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Robust tracking scheme for an experimental quadrotor

L.A. Blas1, M. Bonilla2, S. Salazar3, M. Malabre4 and V. Azhmyakov5

Abstract— In this paper, we present a robust tracking scheme
for an experimental quadrotor, with outdoor real-time im-
plementation. This control scheme is based on the robust
structural feedback linearization scheme, presented in [2] .
This control scheme has the advantage of combining the
classical linear control techniques with the sophisticated robust
control techniques. This control scheme is specially ad hoc for
unmanned aerial vehicles, where it is important not only to
reject the actual nonlinearities and the unexpected changes of
the structure, but also to look for the simplicity and effectiveness
of the control scheme.

keywords Quadrotor aircraft, unmanned aerial vehicle (UAV), trajectory
tracking, non-standard feedback linearization, nonlinearities rejection.

I. INTRODUCTION

In [2], we have presented a synthesis procedure of the
recently robust linear control scheme proposed in [3], which
is based on failure detection techniques. Such a linear
control approach is intended to reject linearly structured
uncertainties, which are treated as failure signals affecting the
systems dynamics. In this paper we present some necessary
adjustments for tracking some prescribed trajectory in the x–
y plane, in outdoor real-time experiments. In Section II, we
recall some preliminaires results. In Section III, we present
a drift-free estimator for overcomimng the drift due to the
integration of wind noises. In Section IV, we present outdoor
real-time experiments obtained when the quadrotor tracks a
circular trajectory in the x–y plane. And in Section V, we
conclude.

II. PRELIMINAIRES

A. Quadrotor Description

In this paper we deal with the quadrotor laboratory proto-
type shown in Figure 1.
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Figura 1: Vista del arreglo experimental
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Fig. 1. (a) Quadrotor. (b) Schematic diagram.

The motion of the quadrotor is referred to a fixed orthog-
onal axis set (earth axes) (oxyz), where oz points vertically
down along the gravity vector1

[
0 0 g

]T
, and the origin

o is located at the desired height z̄, above the ground level. φ,
θ and ψ are the Euler angles, roll, pitch and yaw, measured
respectively over the axis oBxB , oByB and oBzB ; where
(oBxByBzB) is the body axis system, with its origin oB
fixed at the centre of gravity of the quadrotor; see Figure 1.
The total mass is Mq , the moments of inertia about axis ox,
oy and oz are Ixx, Iyy and Izz , and the distance of each
rotor with respect to the centre of gravity of the quadrotor
is denoted by Lm:2

Mq = 1.36 [kg], Ixx = 0.0134 [kg m2], Iyy = 0.0140 [kg m2],

Izz = 0.0256 [kg m2], Lm = 0.245 [m]
(2.1)

In [1], we have shown that the quadrotor is represented
by the state space representations:

dxi/dt = Aixi+Biui+Siqoi, yi = Cixi , i ∈ {x, y, z, ψ},
(2.2)

Ax =




0 1 0 0
0 0 −g 0
0 0 0 1
0 0 0 0


 , Ay =




0 1 0 0
0 0 g 0
0 0 0 1
0 0 0 0


 ,

Bx = I−1
yy B4, By = I−1

xx B4,

B4 =




0
0
0
1


 , Sx = Sy =




0 0
1 0
0 0
0 1


 , Cx = Cy =




1
0
0
0




T

,

(2.3)

Az = Aψ =

[
0 1
0 0

]
, Bz = M−1

q B2, Bψ = I−1
zz B2,

Sz = Sψ = B2, B2 =

[
0
1

]
, Cz = Cψ =

[
1
0

]T
.

(2.4)

1We take the value: g = 9.81 [m s−2].
2Since the quadrotor is mechanically symmetric its cross inertia are zero.



where: xx =
[
x dx/dt θ dθ/dt

]T
, xy =[

y dy/dt φ dφ/dt
]T

, xz =
[
z dz/dt

]T
, xψ =[

ψ dψ/dt
]T

, qox =
[
qx qθ

]T
, qoy =

[
qy qφ

]T
, qoz =

qz, qoψ = qψ . The control actions, ux, uy, uz and uψ , are
related with the thrusters of the four rotors, f1, f2, f3 and f4,
by means of an invertible real constant matrix (cf. Section 5
of [1]). The nonlinear signals, qx, qy, qz, qφ, qθ and qψ , are:



qx
qy
qz


 =




θ − qxx
−φ− qyy
−qzz


 g +

1

Mq



qxx
qyy
qzz


uz , (2.5)



qφ
qθ
qψ


 =

(
J−1(η)− J−1(0)

)
τ − J−1(η)C(η,dη/dt)

dη

dt
,

(2.6)
where η =

[
φ θ ψ

]T
, τ =

[
uy ux uψ

]T
, J

and C(η,dη/dt) are the inertial and the Coriolis matrices,
defined in Appendix A of [1], and:

qxx = cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) ,
qyy = cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ) ,
qzz = cos(φ) cos(θ)− 1 .

(2.7)

B. Locally Stabilizing Feedback

In the fifth Section of [2], we have used the LQR technique
in order to locally stabilize (2.2) – (2.4) 3. For this, we have
solved the Algebraic Riccati Equations (ARE):

AT
i Pi + PiAi −PiBi(ρi I)−1BT

i Pi + Qi = 0 , (2.8)

where i ∈ {x, y, z, ψ}, and with:

Qx = Qy = 900




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2.25


 ,

Qz =

[
1 0
0 0.23

]
, Qψ =

[
1 0
0 0.6

]
,

(2.9)

(ρx, ρy, ρz, ρψ) = (1, 1, 1/19600, 1/12100) . (2.10)

Solving (2.8) for matrices (2.3) and (2.4), with the choices
(2.9) and (2.10), we have obtained (i ∈ {x, y, z, ψ}):

ui = Fixi + ūi , i ∈ {x, y}, (2.11)

ui = Fi(xi−x̄i) , i ∈ {z, ψ} , x̄z =
[
z̄ 0

]T
, x̄ψ = 0 ,

(2.12)
Fx =

[
30 32.4264 −171.9158 −45.0535

]
,

Fy =
[
−30 −32.4260 −171.9116 −45.0512

]
,

Fz =
[
−140 −69.92

]
, Fψ =

[
−110 −85.2387

]
.

(2.13)
With the state feedbacks (2.11), (2.12) and (2.13), we get the
following spectra and characteristic polynomials:

ΛAFx
= {−3214,−1.911,−0.9536± 1.585},

ΛAFy
= {−3358,−1.911,−0.9536± 1.585},

ΛAFz
= {−2.087,−49.32}, ΛAFψ

= {−1.291,−3328},

3Recall the celebrated Stability Principle of the First Approximation (see
for example [8]).

πxi(s) = det(sI−AFi) = s4 +ai,1s3 +ai,2s2 +ai,3s+ai,4 ,
(2.14)

where: AFi
.
= Ai + BiFi, i ∈ {x, y, z, ψ}.

C. Nonlinear Uncertainty Signal Estimator

In [1], we have shown that with the change of variable:4

ζi = xi+Mi


Si +

n−1∑

j=1

Mj
i Si dj/dtj


qoi(x, u) , (2.15)

the state space descriptions (2.2), fedback by (2.11) and
(2.13), take the form (i ∈ {x, y}):

dζi/dt = AFiζi + Bi (ūi + q∗i(xi, ui)) , yi = Ciζi,
(2.16)

where the nonlinear uncertainty signals, q∗i, are:

q∗i((xi, ui) = Xi


Si +

n−1∑

j=1

Mj
i Si dj/dtj


qoi(xi, ui).

(2.17)
The matrices Mi and Xi, are solutions of the matrix
equtions:

AFiMi + BiXi = I . (2.18)

In Section V.B.2 of [2], we have synthesized the following
nonlinear uncertainty signals observers for (2.2), with i ∈
{x, y} and the matrices (2.3):

dwi/dt =
(
AKi

+ BiG
`
iCi

)
wi −

(
Ki + BiG

`
i

)
yi,

ūi = G`
i (Ci wi − yi) ,

(2.19)
where: AKi

= AFi + KiCi and G`
i = −

(
CiA

−1
Ki

Bi

)` ∈
R1×1, i ∈ {x, y}, and (cf. [6]):

AFi =




0 0 0 −ai,4
1 0 0 −ai,3
0 1 0 −ai,2
0 0 1 −ai,1


 , Ki =




ai,4 − ao,4
ai,3 − ao,3
ai,2 − ao,2
ai,1 − ao,1


 ,

Ci =
[

0 0 0 1
]
, Bi =

[
ki
bi

0 0 0
]T
,

G`
i = −

(
Ci (AFi + KiCi)

−1 Bi

)`
= (ao,4 bi)/ki,

(2.20)
where: i ∈ {x, y}, (ai,1, ai,2, ai,3, ai,4) are the coefficients
of the polynomials (2.14), and: (kx, bx) = (−g, Iyy) and
(ky, by) = (g, Ixx).

Let us note that the output signals of the nonlinear uncer-
tainty signals observers (2.19) are the negative estimations of
the nonlinear uncertainty signals q∗i, namely: ūi = −q̂∗i.

The transfer functions F
CLi

(s) of the closed loop system
are (yi v.s. q∗i):5

F
CLi

(s) = Fζi(s)GHPF(s), (2.21)

where:

Fζi(s) = Ci

(
sI−AFi

)−1
Bi =

ki
biπxi(s)

, (2.22)

4Cf. Lemma 1 and Theorem 1 of [2].
5See Section IV.D of [2].



GHPF(s) = 1− Fe(s) = G`
i Ci (sI−AKi

)
−1

Bi

= 1− ao,4
/
πei(s) = s π̄w(s)

/
πe(s),

(2.23)

and:

πe(s) = det (sI−AKi)
= s4 + ao,1 s3 + ao,2 s2 + ao,3 s + ao,4,

(2.24)

πw(s) = det
(
sI− (AKi

+ BiG
`
iCi)

)

= s (s3 + ao,1 s2 + ao,2 s + ao,3),
(2.25)

πe(s) = s π̄
w

(s) + ao,4 . (2.26)

Following a root locus procedure, in Section V.B.1 of [2] we
have deduced:

s π̄w(s) = s (s + 4.75 %c)(s + 4 %c)(s + 3.5 %c),
(2.27)

πe(s) = (s + %c)
2 (s2 + 10.25 %c s + 28.125 %2

c),
(2.28)

ao,4 = 28.125 %4
c , (2.29)

and that the cutoff frequency ωc of the high-pass filter

GHPF( ω) =
(ω2 − ao,2)ω2 −  (ao,1ω

2 − ao,3)ω

((ω2 − ao,2)ω2 + ao,4)−  (ao,1ω
2 − ao,3)ω

(2.30)
is:

ωc =
√
ao,2/2

√
1−

√
1− 2 ao,4/a

2
o,2 = 0.5339 %c [rad/s] .

(2.31)
We then have to adjust %c sufficiently higher than the
bandwidth BW of the Fourier transform of q∗i, F{q∗i},
i ∈ {x, y}. Experimentally, we have found that %c = 18
is a good choice for our laboratory prototype, thus:

πe(s) = s4 + 220.5 s3 + 16078.5 s2 + 387828 s + 2952450 .
(2.32)

III. DRIFT-FREE ESTIMATOR

The nonlinear uncertainty signal estimator (2.19) has a
good performance when the quadrotor is in hover flying.

However, when we wish that the quadrotor tracks some
prescribed trajectory in the x–y plane, sometimes the quadro-
tor suffers a drift phenomenon. Doing a frequency analysis of
the recorded x and y signals in hover flying (in outdoor real-
time experiments), we have found that the signal disturbance
is well approximated by:

d(t) = 0.009 sin(0.85t) + 0.0115ηd(t) + 0.0073; (3.1)
ηd(t) = sin(2.1π(sin(2π t/T ) + 1)) , (3.2)

with 2π/T = = .4. Analyzing (3.1), we deduce: (i) The
constant term 0.0073 is easily compensated by the integral
term of the nonlinear uncertainty estimator, see (2.25). (ii)
The sinusoidal term 0.009 sin(0.85t) is certainly attenuated
by the high-pass filter GHPF(s), see (2.21) and (2.23). Then,
the ηd(t) term is the cause of the drift phenomenon.

In order to overcome the quadrotor drift due to the
integration of wind noises like (3.2), we have proceeded as
in [4] and [5]; that is to say, we have shifted the pole at the
origin of (2.19), slightly into the left-half complex plane (cf.

(2.25)). For this, we have reduced lightly the static gain G`
i

of the nonlinear uncertainty signal estimator (2.19), namely:

dwdf,i/dt =
(
AKi

+ (1− ε)BiG
`
iCi

)
wdf,i

−
(
Ki + (1− ε)BiG

`
i

)
yi ,

ūdf,i = (1− ε) G`
i (Ci wdf,i − yi) ,

(3.3)

where ε is a sufficiently small positive constant and i ∈
{x, y}.

Let us note that the output signals of the drift-free esti-
mators (3.3) are −(1 − ε) times the nonlinear uncertainty
signals q∗i, namely: ūi = −(1− ε)q̂∗i.

Now, the characteristic polynomial of (AKi
+ (1 −

ε)BiG
`
iCi) has no roots at the origin (recall (2.20) and cf.

(2.25)):

πwdf (s) = det
(
sI− (AKi

+ (1− ε)BiG
`
iCi)

)

πwdf (0) = det AKi det
(
−1− (1− ε)CiA

−1
Ki

BiG
`
i

)

= −ε 6= 0 .

A. Closed loop system

Applying (3.3) to (2.16), we get the closed loop system
represented by (cf. (4.16) and (4.17) of [2]):

d
dt

[
edf,i
ζi

]
= A

CLdf,i

[
edf,i
ζi

]
+ B

CLi
q∗i ,

yi = C
CLi

[
edf,i
ζi

]
,

(3.4)

A
CLdf,i

=

[
AKi

0
(1− ε)BiG

`
iCi AFi

]
, B

CLi
=

[
−Bi

Bi

]
,

C
CLi

=
[

0 Ci

]
,

(3.5)
where: edf,i = wdf,i − ζi.
The transfer function of Σ(A

CLdf,i
, B

CLi
, C

CLi
) is (cf.

(4.18) and (4.19) of [2]):

F
CLdf,i

(s) = C
CLi

(
sI−C

CLi

)−1
B
CLi

= Fζi(s)
(
I − Fedf,i(s)

)
, (3.6)

Fζi(s) = Ci (sI−AFi)
−1

Bi ,

Fedf,i(s) = (1− ε) G`
i Ci (sI−AKi)

−1
Bi , (3.7)

together with (2.20).
From (3.3), (2.20) and (3.7), we get (recall (2.24) and

(2.26)):6

πwdf (s) = s π̄
w

(s) + ε ao,4 , (3.8)
Fedf,i(s) = (1− ε) ao,4/πe(s) , (3.9)

B. Frequency response

The closed loop transfer function (3.6) incorporates the
high-pass filter (recall (3.9), (2.26) and (3.8)):

GHPFdf (s) = 1− Fedf,i(s) = 1− (1−ε)ao,4
πe(s)

=
s π̄w (s)+ε ao,4

πe(s)
,

(3.10)

6πwdf,i (s) = det(s I4 − ((AFi + KiCi) + (1− ε)BiG`
iCi)).



GHPFdf ( ω) =
((ω2−ao,2 )ω2+ε ao,4 )− (ao,1ω

2−ao,3 )ω

((ω2−ao,2 )ω2+ao,4 )− (ao,1ω
2−ao,3 )ω .

(3.11)

The cutoff frequency ωcdf of the high-pass filter GHPFdf ( ω)
for ε = 1/50 is (recall (2.28) and cf. (2.31)):7

ωcdf =
√
ao,2/2

√
1−

√
1− 2 (1 + ε) ao,4/a

2
o,2

= 0.5392 %c [rad/s] .
(3.12)

In Figure 2, we compare the Bode plots of GHPF( ω), (2.30)
and (2.28), and GHPFdf ( ω), (3.11) and (2.28), with %c =
18 and ε = 1/50. From Figure 2, we realize that the
high frequencies behaviors are very similar, and the low
frequencies are attenuated by the factor ε. Now, there is no
poles at the origin, avoiding in this way the drift phenomena
due to the integration of wind noises like (3.2).

4.2. Simulación numérica

del sistema en lazo cerrado ūx, ver figura 4.1.

Para los valores obtenidos en la subsección 4.2.2 (cf. (4.19) y (4.18)) se tiene

G(s) = 1− axo,4
πex(s)

=
s(s3 + axo,1s

2 + axo,2s + axo,3)

s4 + axo,1s
3 + axo,2s

2 + axo,3s + axo,4

=
s(s + 351.5)(s + 296)(s + 259)

(s + 74)2(s2 + 758.5 s + 154012.5)

=
s (s3 + 906.5 s2 + 271746.5 s + 26947396)

s4 + 906.5 s3 + 271746.5 s2 + 26947396 s + 843372455
.

(4.41)

En la figura 4.3 se muestra el diagrama de Bode de (4.41).
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Figura 4.3: Gráfica de Bode de magnitud. |p̄1| = 74, |̄s2| = 351.5, |̄s3| = 296, |̄s4| = 259,

ω̄n = 392.44 rad/s y ζ̄ = 0.966.

De (4.41) y de la figura 4.3, se tienen las siguientes observaciones

1. La frecuencia de corte del filtro es

ωc =

√
axo,2

2
−
√
a2xo,2 − 2axo,4

2
= 39.5 rad/s . (4.42)

43

4.2. Simulación numérica
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Fig. 2. (a) Bode plot of |GHPF( ω)|db, (2.30) and (2.28), with %c = 18.
|p̄1| = 18, |̄s2| = 85.5, |̄s3| = 72, |̄s4| = 63, ω̄n = 95.46 [rad/s],
ζ̄ = 0.966 and ωc = 9.61 [rad/s]; |GHPF(0)| = 0 and |GHPF(∞)| = 1.
(b) Bode plot of

∣∣∣GHPFdf ( ω)
∣∣∣
db

, (3.11) and (2.28), with %c = 18 and ε

= 1/50.
∣∣p̄1df ∣∣ = 18,

∣∣̄s2df ∣∣ = 85.5,
∣∣̄s3df ∣∣ = 72,

∣∣̄s4df ∣∣ = 63, ω̄ndf =

95.46 [rad/s], ζ̄ = 0.966 and ωcdf = 9.71 [rad/s];
∣∣∣GHPFdf (0)

∣∣∣ = ε =

1/50 = −34 db and
∣∣∣GHPFdf (∞)

∣∣∣ = 1.

IV. TRAJECTORY TRACKING

In this section we present outdoor real-time experiments
obtained when the quadrotor tracks a circular trajectory in
the x–y plane. For this:

1) The quadrotor is locally stabilized with the LQR of
Section II-B, and robustly linearized with the drift-free
estimators of Section III.

2) An optimal state trajectory is synthesized for reaching
a given local stationary point.

3) The circular trajectory is partitioned by a finite set of
suitable local stationary points.

A. Control Scheme

In [3], we have shown that the nonlinear uncertainty signal
estimator (2.19), has two interesting properties: it enlarges
the stability neighborhood and it creates an attraction neigh-
borhood Bρ

∗∗
, of radius ρ

∗∗
, around the stationary point (see

Figure 3 of [3]).

7Doing: |GHPFdf ( ω)| = 1, one gets: 2ao,4ω
4 − 2ao,2ao,4ω

2 + (1 +

ε) a2o,4 = 0.

In consequence, we have partitioned the desired trajectory
for tracking, x∗i (t) (i ∈ {x, y}), t ∈ [0, Tf ], by a set of N+1
stationary points:

Λ∗
SPi

=
{

x̄∗0,i, x̄∗1,i, . . . , x̄∗N,i
}
, x∗i (kTs) = x̄∗k,i, (4.13)

where: k ∈ {0, 1, . . . , N}, NTs = Tf and i ∈ {x, y};
Ts is the trajectory sampling time and Tf is the flying time.
Then, the local stabilizing feedbacks (2.11) and the drift-free
estimators (3.3) take the forms, respectively:

ui = Fi(xi − x∗i ) + ūdf,i , (4.14)

d
dtwdf,i =

(
AKi + (1− ε)BiG

`
iCi

)
wdf,i

−
(
Ki + (1− ε)BiG

`
i

)
Ci(xi − x∗i ),

ūdf,i = (1− ε) G`
i (Ci wdf,i −Ci(xi − x∗i )) ,

(4.15)
where i ∈ {x, y, ψ}, and together with (2.13), (2.20), (2.32)
and ε = 1/508.

B. Trajectory Planning
1. Optimal state trajectory: In order to synthesize the

optimal state trajectories which reach a given local stationary
point, let us consider the linear state space descriptions (cf.
(2.2), (2.3), (2.11) and (2.13)):

dx∗i /dt = AFix
∗
i + Biū

∗
i , i ∈ {x, y} , (4.16)

where: AFi
.
= Ai + BiFi, i ∈ {x, y}, and with initial

conditions: x∗i (0) = xo,i; let us note that the pairs (AFi , Bi)
are controllable (cf. (2.3)).

We are interested in finding a minimal norm control input
ū∗i , such that: x∗i (Ts) = 0, where Ts is a given finite time,
Ts > 0.

This is a classical minimum norm problem of seeking
the closest vector to the origin lying in a variety of finite
codimension, in a Hilbert space, and it is solved with the help
of the Projection Theorem. Indeed, according to Theorem 2
of Section 3.3 of [7], the control input ū∗i solving the problem
has the form (see also Theorem 1.1 of [9]):

ū∗i (t) = −F
Fi

(Ts − t)W−1
iTs

exp (AFiTs) xo,i, (4.17)

i ∈ {x, y}, t ∈ [0, Ts], where:9

F
Fi

(t) = BT
i exp

(
AT

Fi
t
)
,

WiTs
=
∫ Ts

0
FT

Fi
(Ts − τ)F

Fi
(Ts − τ)dτ.

(4.18)

From (4.16), (4.17) and (4.18), we get for all the time
intervals,

[
kTs, (k + 1)Ts

)
, k ∈

{
0, 1, . . . , (N − 1)

}
, the

following optimal trajectories:

x∗i (t) = exp (AFi(t− kTs)) x̄∗k,i

+

∫ t

kTs

FT
Fi

(t− τ)β∗i (t, τ)v∗k,i dτ,
(4.19)

8 For the ψ dynamics, we have chosen: x∗
ψ = 0, AFψ =[

0 −aψ,2
1 −aψ,1

]
, Bψ =

[
1/Izz

0

]
, Kψ =

[
aψ,2 − ao,2
aψ,1 − ao,1

]
, Cψ

=
[

0 1
]
, G`

ψ = −
(
Cψ (AFψ + Ko

ψCψ)−1 Bψ

)`
= ao,2 Izz ,

where: πe(s) = s2 + ao,1 s + ao,2 = s2 + 208 s + 2704, and ε = 1/10.
9Since the pairs (AFi , Bi) are controllable, the matrices WiTs

are
invertible [9].



β∗i (t, τ) = F
Fi

(t− τ)W−1
iTs

,

v∗k,i = x∗(k+1),i − exp (AFiTs) x̄∗k,i ,
(4.20)

where: x̄∗k,i ∈ Λ∗
SPi

, i ∈ {x, y} (recall (4.13)).
2. Stationary points set: We are interested in following

the circular trajectory:

x2
∗(t) + (y∗(t)− r∗)2 = r2

∗ , (4.21)

namely:

x∗(t) = r∗ sin(ωst) and y∗(t) = r∗ (1− cos(ωst)) ,
(4.22)

where: ωs = 2π/Tf . Partitioning Tf , in N points we get
(t = (k/N)Tf , k ∈ {0, 1, . . . , N}):10

(
x̄∗k,x, x̄∗k,y

)
= r∗

(

[
sin (αk) ωs cos (αk)

ω2
s

g sin (αk)
ω3
s

g cos (αk)
]T
,

[
(1− cos (αk)) ωs sin (αk)

ω2
s

g cos (αk)

−ω3
s

g sin (αk)
]T )

,

(4.23)
where: αk = 2π k/N .

C. Outdoor real-time experiments

In this Section we present outdoor real-time experiments,
when tracking a circular trajectory of a radius of 5 [m], in
the x–y plane. For this, we have proceeded as follows:
• We have locally stabilized the Quadrotor with the state

feedbacks (4.14) (for i ∈ {x, y, z}) and (2.12) (for i =
z), together with (2.13).

• We have robustly linearized the quadrotor with the drift-
free estimators (4.15) (for i ∈ {x, y, z}), together with
(2.20), (2.32) and11 ε = 1/50.

• The circular trajectory for tracking was generated with
the help of (4.19), (4.20), (4.18) and (4.23), with: r∗ =
5 [m] and Ts = 1 [s] (recall (2.3) and (2.13)).12

We have tracked the circular trajectory (4.21) with the
radius r∗ = 5 [m], a sampling time of Ts = 1 [s], and a
partition of N = 20 points, namely: Tf = 20 [s]. In Figure
3, we show the obtained results when applying the local
stabilizing feedbacks (4.14), with and without the drift-free
estimators (4.15). We compare the obtained path v.s. the
goal path (4.21), and the quadrotor (x, y)–trajectories v.s.
the references (4.22). We also show the tracking error,

eC (t) =
√

(x(t)− x∗(t))2 + (y(t)− y∗(t))2, (4.24)

when applying the local stabilizing feedbacks (4.14) together
with the drift-free estimators (4.15), i ∈ {x, y}, we have

10From (2.3) and (4.16), we have: x∗
2,x = dx∗

1,x/dt, x∗
3,x =

−g−1dx∗
2,x/dt, x∗

4,x = dx∗
3,x/dt, x∗

2,y = dx∗
1,y/dt, x∗

3,y =

g−1dx∗
2,y/dt, x

∗
4,y = dx∗

3,y/dt.
11Recall footnote 8.
12In , we give details on the numerical aspects of (4.19) and (4.20).

obtained the maximum peak error: ‖eC‖p = 0.5463 m and
the root mean square error: ‖eC‖rms = 0.2992 m, where:

‖eC‖p = max
t∈ [0, Tf ]

eC (t), ‖eC‖rms =

√
1

Tf

∫ Tf

0

e2
C
(t)dt .

(4.25)
While, when applying only the local stabilizing feedbacks
(4.14), i ∈ {x, y}, we have obtained the maximum peak
error: ‖eC‖p = 2.3582 m and the root mean square error:
‖eC‖rms = 1.0277 m. Thus, with the combination, local
stabilizing feedbacks (4.14) and drift-free estimators (4.15),
we get the efficiencies: effp = 89.074 % and effrms =
91.537 %, and with only the local stabilizing feedbacks
(4.14), we get the efficiencies: effp = 52.836 % and effrms

= 70.932 %, where:13

effp =
(

1− ‖eC‖p /r∗
)
× 100%,

effrms =
(
1−
√

2 ‖eC‖rms /r∗
)
× 100% .

(4.26)
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Fig. 3. Tracking of a circular trajectory in the plane x–y with a 5 [m]
radius in 20 [s] (N = 20 and Ts = 1 [s]). (a, b) x [m] v.s. y [m]. (c, d)
x [m] v.s. t [s] and y [m] v.s. t [s]. (e, f) ‖eC (t)‖ [m] v.s. t [s]. Applying
the local stabilizing feedbacks (4.14) together with the drift-free estimators
(4.15): (a) and (c). Applying only the local stabilizing feedbacks (4.14): (b)
and (d). (a, b) Comparison of the obtained path v.s. the goal path (4.21). (c,
d) Tracking error eC (t) (see (4.24)).

The quadrotor was flown at an altitude around14 3 and 6
[m]; see Figure 4.

13Recall that:
√

(1/Tf )
∫ Tf
0 sin2(2πt/Tf )dt = 1/

√
2.

14This altitude was visually fixed with the only purpose of having a good
sight.
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Fig. 4. Yaw trajectories ψ [◦] v.s. t [s]. (a) Applying (4.14) and (4.15). (b)
Applying only (4.14): (b) and.

From these outdoor real-time experiments, we see that for
the slow trajectory we have obtained an efficiency improve-
ment around 10 %, when applying the drift-free estimators
(4.15); and for the fast trajectory the efficiency improvement
was around 20 %. Let us also note that the yaw error
diminishes by a 1/3 factor, when applying the drift-free
estimator (4.15); see Figure 4.

V. CONCLUSION

In this paper, we have tackled the problem of tracking
some prescribed trajectory in the x–y plane. We have found
that there exists a drift phenomenon due to the wind noise.
In Section III, we have characterized the disturbance wind
(see (3.1)), and we have checked that when the term (3.2),
passes trough the integral action of the nonlinear uncertainty
estimator (2.19), such a drift phenomenon occurs. Depending
on the values of the scaling factors of (3.1) this drift
phenomenon could arise, and when arising the nonlinear
uncertainty signal estimator (2.19) will not have a good
performance. Thus, we have to do some adjustments to the
nonlinear uncertainty signal estimator (2.19) in order to
ensure a good performance not mattering the scale factors
of (3.1).

To overcome the quadrotor drift due to the integration of
wind disturbance like (3.2), we have proceeded as in [4],
[5] shifting the pole at the origin of (2.19) slightly into the
left-half complex plane, having now the drift-free estimator
(3.3); see also the comparison shown in Figure 2.

We have done outdoor real-time experiments obtained
when the quadrotor tracks a circular trajectory of a radius
of 5 [m] in the x–y plane; we have first tracked a 5 [m]
radius circular trajectory in 60 [s] (slow trajectory), and then
a 5 [m] radius circular trajectory in 20 [s] (fast trajectory). In
Section IV, we are showing the obtained results for the fast
trajectory case. From these experiences we got an apreciable
reduction on the tracking and yaw errors when applying the
drift-free estimators (4.15). We have obtained an efficiency
improvement around of the 10 %, in the slow trajectory
experience, and an efficiency improvement around of the
20 %, in the fast trajectory experience, see Figure 3; with
respect to the yaw error, it decreased by a 1/3 factor.
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APPENDIX

For synthesizing the optimal state trajectory given by
(4.19) and (4.20), we have first applied the change of
bases: (AFi , Bi) = (T−1

i AFiTi, T
−1
i Bi), i ∈ {x, y},

in order to simplify the exponential matrix computation,

where: T−1
x =

 0 626.5 −3216.0 0
0 −1.205 0.003678 0
1 0.5236 −0.001597 0
0 −626.1 3216.0 1

 and T−1
y =

 0 654.5 3360.0 0
0 1.205 0.00352 0
1 0.5236 0.001529 0
0 654.2 3360 1

.15

1) The convolution integrals of (4.19) were synthesized with the
discretization of the state space descriptions Σ(AFi , Bi),
i ∈ {x, y}, in the time interval [0, Ts), Ts = 1, and with the
initial conditions (4.23).

2) The exponential matrices of (4.19) are:
exp (AFxTs) = Tx exp

(
AFxTs

)
T−1

x = 0.6118 0.4581 −1.1060 −0.0003
−0.7364 −0.1841 −0.2737 −0.0001

0.0186 0.0952 −0.2909 −0.0001
−0.1938 −0.1908 0.1764 0.0001

 and:

exp
(
AFyTs

)
= Ty exp

(
AFyTs

)
T−1

y = 0.6118 0.4581 1.1060 0.0003
−0.7364 −0.1841 0.2737 0.0001
−0.0186 −0.0952 −0.2909 −0.0001

0.1938 0.1908 0.1764 0.0001

.

3) The β∗
i (t, τ) are: β∗

x (t, τ) = FFx
(t− τ)W−1

xTs
T−1

x

= k1,x ea1,x (t−1) + k2,x ea2,x (t−1) +
(
k3,x cos(ωx (t − 1))

+ k4,x sin(ωx (t − 1))
)

ebx (t−1) and β∗
y (t, τ) = FFy

(t −
τ)W−1

yTs
T−1

y = k1,y ea1,y (t−1) + k2,y ea2,y (t−1) +(
k3,y cos(ωy (t−1)) + k4,y sin(ωy (t−1))

)
eby (t−1), where:

a1,x = 3214, a2,x = 1.911, ωx = 1.585, bx = 0.9536,
a1,y = 3358, a2,y = 1.911, ωy = 1.585, by = 0.9536,
[ k1,x k2,x k3,x k4,x ] = 556.9
−333.6
−817.3

90.36

−2266.0
1155.0
2234.0
−0.6939

1957.0
−1020.0
−1652.0

0.5131

−182.2
171.6
531.3

−0.1651

 and

[ k1,y k2,y k3,y k4,y ] = −556.8
333.5
−817.2

90.35

2266.0
−1154.0

2234.0
−0.6641

−1957.0
1020.0
−1652.0

0.4911

182.1
−171.6

531.2
−0.158

.

15In this section we present all the numerical values with four signifi-
cant digits, but in the outdoor real-time experiments we have used eight
significant digits.


