L A Blas 
  
Moisés Bonilla 
email: mbonilla@cinvestav.mx
  
Sergio Salazar 
email: sergio.salazar.cruz@gmail.com
  
M Malabre 
email: michel.malabre@ls2n.fr
  
V Azhmyakov 
  
Luis Ángel Blas 
  
Luis Angel 
email: anghelblas@gmail.com
  
Blas Sanchez 
  
Dr Moisés Bonilla Estrada 
  
Dr Sergio Salazar Cruz 
  
  
  
  
  
  
Robust tracking scheme for an experimental quadrotor
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In this paper, we present a robust tracking scheme for an experimental quadrotor, with outdoor real-time implementation. This control scheme is based on the robust structural feedback linearization scheme, presented in [2] . This control scheme has the advantage of combining the classical linear control techniques with the sophisticated robust control techniques. This control scheme is specially ad hoc for unmanned aerial vehicles, where it is important not only to reject the actual nonlinearities and the unexpected changes of the structure, but also to look for the simplicity and effectiveness of the control scheme.

keywords Quadrotor aircraft,

The motion of the quadrotor is referred to a fixed orthogonal axis set (earth axes) (oxyz), where oz points vertically down along the gravity vector 1 0 0 g T , and the origin o is located at the desired height z, above the ground level. (2.1) In [START_REF] Blas | Structural feedback linearization based on nonlinearities rejec-tion[END_REF], we have shown that the quadrotor is represented by the state space representations:

dx i /dt = A i x i +B i u i +S i q oi , y i = C i x i , i ∈ {x, y, z, ψ}, (2.2) 
A x =     0 1 0 0 0 0 -g 0 0 0 0 1 0 0 0 0     , A y =     0 1 0 0 0 0 g 0 0 0 0 1 0 0 0 0     , B x = I -1 yy B 4 , B y = I -1 xx B 4 , B 4 =     0 0 0 1     , S x = S y =     0 0 1 0 0 0 0 1     , C x = C y =     1 0 0 0     T , (2.3) 
A z = A ψ = 0 1 0 0 , B z = M -1 q B 2 , B ψ = I -1 zz B 2 , S z = S ψ = B 2 , B 2 = 0 1 , C z = C ψ = 1 0 T .
(2.4) 1 We take the value: g = 9.81 [m s -2 ]. 2 Since the quadrotor is mechanically symmetric its cross inertia are zero.

where:

x x =
x dx/dt θ dθ/dt T , x y = y dy/dt φ dφ/dt T , x z = z dz/dt T , x ψ = ψ dψ/dt T , q ox = q x q θ T , q oy = q y q φ T , q oz = q z , q oψ = q ψ . The control actions, u x , u y , u z and u ψ , are related with the thrusters of the four rotors, f 1 , f 2 , f 3 and f 4 , by means of an invertible real constant matrix (cf. Section 5 of [START_REF] Blas | Structural feedback linearization based on nonlinearities rejec-tion[END_REF]). The nonlinear signals, q x , q y , q z , q φ , q θ and q ψ , are:

  q x q y q z   =   θ -q xx -φ -q yy -q zz   g + 1 M q   q xx q yy q zz   u z , (2.5) 
  q φ q θ q ψ   = J -1 (η) -J -1 (0) τ -J -1 (η)C(η, dη/dt) dη dt , (2.6) where η = φ θ ψ T , τ = u y u x u ψ T , J
and C(η, dη/dt) are the inertial and the Coriolis matrices, defined in Appendix A of [START_REF] Blas | Structural feedback linearization based on nonlinearities rejec-tion[END_REF], and:

q xx =
cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) , q yy = cos(φ) sin(θ) sin(ψ)sin(φ) cos(ψ) , q zz = cos(φ) cos(θ) -1 .

(2.7)

B. Locally Stabilizing Feedback

In the fifth Section of [START_REF] Blas | Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor[END_REF], we have used the LQR technique in order to locally stabilize (2.2) -(2.4) 3 . For this, we have solved the Algebraic Riccati Equations (ARE):

A T i P i + P i A i -P i B i (ρ i I) -1 B T i P i + Q i = 0 , (2.8 
) where i ∈ {x, y, z, ψ}, and with:

Q x = Q y = 900     1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2.25     , Q z = 1 0 0 0.23 , Q ψ = 1 0 0 0.6 , (2.9) 
(ρ x , ρ y , ρ z , ρ ψ ) = (1, 1, 1/19600, 1/12100) .

(2.10) Solving (2.8) for matrices (2.3) and (2.4), with the choices (2.9) and (2.10), we have obtained (i ∈ {x, y, z, ψ}): (2.13) With the state feedbacks (2.11), (2.12) and (2.13), we get the following spectra and characteristic polynomials: 3 Recall the celebrated Stability Principle of the First Approximation (see for example [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF]).

u i = F i x i + ūi , i ∈ {x, y}, (2.11) 
u i = F i (x i -x i ) , i ∈ {z, ψ} , xz = z 0 T , xψ = 0 , ( 2 
Λ A Fx = {-3214, -1.911, -0.9536 ± 1.585}, Λ A Fy = {-3358, -1.911, -0.9536 ± 1.585}, Λ A Fz = {-2.087, -49.32}, Λ A F ψ = {-1.291, -3328},
π xi (s) = det(sI -A Fi ) = s 4 + a i,1 s 3 + a i,2 s 2 + a i,3 s + a i,4 ,
(2.14) where:

A Fi . = A i + B i F i , i ∈ {x, y, z, ψ}.

C. Nonlinear Uncertainty Signal Estimator

In [START_REF] Blas | Structural feedback linearization based on nonlinearities rejec-tion[END_REF], we have shown that with the change of variable:4 

ζ i = x i +M i   S i + n-1 j=1 M j i S i d j /dt j   q oi (x,
dζ i /dt = A Fi ζ i + B i (ū i + q * i (x i , u i )) , y i = C i ζ i , (2.16 
) where the nonlinear uncertainty signals, q * i , are:

q * i ((x i , u i ) = X i   S i + n-1 j=1 M j i S i d j /dt j   q oi (x i , u i ).
(2.17) The matrices M i and X i , are solutions of the matrix equtions: 

A Fi M i + B i X i = I . ( 2 
dw i /dt = A Ki + B i G i C i w i -K i + B i G i y i , ūi = G i (C i w i -y i ) , ( 2 

.19) where: A

Ki = A Fi + K i C i and G i = -C i A -1
Ki B i ∈ R 1×1 , i ∈ {x, y}, and (cf. [START_REF] Kailath | Linear systems[END_REF]):

A Fi =     0 0 0 -a i,4 1 0 0 -a i,3 0 1 0 -a i,2 0 0 1 -a i,1     , K i =     a i,4 -a o,4 a i,3 -a o,3 a i,2 -a o,2 a i,1 -a o,1     , C i = 0 0 0 1 , B i = ki bi 0 0 0 T , G i = -C i (A Fi + K i C i ) -1 B i = (a o,4 b i )/k i ,
(2.20) where: i ∈ {x, y}, (a i,1 , a i,2 , a i,3 , a i,4 ) are the coefficients of the polynomials (2.14), and:

(k x , b x ) = (-g, I yy ) and (k y , b y ) = (g, I xx ).
Let us note that the output signals of the nonlinear uncertainty signals observers (2.19) are the negative estimations of the nonlinear uncertainty signals q * i , namely: ūi = -q * i .

The transfer functions F CL i (s) of the closed loop system are (y i v.s. q * i ):5 

F CL i (s) = F ζi (s)G HPF (s), (2.21) 
where:

F ζi (s) = C i sI -A Fi -1 B i = k i b i π xi (s) , (2.22) 
G HPF (s) = 1 -F e (s) = G i C i (sI -A Ki ) -1 B i = 1 -a o,4 π ei (s) = s πw (s) π e (s), (2.23) 
and:

π e (s) = det (sI -A Ki ) = s 4 + a o,1 s 3 + a o,2 s 2 + a o,3 s + a o,4 , (2.24) 
π w (s) = det sI -(A Ki + B i G i C i ) = s (s 3 + a o,1 s 2 + a o,2 s + a o,3 ), (2.25 
)

π e (s) = s πw (s) + a o,4 . (2.26) 
Following a root locus procedure, in Section V.B.1 of [START_REF] Blas | Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor[END_REF] we have deduced:

s πw (s) = s (s + 4.75 c )(s + 4 c )(s + 3.5 c ), (2.27) π e (s) = (s + c ) 2 (s 2 + 10.25 c s + 28.125 2 c ), (2.28) a o,4 = 28.125 4 c , (2.29) 
and that the cutoff frequency ω c of the high-pass filter

G HPF ( ω) = (ω 2 -a o,2 )ω 2 - (a o,1 ω 2 -a o,3 )ω ((ω 2 -a o,2 )ω 2 + a o,4 ) - (a o,1 ω 2 -a o,3 )ω (2.30) is: ω c = a o,2 /2 1 -1 -2 a o,4 /a 2 o,2 = 0.5339 c [rad/s] .
(2.31) We then have to adjust c sufficiently higher than the bandwidth B W of the Fourier transform of q * i , F{q * i }, i ∈ {x, y}. Experimentally, we have found that c = 18 is a good choice for our laboratory prototype, thus: π e (s) = s 4 + 220.5 s 3 + 16078.5 s 2 + 387828 s + 2952450 .

(2.32)

III. DRIFT-FREE ESTIMATOR

The nonlinear uncertainty signal estimator (2.19) has a good performance when the quadrotor is in hover flying.

However, when we wish that the quadrotor tracks some prescribed trajectory in the x-y plane, sometimes the quadrotor suffers a drift phenomenon. Doing a frequency analysis of the recorded x and y signals in hover flying (in outdoor realtime experiments), we have found that the signal disturbance is well approximated by:

d(t) = 0.009 sin(0.85t) + 0.0115η d (t) + 0.0073; (3.1) η d (t) = sin(2.1π(sin(2π t/T ) + 1)) , (3.2)
with 2π/T = = .4. Analyzing (3.1), we deduce: (i) The constant term 0.0073 is easily compensated by the integral term of the nonlinear uncertainty estimator, see (2.

25). (ii)

The sinusoidal term 0.009 sin(0.85t) is certainly attenuated by the high-pass filter G HPF (s), see (2.21) and (2.23). Then, the η d (t) term is the cause of the drift phenomenon.

In order to overcome the quadrotor drift due to the integration of wind noises like (3.2), we have proceeded as in [START_REF] Gavin | Drift-free integrators[END_REF] and [START_REF] Horowitz | The Art of Electronics[END_REF]; that is to say, we have shifted the pole at the origin of (2.19), slightly into the left-half complex plane (cf.

(2.25)). For this, we have reduced lightly the static gain G i of the nonlinear uncertainty signal estimator (2.19), namely:

dw df,i /dt = A Ki + (1 -)B i G i C i w df,i -K i + (1 -)B i G i y i , ūdf,i = (1 -) G i (C i w df,i -y i ) , (3.3) 
where is a sufficiently small positive constant and i ∈ {x, y}.

Let us note that the output signals of the drift-free estimators (3.3) are -(1 -) times the nonlinear uncertainty signals q * i , namely: ūi = -(1 -)q * i . Now, the characteristic polynomial of

(A Ki + (1 - )B i G i C i )
has no roots at the origin (recall (2.20) and cf. (2.25)):

π w df (s) = det sI -(A Ki + (1 -)B i G i C i ) π w df (0) = det A Ki det -1 -(1 -)C i A -1 Ki B i G i = -= 0 .
A. Closed loop system Applying (3.3) to (2.16), we get the closed loop system represented by (cf. (4.16) and (4.17) of [START_REF] Blas | Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor[END_REF]): 

d dt e df,i ζ i = A CL df,i e df,i ζ i + B CL i q * i , y i = C CL i e df,i ζ i , (3.4) 
A CL df,i = A Ki 0 (1 -)B i G i C i A Fi , B CL i = -B i B i , 
C CL i = 0 C i , (3.5 
F CL df,i (s) = C CL i sI -C CL i -1 B CL i = F ζi (s) I -F e df,i (s) , (3.6) F ζi (s) = C i (sI -A Fi ) -1 B i , F e df,i (s) = (1 -) G i C i (sI -A Ki ) -1 B i , (3.7 
π w df (s) = s πw (s) + a o,4 , (3.8) F e df,i (s) = (1 -) a o,4 /π e (s) , (3.9) 

B. Frequency response

The closed loop transfer function (3.6) incorporates the high-pass filter (recall (3.9), (2.26) and (3.8)):

G HPF df (s) = 1 -F e df,i (s) = 1 - (1-)ao, 4 πe(s) = s πw (s)+ ao,4 πe(s) , (3.10) 
G HPF df ( ω) = ((ω 2 -ao, 2 )ω 2 +ε ao, 4 )- (ao, 1 ω 2 -ao, 3 )ω ((ω 2 -ao, 2 )ω 2 +ao, 4 )- (ao, 1 ω 2 -ao, 3 )ω .
(3.11)

The cutoff frequency ω c df of the high-pass filter G HPF df ( ω) for = 1/50 is (recall (2.28) and cf. (2.31)): 7

ω c df = a o,2 /2 1 -1 -2 (1 + ) a o,4 /a 2 o,2 = 0.5392 c [rad/s] .
(3.12) In Figure 2, we compare the Bode plots of G HPF ( ω), (2.30) and (2.28), and G HPF df ( ω), (3.11) and (2.28), with c = 18 and = 1/50. From Figure 2, we realize that the high frequencies behaviors are very similar, and the low frequencies are attenuated by the factor . Now, there is no poles at the origin, avoiding in this way the drift phenomena due to the integration of wind noises like (3.2). 

IV. TRAJECTORY TRACKING

In this section we present outdoor real-time experiments obtained when the quadrotor tracks a circular trajectory in the x-y plane. For this:

1) The quadrotor is locally stabilized with the LQR of Section II-B, and robustly linearized with the drift-free estimators of Section III. 2) An optimal state trajectory is synthesized for reaching a given local stationary point.

3) The circular trajectory is partitioned by a finite set of suitable local stationary points.

A. Control Scheme

In [START_REF] Bonilla | Robust structural feedback linearization based on the nonlinearities rejection[END_REF], we have shown that the nonlinear uncertainty signal estimator (2.19), has two interesting properties: it enlarges the stability neighborhood and it creates an attraction neighborhood B ρ * * , of radius ρ * * , around the stationary point (see Figure 3 of [START_REF] Bonilla | Robust structural feedback linearization based on the nonlinearities rejection[END_REF]). In consequence, we have partitioned the desired trajectory for tracking, x * i (t) (i ∈ {x, y}), t ∈ [0, T f ], by a set of N +1 stationary points:

Λ * SP i = x * 0,i , x * 1,i , . . . , x * N,i , x * i (kT s ) = x * k,i , (4.13 
) where: k ∈ {0, 1, . . . , N }, N T s = T f and i ∈ {x, y}; T s is the trajectory sampling time and T f is the flying time. Then, the local stabilizing feedbacks (2.11) and the drift-free estimators (3.3) take the forms, respectively: 

u i = F i (x i -x * i ) + ūdf,i , (4.14) 
d dt w df,i = A Ki + (1 -)B i G i C i w df,i -K i + (1 -)B i G i C i (x i -x * i ), ūdf,i = (1 -) G i (C i w df,i -C i (x i -x * i )) , ( 4 
dx * i /dt = A Fi x * i + B i ū * i , i ∈ {x, y} , (4.16) 
where:

A Fi . = A i + B i F i , i ∈ {x
, y}, and with initial conditions:

x * i (0) = x o,i ; let us note that the pairs (A Fi , B i ) are controllable (cf. (2.3)).
We are interested in finding a minimal norm control input ū * i , such that: x * i (T s ) = 0, where T s is a given finite time, T s > 0.

This is a classical minimum norm problem of seeking the closest vector to the origin lying in a variety of finite codimension, in a Hilbert space, and it is solved with the help of the Projection Theorem. Indeed, according to Theorem 2 of Section 3.3 of [START_REF] Luenberger | Optimization by Vector Space Methods[END_REF], the control input ū * i solving the problem has the form (see also Theorem 1.1 of [START_REF] Wonham | Linear Multivariable Control: A Geometric Approach[END_REF]):

ū * i (t) = -F F i (T s -t) W -1 i Ts exp (A Fi T s ) x o,i , (4.17) i ∈ {x, y}, t ∈ [0, T s ], where: 9 F F i (t) = B T i exp A T Fi t , W i Ts = Ts 0 F T F i (T s -τ ) F F i (T s -τ )dτ. (4.18)
From (4.16), (4.17) and (4.18), we get for all the time intervals, kT s , (k + 1)T s , k ∈ 0, 1, . . . , (N -1) , the following optimal trajectories:

x * i (t) = exp (A Fi (t -kT s )) x * k,i + t kTs F T F i (t -τ ) β * i (t, τ )v * k,i dτ, (4.19)
8 For the ψ dynamics, we have chosen:

x * ψ = 0, A F ψ = 0 -a ψ,2 1 -a ψ,1 , B ψ = 1/Izz 0 , K ψ = a ψ,2 -a o,2 a ψ,1 -a o,1 , C ψ = 0 1 , G ψ = -C ψ (A F ψ + K o ψ C ψ ) -1 B ψ = a o,2 Izz,
where: πe(s) = s 2 + a o,1 s + a o,2 = s 2 + 208 s + 2704, and = 1/10. 9 Since the pairs (A F i , B i ) are controllable, the matrices W i Ts are invertible [START_REF] Wonham | Linear Multivariable Control: A Geometric Approach[END_REF].

β * i (t, τ ) = F F i (t -τ ) W -1 i Ts , v * k,i = x * (k+1),i -exp (A Fi T s ) x * k,i , (4.20) 
where:

x * k,i ∈ Λ * SP i
, i ∈ {x, y} (recall (4.13)).

Stationary points set:

We are interested in following the circular trajectory:

x 2 * (t) + (y * (t) -r * ) 2 = r 2 * , (4.21) namely: 
x * (t) = r * sin(ω s t) and y * (t) = r * (1cos(ω s t)) , (4.22) where:

ω s = 2π/T f . Partitioning T f , in N points we get (t = (k/N )T f , k ∈ {0, 1, . . . , N }): 10 x * k,x , x * k,y = r * sin (α k ) ω s cos (α k ) ω 2 s g sin (α k ) ω 3 s g cos (α k ) T , (1 -cos (α k )) ω s sin (α k ) ω 2 s g cos (α k ) - ω 3 s g sin (α k ) T , (4.23) where: α k = 2π k/N .

C. Outdoor real-time experiments

In this Section we present outdoor real-time experiments, when tracking a circular trajectory of a radius of 5 [m], in the x-y plane. For this, we have proceeded as follows:

• We have locally stabilized the Quadrotor with the state feedbacks (4.14) (for i ∈ {x, y, z}) and (2.12) (for i = z), together with (2.13). We have tracked the circular trajectory (4.21) with the radius r * = 5 [m], a sampling time of T s = 1 [s], and a partition of N = 20 points, namely: T f = 20 [s]. In Figure 3, we show the obtained results when applying the local stabilizing feedbacks (4.14), with and without the drift-free estimators (4.15). We compare the obtained path v.s. the goal path (4.21), and the quadrotor (x, y)-trajectories v.s. the references (4.22). We also show the tracking error,

e C (t) = (x(t) -x * (t)) 2 + (y(t) -y * (t)) 2 , (4.24) 
when applying the local stabilizing feedbacks (4.14) together with the drift-free estimators (4.15), i ∈ {x, y}, we have 10 From (2.3) and (4.16), we have: The quadrotor was flown at an altitude around 14 3 and 6 [m]; see Figure 4. 13 Recall that: (1/T f )

x * 2,x = dx * 1,x /dt, x * 3,x = -g -1 dx * 2,x /dt, x * 4,x = dx * 3,x /dt, x * 2,y = dx * 1,y /dt, x * 3,y = g -1 dx * 2,
T f 0 sin 2 (2πt/T f )dt = 1/ √ 2.
14 This altitude was visually fixed with the only purpose of having a good sight. From these outdoor real-time experiments, we see that for the slow trajectory we have obtained an efficiency improvement around 10 %, when applying the drift-free estimators (4.15); and for the fast trajectory the efficiency improvement was around 20 %. Let us also note that the yaw error diminishes by a 1/3 factor, when applying the drift-free estimator (4.15); see Figure 4.

V. CONCLUSION

In this paper, we have tackled the problem of tracking some prescribed trajectory in the x-y plane. We have found that there exists a drift phenomenon due to the wind noise. In Section III, we have characterized the disturbance wind (see (3.1)), and we have checked that when the term (3.2), passes trough the integral action of the nonlinear uncertainty estimator (2.19), such a drift phenomenon occurs. Depending on the values of the scaling factors of (3.1) this drift phenomenon could arise, and when arising the nonlinear uncertainty signal estimator (2.19) will not have a good performance. Thus, we have to do some adjustments to the nonlinear uncertainty signal estimator (2.19) in order to ensure a good performance not mattering the scale factors of (3.1).

To overcome the quadrotor drift due to the integration of wind disturbance like (3.2), we have proceeded as in [START_REF] Gavin | Drift-free integrators[END_REF], [START_REF] Horowitz | The Art of Electronics[END_REF] shifting the pole at the origin of (2.19) slightly into the left-half complex plane, having now the drift-free estimator (3.3); see also the comparison shown in Figure 2.

We have done outdoor real-time experiments obtained when the quadrotor tracks a circular trajectory of a radius of 5 [m] in the x-y plane; we have first tracked a 5 [m] radius circular trajectory in 60 [s] (slow trajectory), and then a 5 [m] radius circular trajectory in 20 [s] (fast trajectory). In Section IV, we are showing the obtained results for the fast trajectory case. From these experiences we got an apreciable reduction on the tracking and yaw errors when applying the drift-free estimators (4.15). We have obtained an efficiency improvement around of the 10 %, in the slow trajectory experience, and an efficiency improvement around of the 20 %, in the fast trajectory experience, see Figure 3; with respect to the yaw error, it decreased by a 1/3 factor.

APPENDIX

For synthesizing the optimal state trajectory given by (4.19) and (4.20), we have first applied the change of bases: 3) The β * i (t, τ ) are: β * x (t, τ ) = F Fx (t -τ ) W -1

(A F i , Bi) = (T -1 i A F i Ti, T -1 i Bi), i ∈ {x,
x Ts T -1 x = k1,x e a 1,x (t-1) + k2,x e a 2,x (t-1) + k3,x cos(ωx (t -1)) + k4,x sin(ωx (t -1)) e bx (t-1) and β * y (t, τ ) = F Fy (tτ ) W -1 y Ts T -1 y = k1,y e a 1,y (t-1) + k2,y e a 2,y (t-1) + k3,y cos(ωy (t-1)) + k4,y sin(ωy (t-1)) e by (t-1) , where: 

2 Figura 1 : 1 Fig. 1 .

 2111 Figura 1: Vista del arreglo experimental

  φ, θ and ψ are the Euler angles, roll, pitch and yaw, measured respectively over the axis o B x B , o B y B and o B z B ; where (o B x B y B z B ) is the body axis system, with its origin o B fixed at the centre of gravity of the quadrotor; see Figure 1. The total mass is M q , the moments of inertia about axis ox, oy and oz are I xx , I yy and I zz , and the distance of each rotor with respect to the centre of gravity of the quadrotor is denoted by L m : 2 M q = 1.36 [kg], I xx = 0.0134 [kg m 2 ], I yy = 0.0140 [kg m 2 ], I zz = 0.0256 [kg m 2 ], L m = 0.245 [m]

  .12) F x = 30 32.4264 -171.9158 -45.0535 , F y = -30 -32.4260 -171.9116 -45.0512 , F z = -140 -69.92 , F ψ = -110 -85.2387 .

( 4 .Figura 4 . 3 :Fig. 2 .

 4432 Figura 4.3: Gráfica de Bode de magnitud. |p1| = 74, |s2| = 351.5, |s3| = 296, |s4| = 259, ωn = 392.44 rad/s y ζ = 0.966.
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  Doing: |GHPF df ( ω)| = 1, one gets: 2ao, 4 ω 4 -2ao, 2 ao, 4 ω 2 + (1 + ) a 2o, 4 = 0.

2 C

 2 obtained the maximum peak error: e C p = 0.5463 m and the root mean square error: e C rms = 0.2992 m, where:e C p = max t ∈ [0, T f ] e C (t), e C rms = (t)dt . (4.25) While, when applying only the local stabilizing feedbacks (4.14), i ∈ {x, y}, we have obtained the maximum peak error: e C p = 2.3582 m and the root mean square error: e C rms = 1.0277 m. Thus, with the combination, local stabilizing feedbacks (4.14) and drift-free estimators (4.15), we get the efficiencies: e ff p = 89.074 % and e ff rms = 91.537 %, and with only the local stabilizing feedbacks (4.14), we get the efficiencies: e ff p = 52.836 % and e ff rms = 70.932 %, where: 13 e ff p = 1e C p /r * × 100%, e ff rms = 1 -√ 2 e C rms /r * × 100% .

Fig. 3 .

 3 Fig. 3. Tracking of a circular trajectory in the plane x-y with a 5 [m] radius in 20 [s] (N = 20 and Ts = 1 [s]). (a, b) x [m] v.s. y [m]. (c, d) x [m] v.s. t [s] and y [m] v.s. t [s]. (e, f) e C (t) [m] v.s. t [s]. Applying the local stabilizing feedbacks (4.14) together with the drift-free estimators (4.15): (a) and (c). Applying only the local stabilizing feedbacks (4.14): (b) and (d). (a, b) Comparison of the obtained path v.s. the goal path (4.21). (c, d) Tracking error e C (t) (see (4.24)).

Fig. 4 .

 4 Fig. 4. Yaw trajectories ψ [ • ] v.s. t [s]. (a) Applying (4.14) and (4.15). (b) Applying only (4.14): (b) and.

1 )

 1 y}, in order to simplify the exponential matrix computation, where: The convolution integrals of (4.19) were synthesized with the discretization of the state space descriptions Σ(A F i , Bi), i ∈ {x, y}, in the time interval [0, Ts), Ts = 1, and with the initial conditions (4.23). 2) The exponential matrices of (4.19) are: exp (A Fx Ts) = Tx exp A Fx Ts T -1 Fy Ts = Ty exp A Fy Ts T -1

  a1,x = 3214, a2,x = 1.911, ωx = 1.585, bx = 0.9536, a1,y = 3358, a2,y = 1.911, ωy = 1.585, by = 0.9536, [ k1,x k2,x k3,x k4,x ] =

  ) where: e df,i = w df,iζ i . The transfer function of Σ(A CL df,i , B CL i , C CL i ) is (cf.

	(4.18) and (4.19) of [2]):

  + ax o,1 s 2 + ax o,2 s + ax o,3 ) s 4 + ax o,1 s 3 + ax o,2 s 2 + ax o,3 s + ax o,4 + ax o,1 s 2 + ax o,2 s + ax o,3 ) s 4 + ax o,1 s 3 + ax o,2 s 2 + ax o,3 s + ax o,4

	4.2. Simulación numérica					4.2. Simulación numérica
	del sistema en lazo cerrado ūx, ver figura 4.1.		del sistema en lazo cerrado ūx, ver figura 4.1.
	Para los valores obtenidos en la subsección 4.2.2 (cf. (4.19) y (4.18)) se tiene Para los valores obtenidos en la subsección 4.2.2 (cf. (4.19) y (4.18)) se tiene
	G(s) = 1 -s(s 3 = ax o,4 πe x (s) = s(s + 351.5)(s + 296)(s + 259) (s + 74) 2 (s 2 + 758.5 s + 154012.5)		(4.41) G(s) = 1 -ax o,4 πe x (s) s(s + 351.5)(s + 296)(s + 259) = s(s 3 = (s + 74) 2 (s 2 + 758.5 s + 154012.5)
	=	s (s 3 + 906.5 s 2 + 271746.5 s + 26947396) s 4 + 906.5 s 3 + 271746.5 s 2 + 26947396 s + 843372455	.	=	s (s 3 + 906.5 s 2 + 271746.5 s + 26947396) s 4 + 906.5 s 3 + 271746.5 s 2 + 26947396 s + 843372455	.
	En la figura 4.3 se muestra el diagrama de Bode de (4.41).
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		ωc =	ax o,2 2	-	a 2 xo,2 -2ax o,4 2	= 39.5 rad/s .	(4.42)
					43	

? Figura 4.3: Gráfica de Bode de magnitud. |p1| = 74, |s2| = 351.5, |s3| = 296, |s4| = 259, ωn = 392.44 rad/s y ζ = 0.966. De (4.41) y de la figura 4.3, se tienen las siguientes observaciones 1. La frecuencia de corte del filtro es

  In , we give details on the numerical aspects of (4.19) and (4.20).

y /dt, x * 4,y = dx * 3,y /dt. 11 Recall footnote 8. 12

Cf. Lemma 1 and Theorem 1 of[START_REF] Blas | Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor[END_REF].

See Section IV.D of[START_REF] Blas | Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor[END_REF].

πw df,i (s) = det(s I 4 -((A F i + K i C i ) + (1 -)B i G i C i )).

In this section we present all the numerical values with four significant digits, but in the outdoor real-time experiments we have used eight significant digits.