (ϕ h ,ϕg) ] ∈ H 2 (g; h). We show that (ϕ h , ϕ g ) is extensible if and only if the cohomology class [Ob ĝ (ϕ h ,ϕg) ] is trivial. Thus we call [Ob ĝ (ϕ h ,ϕg) ] the obstruction class of (ϕ h , ϕ g ) being extensible.

Definition 6.1. Let 0 → h ι →
ĝ p → g → 0 be a central extension of Lie algebras. A pair of derivations (ϕ h , ϕ g ) ∈ Der(h) × Der(g) is said to be extensible if there exists a derivation ϕ ĝ ∈ Der(ĝ) such that we have the following exact sequence of LieDer pair morphisms

0 ----→ h ι ----→ ĝ p ----→ g ----→ 0 ϕ h   ϕ ĝ  ϕg   0 ----→ h ι ----→ ĝ p ----→ g ----→ 0.
Equivalently, (ĝ, ϕ ĝ) is a central extension of (g, ϕ g ) by (h, ϕ h ).

Let s : g → ĝ be an arbitrary section of the central extension 0

→ h ι → ĝ p → g → 0.
Then any element of ĝ can be written uniquely as s(x) + h for some x ∈ g and h ∈ h. Define ψ :

∧ 2 g → h by ψ(x, y) = [s(x), s(y)] ĝ -s[x, y] g . (42) 
For any pair (ϕ h , ϕ g ) ∈ Der(h) × Der(g), define a 2-cochain Ob ĝ (ϕ h ,ϕg) ∈ C 2 (g; h) by Ob ĝ (ϕ h ,ϕg) (x, y) = ϕ h (ψ(x, y)) -ψ(ϕ g (x), y) -ψ(x, ϕ g (y)), ∀x, y ∈ g. (43) Proposition 6.2. Let 0 → h ι → ĝ p → g → 0 be a central extension of Lie algebras. For any pair (ϕ h , ϕ g ) ∈ Der(h) × Der(g), the 2-cochain Ob ĝ (ϕ h ,ϕg) ∈ C 2 (g; h) defined by (43) is a 2-cocycle of the Lie algebra g with the coefficient in the trivial representation (ρ = 0, h). Moreover, the cohomology class [Ob ĝ (ϕ h ,ϕg) ] ∈ H 2 (g; h) does not depend on the choice of sections.

The cohomology class [Ob ĝ (ϕ h ,ϕg) ] ∈ H 2 (g; h) is called the obstruction class of (ϕ h , ϕ g ) being extensible. Proof. Let s : g → ĝ be a section of the central extension of Lie algebras 0 → h 42) is a 2-cocycle of the Lie algebra g with the coefficient in the trivial representation (ρ = 0, h), i.e.

ι → ĝ p → g → 0. The ψ : ∧ 2 g → h defined by (

ψ([x, y]

g , z) + ψ([y, z] g , x) + ψ([z, x] g , y) = 0. Then we have (dOb ĝ (ϕ h ,ϕg) )(x, y, z) = -Ob ĝ (ϕ h ,ϕg) ([x, y] g , z) -Ob ĝ (ϕ h ,ϕg) ([y, z] g , x) -Ob ĝ (ϕ h ,ϕg) ([z, x] g , y) = -ϕ h (ψ([x, y] g , z)) + ψ(ϕ g ([x, y] g ), z) + ψ([x, y] g , ϕ g (z)) -ϕ h (ψ([y, z] g , x)) + ψ(ϕ g ([y, z] g ), x) + ψ([y, z] g , ϕ g (x)) -ϕ h (ψ([z, x] g , y)) + ψ(ϕ g ([z, x] g ), y) + ψ([z, x] g , ϕ g (y)) = -ϕ h ψ([x, y] g , z) + ψ([y, z] g , x) + ψ([z, x] g , y) +ψ([ϕ g (x), y] g , z) + ψ([y, z] g , ϕ g (x)) + ψ([z, ϕ g (x)] g , y) +ψ([x, ϕ g (y)] g , z) + ψ([ϕ g (y), z] g , x) + ψ([z, x] g , ϕ g (y)) +ψ([x, y] g , ϕ g (z)) + ψ([y, ϕ g (z)] g , x) + ψ([ϕ g (z), x] g , y)
= 0, which implies that Ob ĝ (ϕ h ,ϕg) is a 2-cocycle of the Lie algebra g with the coefficient in the trivial representation (ρ = 0, h).

Let s 1 and s 2 be two different sections. Define φ : g → h by φ(x) = s 1 (x) -s 2 (x). Then we have

ψ 1 (x, y) = ψ 2 (x, y) -φ([x, y] g ).
Moreover, we have 

Ob ĝ (ϕ h ,ϕg) 1 (x, y) = ϕ h (ψ 1 (x, y)) -ψ 1 (ϕ g (x), y) -ψ 1 (x, ϕ g (y)) = ϕ h (ψ 2 (x, y)) -ϕ h (φ([x, y] g )) -ψ 2 (ϕ g (x), y) + φ([ϕ g (x), y] g ) -ψ 2 (x, ϕ g (y)) + φ([x, ϕ g (y)] g ) = Ob ĝ (ϕ h ,ϕg) 2 (x, y) -(ϕ h • φ -φ • ϕ g )([x, y] g ) = Ob ĝ (ϕ h ,ϕg) 2 (x, y) + d(ϕ h • φ -φ • ϕ g )(x, y).
•p = p•ϕ ĝ, we obtain ϕ ĝ(s(x)) -s(ϕ g (x)) ∈ h. Define λ : g → h by λ(x) = ϕ ĝ(s(x)) -s(ϕ g (x)).
Then we have

ϕ ĝ(s(x) + h) = ϕ ĝ(s(x)) + ϕ h (h) = ϕ ĝ(s(x)) -s(ϕ g (x)) + s(ϕ g (x)) + ϕ h (h) = s(ϕ g (x)) + λ(x) + ϕ h (h).
Let s(x) + h and s(y) + l be any two elements of ĝ. Since ϕ ĝ is a derivation of ĝ, on one hand, we have

ϕ ĝ([s(x) + h, s(y) + l] ĝ) = ϕ ĝ([s(x), s(y)] ĝ) = ϕ ĝ(s[x, y] g + [s(x), s(y)] ĝ -s[x, y] g ) = ϕ ĝ(s[x, y] g + ψ(x, y)) = s(ϕ g ([x, y] g )) + λ([x, y] g ) + ϕ h (ψ(x, y)).
On the other hand, we have

[ϕ ĝ(s(x) + h), s(y) + l] ĝ + [s(x) + h, ϕ ĝ(s(y) + l)] ĝ = [s(ϕ g (x)) + λ(x) + ϕ h (h), s(y) + l] ĝ + [s(x) + h, s(ϕ g (y)) + λ(y) + ϕ h (l)] ĝ = [s(ϕ g (x)), s(y)] ĝ + [s(x), s(ϕ g (y))] ĝ = s[ϕ g (x), y] g + [s(ϕ g (x)), s(y)] ĝ -s[ϕ g (x), y] g + s[x, ϕ g (y)] g + [s(x), s(ϕ g (y))] ĝ -s[x, ϕ g (y)] g = s[ϕ g (x), y] g + ψ(ϕ g (x), y) + s[x, ϕ g (y)] g + ψ(x, ϕ g (y)). Thus, we have ϕ h (ψ(x, y)) -ψ(ϕ g (x), y) -ψ(x, ϕ g (y)) = -λ([x, y] g ), (44) 
which implies that Ob ĝ (ϕ h ,ϕg) = dλ. Therefore, the obstruction class is trivial.

Conversely, if the obstruction class is trivial, then there exists a λ : g → h such that Ob ĝ (ϕ h ,ϕg) = dλ. For any element s(x) + h ∈ ĝ, define ϕ ĝ by ϕ ĝ(s(x) + h) = s(ϕ g (x)) + λ(x) + ϕ h (h). By (44), we obtain the exact sequence of LieDer pair morphisms in Definition 6.1. Thus, (ϕ h , ϕ g ) is extensible. The proof is finished.

Obviously, we have Corollary 6.4. Let 0 → h ι → ĝ p → g → 0 be a central extension of Lie algebras. If H 2 (g; h) = 0, then any pair (ϕ h , ϕ g ) in Der(h) × Der(g) is extensible.

At the end of this section, we give the condition on a pair of derivations (ϕ h , ϕ g ) ∈ Der(h) × Der(g) such that it is extensible in every central extension of g by h. By Proposition 6.2, we can define a linear map Θ : Der(h) × Der(g) → gl(H 2 (g; h)) by

Θ(ϕ h , ϕ g )([ψ]) = [ϕ h • ψ -ψ(ϕ g ⊗ Id) -ψ(Id ⊗ ϕ g )].
Theorem 6.5. Let h be an abelian Lie algebra and g a Lie algebra. A pair of derivations (ϕ h , ϕ g ) ∈ Der(h) × Der(g) is extensible in every central extension of g by h if and only if Θ(ϕ h , ϕ g ) = 0.

Proof. We suppose Θ(ϕ h , ϕ g ) = 0. For any central extension 0 → h ι → ĝ p → g → 0, we choose a section s : g → ĝ. Then ψ : ∧ 2 g → h defined by ψ(x, y) = [s(x), s(y)] ĝ -s[x, y] g is a 2-cocycle. Moreover, we obtain that [Ob ĝ (ϕ h ,ϕg) ] = [ϕ h • ψ -ψ(ϕ g ⊗ Id) -ψ(Id ⊗ ϕ g )] = Θ(ϕ h , ϕ g )([ψ]) = 0.

• a chain map f : V → V , which consists of linear maps f 0 : V 0 → V 0 and f 1 :

V 1 → V 1 satisfying f 0 • l 1 = l 1 • f 1 ,
• a skew-symmetric bilinear map f 2 : V 0 × V 0 → V 1 such that for all x, y, z ∈ V 0 and m ∈ V 1 , the following equalities hold:

• l 1 f 2 (x, y) = f 0 (l 2 (x, y)) -l 2 (f 0 (x), f 0 (y)),

• f 2 (x, l 1 m) = f 1 (l 2 (x, m)) -l 2 (f 0 (x), f 1 (m)),

• l 2 (f 0 (x), f 2 (y, z)) + l 2 (f 0 (y), f 2 (z, x)) + l 2 (f 0 (z), f 2 (x, y)) + l 3 (f 0 (x), f 0 (y), f 0 (z)) = f 2 (l 2 (x, y), z) + f 2 (l 2 (y, z), x) + f 2 (l 2 (z, x), y) + f 1 (l 3 (x, y, z)).

A morphism is called an isomorphism if f 0 and f 1 are invertible.

Definition 7.3. A derivation of degree 0 of a Lie 2-algebra V is a triple (X 0 , X 1 , l X ), in which X = (X 0 , X 1 ) ∈ End(V 0 )⊕End(V 1 ) and l X : V 0 ∧V 0 → V 1 is a linear map, such that for all x, y, z ∈ V 0 , m ∈ V 1 , the following equalities hold:

(a) X 0 • l 1 = l 1 • X 1 , (b) 
l 1 l X (x, y) = X 0 (l 2 (x, y)) -l 2 (X 0 x, y) -l 2 (x, X 0 y), (c) l X (x, l 1 m) = X 1 (l 2 (x, m)) -l 2 (X 0 x, m) -l 2 (x, X 1 m), (d) X 1 l 3 (x, y, z) = l X (x, l 2 (y, z)) + l 2 (x, l X (y, z)) + l 3 (X 0 x, y, z) + c.p.(x, y, z).

See [START_REF] Doubek | Homotopy derivations[END_REF][START_REF] Lang | Integration of derivations for Lie 2-algebras[END_REF] for more details about derivations of Lie 2-algebras and L ∞ -algebras. We denote a Lie 2-algebra with a derivation of degree 0 by (V; (X 0 , X 1 , l X )) and call it a Lie2Der pair. In particular, a skeletal Lie 2-algebra with a derivation of degree 0 will be called a skeletal Lie2Der pair. Definition 7.4. Let (V; (X 0 , X 1 , l X )) and (V ; (X 0 , X 1 , l X )) be Lie2Der pairs. An isomorphism τ from (V; (X 0 , X 1 , l X )) to (V ; (X 0 , X 1 , l X )) consists of linear maps f 0 :

V 0 → V 0 , f 1 : V 1 → V 1 , f 2 : V 0 ∧ V 0 → V 1 and B : V 0 → V 1 such that (f 0 , f 1 , f 2
) is a Lie 2-algebra isomorphism from V to V and the following equalities hold for all x, y ∈ V 0 , m ∈ V 1 :

(a) X 0 (f 0 (x)) -f 0 (X 0 (x)) = l 1 (B(x)), (b) X 1 (f 1 (m)) -f 1 (X 1 (m)) = B(l 1 (m)), (c) f 1 (l X (x, y))+f 2 (X 0 x, y)+f 2 (x, X 0 y)-X 1 (f 2 (x, y))-l X (f 0 (x), f 0 (y)) = l 2 (B(x), f 0 (y))+l 2 (f 0 (x), B(y))-B(l 2 (x, y)).

Let V = (V 1 , V 0 , l 1 = 0, l 2 , l 3 ) be a skeletal Lie 2-algebra and (X 0 , X 1 , l X ) be a derivation of degree 0 of V. By condition (b) in Definition 7.3, we deduce that X 0 is a derivation of the Lie algebra (V 0 , l 2 ). Condition (c) in Definition 7.3 implies that (ρ, V 1 , X 1 ) is a representation of the LieDer pair (V 0 , X 0 ). Condition (d) in Definition 7.3 implies that (l 3 , -l X ) ∈ Z 3 LieDer (V 0 ; V 1 ). Conversely, if (ρ, V, ϕ V ) is a representation of the LieDer pair (g, ϕ g ) and (θ 3 , θ 2 ) ∈ Z 3 LieDer (g; V ), then we can deduce that (ϕ g , ϕ V , -θ 2 ) is a derivation of the skeletal Lie 2-algebra (V 0 → g, l 2 , l 3 = θ 3 ), where l 2 is defined by l 2 (x, y) = [x, y] g , l 2 (x, u) = -l 2 (u, x) = ρ(x)(u), ∀x, y ∈ g, u ∈ V.

Summarize the above discussion, we have

Theorem 2 . 13 .

 213 The functors (Lie/g) m g-Rep ker induce an equivalence of categories.

2. 4 . 2

 42 Monoids in LieDer/(g, ϕ g ) and (g, ϕ g )-representations form equivalent categories In the previous section we have partially completed the diagram, lifting in Corollary 2.19 the functor ker to the LieDer level (LieDer/(g, ϕg)) m (g, ϕg)-Rep (Lie/g) m g-Rep F F ker ker

Lemma 3 . 1 .Theorem 3 . 2 .

 3132 The map d and δ are commutative with each other, i.e. d • δ = δ • d. The map ∂ is a coboundary operator, i.e. ∂ • ∂=0. Proof. For n ≥ 1, since d • δ = δ • d, we have

Lemma 3 . 4 .

 34 With the above notations, (ad, sL) is a representation of the graded Lie algebra (L, [•, •]).

  Thus, we obtain that ζ • s 1 is a section of ĝ2 . Define s 2 = ζ • s 1 . Since ζ is a morphism of LieDer pair and ζ | h = Id, we have

  Then a pair (ϕ h , ϕ g ) ∈ Der(h) × Der(g) is extensible if and only if the obstruction class[Ob ĝ (ϕ h ,ϕg) ] ∈ H 2 (g; h) is trivial.Proof. Let s : g → ĝ be a section of the central extension of Lie algebras 0 → h Suppose that (ϕ h , ϕ g ) is extensible. Then there exists a derivation ϕ ĝ ∈ Der(ĝ) such that we have the exact sequence of LieDer pair morphisms in Definition 6.1. By ϕ g

	Thus, we have [Ob ĝ (ϕ h ,ϕg)	1	] = [Ob ĝ (ϕ h ,ϕg)
			ι →	ĝ p → g → 0.

2

] ∈ H 2 (g; h). The proof is finished. Now we are ready to give the main result in this section.

Theorem 6.3. Let 0 → h ι →

ĝ p → g → 0 be a central extension of Lie algebras.

The notation g[[t]] means the vector space of formal power series in t with coefficients in g, that is, for all xt ∈ g[[t]], we have xt = x 0 + x 1 t + x

t 2 + • • • , for x 0 , x 1 , x 2 , • • • ∈ g.
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Theorem 4.6. The infinitesimals of two equivalent 1-parameter formal deformations of a LieDer pair (g, ϕ) are in the same cohomology class.

Proof. Let Φ t : (ω t , φt ) → (ω t , ϕ t ) be a formal isomorphism. Then for all x, y ∈ g we have

Expanding the above identities and comparing coefficients of t, we have ω1 (x, y) = ω 1 (x, y) + ω(φ 1 (x), y) + ω(x, φ 1 (y)) -φ 1 (ω(x, y)), φ1 (x) = ϕ 1 (x) + ϕ(φ 1 (x)) -φ 1 (ϕ(x)). Thus, we have (ω 1 , φ1 ) = (ω 1 , ϕ 1 ) + ∂(φ 1 ), which implies that [(ω 1 , φ1 )] = [(ω 1 , ϕ 1 )] ∈ H 2 LieDer (g; g). The proof is finished. Definition 4.7. A 1-parameter formal deformation (ω t , ϕ t ) of a LieDer pair (g, ϕ) is said to be trivial if it is equivalent to (ω, ϕ), i.e. there exists

, where φ i ∈ C 1 (g; g) with φ 0 = Id, such that

Definition 4.8. A LieDer pair (g, ϕ) is said to be rigid if every 1-parameter formal deformation of (g, ϕ) is trivial.

Theorem 4.9. If H 2 LieDer (g; g) = 0, then the LieDer pair (g, ϕ) is rigid. Proof. Let (ω t , ϕ t ) be a 1-parameter formal deformation of the LieDer pair (g, ϕ). By Proposition 4.3, we have (ω 1 , ϕ 1 ) ∈ Z 2 LieDer (g; g). By H 2 LieDer (g; g) = 0, there exists a 1-cochain

Then setting Φ t = Id + φ 1 t, we have a deformation (ω t , φt ), where

Then by repeating the argument, we can show that (ω t , ϕ t ) is equivalent to (ω, ϕ).

Therefore, we have Proof. Suppose that a deformation (ω t , ϕ t ) of order n of the LieDer pair (g, ϕ) extends to a deformation of order n + 1. Then ( 28) and ( 29) hold for i = n + 1. Thus, we have

which implies that

Thus, the obstruction class

Then ( ω t , ϕ t ) satisfies ( 28)-( 29) for 0 ≤ i ≤ n + 1, so ( ω t , ϕ t ) is a deformation of order n + 1, which implies that (ω t , ϕ t ) is extensible.

Corollary 4.15. If H 3 LieDer (g; g) = 0, then every 2-cocycle in C 2 LieDer (g; g) is the infinitesimal of some 1-parameter formal deformation of the LieDer pair (g, ϕ).

Central extensions of a LieDer pair

In this section, we study central extensions of a LieDer pair and show that central extensions of a LieDer pair (g, ϕ g ) are controlled by the second cohomology of (g, ϕ g ) with the coefficient in the trivial representation.

Definition 5.1. Let (h, ϕ h ) be an abelian LieDer pair and (g, ϕ g ) a LieDer pair. An exact sequence of LieDer pair morphisms

Here we identify h with the corresponding subalgebra of ĝ. Therefore, we have ϕ ĝ| h = ϕ h .

Definition 5.2. Let (ĝ 1 , ϕ ĝ1 ) and (ĝ 2 , ϕ ĝ2 ) be two central extensions of (g, ϕ g ) by (h, ϕ h ). They are said to be isomorphic if there exists a LieDer pair morphism ζ : (ĝ 1 , ϕ ĝ1 ) → (ĝ 2 , ϕ ĝ2 ) such that we have the following commutative diagram:

A section of a central extension (ĝ, ϕ ĝ) of (g, ϕ g ) by (h, ϕ h ) is a linear map s : g -→ ĝ such that p • s = Id.

Let (ĝ, ϕ ĝ) be a central extension of a LieDer pair (g, ϕ g ) by an abelian LieDer pair (h, ϕ h ) and s : g → ĝ a section. We define linear maps ψ : g ∧ g → h and χ : g → h respectively by

Obviously, ĝ is isomorphic to g ⊕ h as vector spaces. Transfer the LieDer pair structure on ĝ to that on g ⊕ h, we obtain a LieDer pair (g ⊕ h, ϕ χ ), where the Lie bracket [•, •] ψ and ϕ χ are given by

The following proposition gives the conditions on ψ and χ such that (g ⊕ h, ϕ χ ) is a LieDer pair.

Proposition 5.3. With the above notations, (g⊕h, ϕ χ ) is a LieDer pair if and only if (ψ, χ) is a 2-cocycle of the LieDer pair (g, ϕ g ) with the coefficient in the trivial representation (ρ = 0, h, ϕ h ), i.e. (ψ, χ) satisfy the following equalities:

χ([x, y] g ) + ϕ h (ψ(x, y)) -ψ(ϕ g (x), y) -ψ(x, ϕ g (y)) = 0. (41)

we deduce that (40) holds. By

we deduce that (41) holds. Conversely, if (40) and (41) hold, it is straightforward to see that (g ⊕ h, ϕ χ ) is a LieDer pair. The proof is finished. Theorem 5.4. Let (h, ϕ h ) be an abelian LieDer pair and (g, ϕ g ) a LieDer pair. Then central extensions of (g, ϕ g ) by (h, ϕ h ) are classified by the second cohomology group H 2 LieDer (g; h) of the LieDer pair (g, ϕ g ) with the coefficient in the trivial representation (ρ = 0, h, ϕ h ). By Theorem 6.3, (ϕ h , ϕ g ) is extensible in the above central extension.

Conversely, for any element [ψ] ∈ H 2 (g; h), there exists a central extension 0 → h ι → g⊕h p → g → 0, where the bracket on g ⊕ h is defined by

Since (ϕ h , ϕ g ) is extensible in every central extension of g by h, by Theorem 6.3, we have

Therefore, we have Θ(ϕ h , ϕ g ) = 0. The proof is finished.

Classification of skeletal Lie2Der pairs

In this section, we call a Lie 2-algebra with a derivation of degree 0 a Lie2Der pair and show that the third cohomology group H 3 LieDer (g; V ) classifies skeletal Lie2Der pairs. See [START_REF] Baez | Higher-dimensional algebra. VI. Lie 2-algebras[END_REF] for more details about Lie 2-algebras. Definition 7.1. A Lie 2-algebra V consists of the following data:

, the following equalities are satisfied:

l 3 (l 2 (w, x), y, z) + l 2 (l 3 (w, x, z), y) + l 3 (w, l 2 (x, z), y) + l 3 (l 2 (w, z), x, y) = l 2 (l 3 (w, x, y), z) + l 3 (l 2 (w, y), x, z) + l 3 (w, l 2 (x, y), z) + l 2 (w, l 3 (x, y, z)) + l 2 (l 3 (w, y, z), x) + l 3 (w, l 2 (y, z), x).

We usually denote a Lie 2-algebra by (V 1 , V 0 , l 1 , l 2 , l 3 ) or simply by V. A Lie 2-algebra is called skeletal if l 1 = 0. There is a one-to-one correspondence between skeletal Lie 2-algebras and triples (g, (ρ, V ), l 3 ), where g is a Lie algebra, (ρ, V ) is a representation of g, and l 3 is a 3-cocycle on g with the coefficient in V . More precisely, for a skeletal Lie 2-algebra

Then, (ρ, V 1 ) is a representation of the Lie algebra (V 0 , l 2 ) and l 3 is a 3-cocycle on V 0 with the coefficient in V 1 . Definition 7.2. Let V and V be Lie 2-algebras. A morphism f from V to V consists of: Proposition 7.5. There is a one to one correspondence between skeletal Lie2Der pairs and triples (g, ϕ g ), (ρ, V, ϕ V ), (θ 3 , θ 2 ) , where (g, ϕ g ) is a LieDer pair , (ρ, V, ϕ V ) is a representation of (g, ϕ g ), and (θ 3 , θ 2 ) is a 3-cocycle on (g, ϕ g ) with the coefficient in (ρ, V, ϕ V ).

In the sequel, we give the equivalence relation between triples (g, ϕ g ), (ρ, V, ϕ V ), (θ 3 , θ 2 ) and show that there is a one-to-one correspondence between equivalence classes of such triples and isomorphism classes of skeletal Lie2Der pairs. Definition 7.6. Let (g, ϕ g ), (ρ, V, ϕ V ), (θ 3 , θ 2 ) and (g , ϕ g ), (ρ , V , ϕ V ), (θ 3 , θ 2 ) be triples as described in Proposition 7.5. They are said to be equivalent if there exist Lie algebra isomorphism α : g → g , linear isomorphism β : V → V and two linear maps γ : g ∧ g → V , η : g → V such that the following equalities hold for all x, y, z ∈ g, u ∈ V :

Theorem 7.7. There is a one-to-one correspondence between isomorphism classes of skeletal Lie2Der pairs and equivalence classes of triples (g, ϕ g ), (ρ, V, ϕ V ), (θ 3 , θ 2 ) , where (g, ϕ g ) is a LieDer pair, (ρ, V, ϕ V ) is a representation of (g, ϕ g ), and (θ 3 , θ 2 ) is a 3-cocycle on (g, ϕ g ) with the coefficient in (ρ, V, ϕ V ).

Proof. Let (g, ϕ g ), (ρ, V, ϕ V ), (θ 3 , θ 2 ) and (g , ϕ g ), (ρ , V , ϕ V ), (θ 3 , θ 2 ) be equivalent triples. By Proposition 7.5, we have two skeletal Lie 2-algebras, given by V = (V 0 → g, l 2 , l 3 = θ 3 ), V = (V 0 → g , l 2 , l 3 = θ 3 ).

Moreover, (X 0 = ϕ g , X 1 = ϕ V , l X = -θ 2 ) and (X 0 = ϕ g , X 1 = ϕ V , l X = -θ 2 ) are degree 0 derivations of V and V respectively. We define f = (f 0 = α, f 1 = β, f 2 = γ), and B = η. By condition (c) and condition (d) in Definition 7.6 and the fact that α is a Lie algebra isomorphism, f is a Lie 2-algebra isomorphism from V to V . Moreover, by conditions (a), (b) and (e) in Definition 7.6, we deduce that (V; (X 0 , X 1 , l X )) is isomorphic to (V ; (X 0 , X 1 , l X )).

The converse part can be proved similarly and we omit details.