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Quasicrystals exhibit exotic properties inherited from the self-similarity of their long-range ordered, yet ape-
riodic, structure. The recent realization of optical quasicrystal lattices paves the way to the study of correlated
Bose fluids in such structures, but the regime of strong interactions remains largely unexplored, both theoreti-
cally and experimentally. Here, we determine the quantum phase diagram of two-dimensional correlated bosons
in an eightfold quasicrystal potential. Using large-scale quantum Monte Carlo calculations, we demonstrate a
superfluid-to-Bose glass transition and determine the critical line. Moreover, we show that strong interactions
stabilize Mott insulator phases, some of which have spontaneously broken eightfold symmetry. Our results are
directly relevant to current generation experiments and, in particular, drive prospects to the observation of the
still elusive Bose glass phase in two dimensions and exotic Mott phases.

Quasicrystals are a fascinating state of matter, character-
ized by long-range, although nonperiodic, order. Such ex-
otic structures may be realized by the continuous tiling of
space using sets of irreducible unit cells arranged aperiod-
ically [1, 2] or as incommensurable projections of periodic
lattices in higher dimensions [3]. Such structures sponta-
neously appear in the growth of certain alloys [4–6] or can
be engineered in photonic [7–10] and ultracold-atom [11–13]
systems. The hallmark of quasicrystalline order, i.e. sharp
spots in reciprocal space with a rotation symmetry incompat-
ible with discrete translation invariance, can then be charac-
terized using Bragg [4, 14] or matterwave [15, 16] diffraction.
Quasicrystals exhibit unique properties, inherited from struc-
tural self-similarity at all scales. It includes nontrivial topo-
logical order [17–21], Anderson-like localization [22, 23], as
well as fractal properties of wave functions [24, 25], energy
spectrums [8, 26–29], and phase diagrams [30]. So far, qua-
sicrystals have been extensively studied in regard to solid-
state physics [4–6], superconductivity [31], twisted bilayer
graphene [32, 33], photonic structures [34–37], and ultracold
quantum gases [15, 16, 23, 30, 38–52].

Quasiperiodic Bose fluids are particularly appealing due
to the complex interplay of interactions, localization, and
quasiperiodicity. Controlled quasicrystal potentials for atomic
systems, free of defects and phonons, can be optically de-
signed using laser fields arranged in various rotation sym-
metries [15, 38, 44]. Alternatively, quasicrystals can be en-
gineered using long-range interactions, spin-orbit coupling,
and cavity-mediated interactions [53–55]. Moreover interac-
tions can be tuned in wide ranges [56–58], hence offering
a unique playground. Ultracold atoms in one-dimensional
(1D) quasiperiodic potentials have been extensively studied
in the context of Anderson localization [23, 39, 40, 52], Bose
glasses (BGs) [30, 39–43, 46, 48], and collective [45] and
many-body [47, 49, 50] localization. In contrast, much less
is known in higher dimensions. Recently, the emergence of
quasiperiodic order [16] and localization of weakly interact-
ing bosons [51] in a two-dimensional (2D) eightfold qua-
sicrystal have been reported. The existence of a BG and the
regime of strong interactions, however, remains largely unex-
plored. On the theoretical side, mean field phase diagrams

have been found using inhomogeneous Gutzwiller-like ansatz
on simplified quasiperiodic graphs [59–61]. Such approaches
are, however, mean field in nature and ignore the emergence
of strong correlations close to critical points as well as a real-
istic connectivity of optical quasicrystals.

In this Letter, we study correlated 2D bosons in an eightfold
rotationally symmetric quasicrystal potential. Using path in-
tegral Monte Carlo calculations, we find exact quantum phase
diagrams, taking into account possibly strong interactions
and the full quasicrystalline structure of the potential. For
weak interactions, we find a superfluid (SF) and a BG phase,
determined by the competition of interactions and localiza-
tion. The SF order parameter shows a clear critical behav-
ior, from which we extract the critical line in the interaction-
quasicrystal amplitude diagram. In contrast, the compressibil-
ity shows a smooth crossover that is consistent with the com-
pressible character of both phases. For strong-enough interac-
tions, Mott lobes open within the BG phase due to the com-
petition of particle repulsion, localization, and tunneling. In
most cases, the total filling is a multiple of 8 which is consis-
tent with the eightfold rotation symmetry of the potential. In
some cases, however, we find a multiply-degenerated ground
state manifold characterized by spontaneously broken rotation
symmetry. We attribute this behavior to the suppression of
double occupancy in pairs of nearby potential wells. Finally,
we discuss experimental and theoretical prospects.

Model and single-particle properties.— We consider a 2D
gas of N interacting bosons, of mass m, in a quasicrystal po-
tential V (r). It is governed by the Hamiltonian

Ĥ =
∑
j

[
− ~2

2m
∇2
j + V (r̂j)

]
+
∑
j<k

U(r̂j − r̂k) (1)

where r̂j is the position of the j th particle and U is a short-
range repulsive two-body interaction term. The quasicrystal
potential is chosen to be eightfold rotation symmetric and cen-
tered on r = 0,

V (r) = V0

4∑
k=1

cos2 (Gk · r) , (2)
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where V0 is the potential amplitude and the quantities Gk

are the lattice vectors of four mutually incoherent standing
waves oriented at the angles 0◦, 45◦, 90◦, and 135◦, respec-
tively. The lattice vectors have norm |Gk| = π/a. We
use the lattice spacing a and the corresponding recoil en-
ergy Er = π2~2/2ma2 as the space and energy units, re-
spectively [62]. The eightfold quasiperiodic potential (2) has
been recently realized for a system of ultracold bosons in
Refs. [16, 51].

The single-particle properties of the shallow 2D quasicrys-
tal potential are qualitatively similar to its 1D counterpart (see,
for instance, Refs. [29, 63–65]). The critical localization po-
tential Vc is found from accurate finite-size scaling analysis of
the inverse participation ratio for the single-particle ground
state (IPR0), using exact diagonalization [62]. It shows a
sharp transition between an extended phase for V < Vc and a
localized phase for V > Vc. Using square quasicrystal lattices
of linear sizes up to L = 128a, we find Vc/Er ' 1.76± 0.01
which is in good agreement with the result of Ref. [66] found
using another approach (ground-state curvature). Moreover,
we find the critical behavior IPR0 ∼ (V − Vc)

ν with the uni-
versal exponent ν ' 1/3 [62].

We now turn to interacting bosons. In the low-energy s-
wave scattering limit, the interaction potential U(r) is fully
characterized by the 2D scattering length a2D. In practice, a
quasi-2D Bose gas may be realized by strongly confining a
3D gas to zero point transverse oscillations. For a harmonic
trap of angular frequency ω⊥, it requires that the excitation
energy exceed the chemical potential µ and the temperature
T , ~ω⊥ � µ, kBT , with kB the Boltzmann constant. The 2D
scattering length is then determined by its 3D counterpart and
the characteristic transverse length l⊥ =

√
~/mω⊥ [67, 68],

a2D ' 2.092l⊥exp

(
−
√
π

2

l⊥
a3D

)
. (3)

On the other hand, the interaction strength is characterized by
the dimensionless mean field coupling constant g̃, such that
the energy per particle in the homogenous gas is E/N =
g̃ × (~2n/2m), with n the 2D density. In 2D, the quantity
g̃ depends not only on a2D but also on the chemical potential
µ [57, 67–69]. Up to logarithmic accuracy, it may be conve-
niently written [62]

g̃ ' 1

g̃−1
0 + (4π)−1 ln (ΛEr/µ)

, (4)

where Λ ' 0.141 is a numerical constant and

g̃0 =
2π

ln(a/a2D)
. (5)

The quantity g̃0 is the relevant interaction parameter we shall
use in the following.

Weak interactions.— We start with weakly interacting
bosons, g̃ � 1. In this regime, the phase diagram results from
the competition of localization and interactions, and the super-
fluid fraction fs may serve as an order parameter. While the

Figure 1. Phase diagram of the weakly interacting Bose gas in a
2D quasicrystal lattice. The mean field SF fraction fs is shown in
color scale for a system of linear size L = 20a. It exhibits a BG
phase (fs = 0, yellow) and a SF phase (fs > 0, blue), separated by
a narrow intermediate region. The exact critical line is found from
QMC calculations at g̃0 = 0.03 (pink points; the dotted line is a
guide to the eye). The hollow pink point corresponds to the transition
found in Fig. 3. The pink arrow indicates the single-particle critical
point, Vc ' 1.76Er.

quasicrystal potential tends to localize the bosons for V > Vc
and favor a BG phase (fs = 0), the repulsive interactions tend
to delocalize the bosons and restore superfluidity (SF, fs > 0).

To determine the phase diagram, we first use a mean field
approach. The ground-state dynamics of the Bose gas is then
governed by the Gross-Pitaevskii equation (GPE)

µψ = −~2∇2ψ/2m+ V (r)ψ + gN |ψ|2ψ (6)

where ψ(r) is the classical field and g = (~2/m)g̃ the dimen-
sionful coupling constant, and we use the normalization con-
dition

´
dr|ψ(r)|2 = 1. Within the GPE, the mean field phase

diagram is determined by only two universal dimensionless
parameters, namely the potential amplitude V0/Er and the
coupling coefficient gn/Er. The field ψ(r) is found using
imaginary time evolution from an arbitrary state. It yields
the total energy E and the chemical potential µ. The super-
fluid fraction is found from the boost approach using twisted
boundary conditions,

fs =
2m

~2n
lim
Θ→0

EΘ − E0

Θ2
, (7)

where EΘ is the energy for the phase difference Θ at opposite
sides of the system [70, 71].

Figure 1 is the phase diagram of the weakly interacting
Bose gas against V0/Er and gn/Er. It shows two distinct
regimes, separated by a sharp line (see details below). For low
interactions and/or a strong quasicrystal potential, the mean
field SF fraction vanishes and we find a BG phase (yellow re-
gion). Up to numerical accuracy, we find fs = 0, except close
to the separation line. For strong enough interactions and low
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Figure 2. Interaction-driven BG-SF transition for V0 = 2.2Er.
(a) SF fraction (semi log scale), with magnification of the critical re-
gion in inset (log-log scale), and (b) compressibility (semi log scale).
The dashed red lines show the mean field GPE results for a system
size L = 20a. The blue points and solid lines show the QMC results
for a fixed interaction parameter, g̃0 = 0.03, and increasing system
sizes L/a = 10, 14, 20 (from light to dark blue). The dashed black
line indicates the BG-SF critical point.

quasiperiodic potential, we find fs > 0, corresponding to the
SF phase (blue region). For V0 < Vc, there is no localiza-
tion and the Bose gas is always in the SF phase, although
with fs < 1, except in the limit of a vanishing quasicrystal
potential, V0 → 0. As expected, the SF-BG transition coin-
cides with the single-particle localization point in the limit of
vanishing interactions, gn → 0 (pink arrow). Increasing re-
pulsive interactions compete with localization induced by the
quasicrystal potential and the critical point is shifted toward
higher potential strengths. An analogous effect has also been
observed in 1D interacting Fermi gases [72].

While these results are compatible with a SF-BG phase
transition, the critical line is smoothed out by mean field ef-
fects, see Fig. 2(a) (dashed red line). To locate the transi-
tion line accurately, we now turn to ab initio quantum Monte
Carlo (QMC) calculations. Our algorithm relies on the con-
tinuous space, path integral representation, simulating the ex-
act Eq. (1) Hamiltonian. The QMC configurations are effi-
ciently sampled using the worm algorithm within the grand
canonical ensemble [73, 74], and we use a generalized inter-
action propagator applicable to both weak and strong inter-
actions [62]. We work at a vanishingly small temperature,
T = 0.0025Er/kB [75], and a fixed value of the interac-
tion parameter, g̃0 = 0.03. For such a small value, the µ-
dependent term in Eq. (4) is negligible in our calculations and
g̃ ' g̃0 � 1, corresponding to the weakly interacting regime.
For each value of the potential amplitude V0, we then scan
the chemical potential µ and determine the density n from the
statistics of the QMC world lines. The SF fraction is deter-

mined as fs = Υ/n, where the SF stiffness Υ is computed
using the winding number estimator with periodic boundary
conditions [76].

The QMC results for the SF fraction are plotted versus the
mean field interaction parameter gn on Fig. 2(a) for increasing
system sizes (corresponding to darker blue lines). For a large
enough system, the QMC results fit well the mean field GPE
prediction except in the critical region. While the GPE result
is smooth, the QMC results show a sharp transition from the
BG phase (fs = 0) to the SF phase (fs > 0), see magnification
in log-log scale in the inset of Fig. 2(a). Proceeding similarly
for various amplitudes V0 of the quasicrystal potential and still
g̃0 = 0.03, we determine the exact SF-BG critical line shown
on Fig. 1 (see pink points; the dotted line is a guide to the eye).
The QMC critical line fits well within the mean field crossover
region. Hence, although criticality requires truly many-body
effects, mean field calculations yield a reasonable estimate of
the SF-BG transition.

We have also computed the compressibility κ = ∂n/∂µ
across the transition. Mean field and QMC results are plotted
on Fig. 2(b), showing an excellent agreement for sufficiently
large systems. In contrast to the SF fraction, the compress-
ibility shows a smooth crossover from the BG phase to the SF
phase which is consistent with the expectation that both are
compressible phases. More precisely, the compressibility is
progressively suppressed by localization all the way from the
SF limit to the BG limit, with no signature of the critical point.

Strong interactions.— We now turn to strongly interact-
ing bosons. In this case, the mean field GPE approach is
no longer valid and we only rely on QMC calculations. We
compute the superfluid fraction fs and the compressibility κ
as above, using the generalized interaction propagator [62].
Figure 3(a) shows the phase diagram against the interaction
parameter g̃0 and the chemical potential µ for the potential
amplitude V0 = 2.5Er > Vc and a square system of linear
size L = 20a. For g̃0 � 1, we recover the SF-BG phase
transition discussed above. The critical point for g̃0 = 0.01 is
found at µc ' 4.03Er and gnc ' 1.9× 10−3Er, see Fig. 3(a)
and the hollow pink points on Fig. 1. This behavior persists
up to g̃0 ∼ 0.06. For stronger interactions, beyond mean field
effects shift the critical point toward higher chemical poten-
tials and, correspondingly, higher densities. Moreover, Mott
lobes open (MI, purple-red regions). Figure 3(b) is a cut of the
phase diagram at g̃0 = 5, see black dashed line on Fig. 3(a).
It shows a clear SF transition from fs = 0 to fs > 0 at
µc ' 4.31Er. In the insulating phase (fs = 0), we find a series
of Mott plateaus characterized by a vanishing compressibility,
κ = L−2∂N/∂µ = 0. We have checked that, consistently,
the fluctuations of the total number of particlesN exactly van-
ishes. These Mott lobes emerge due to large repulsive inter-
actions, which localize the particles in the deepest wells, thus
forming an incompressible insulator with integer fillings. Be-
cause of the eightfold rotational symmetry of the quasicrystal
potential, the total number of particles is usually a multiple of
8, namely N = 8, 16, 24, 40, see numbers on Fig. 3(a). They
progressively fill the lowest-energy potential wells, sketched
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Figure 3. (a) Phase diagram versus the interaction parameter g̃0 and the chemical potential µ for V0 = 2.5Er and a size L = 20a as
found using QMC calculations. The SF fraction fs is shown in yellow-blue color scale. The purple-red regions indicate MI lobes with fillings
N = 8, 16, 24, 40, 52, 72 (from lighter to darker), respectively. The Inset is a sketch of the potential wells, each colored according to the color
of the MI lobe that fills it first. (b) Vertical cut in the phase diagram at g̃0 = 5 (dashed black line), showing the number of particles N (black
joint dots) and the superfluid fraction fs (blue joint dots) against the chemical potential µ. (c)-(e) Density profiles in logarithmic color scale at
the three points indicated on panel (a), in, respectively, the N = 40 MI, the BG, and the SF phases.

with corresponding colors and decreasing sizes in the inset of
Fig. 3(a).

Two exceptions are the N = 52 and N = 60 lobes. They
feature 40 particles localized in the 40 deepest wells similar to
the fourth lobe, plus additional particles in the next 24 wells.
Among these wells, 16 come in 8 pairs of close-by wells, cor-
responding to the small dots on the very top center of the inset
of Fig. 3(a) and those obtained by successive rotations of an-
gle π/4. For the N = 60 lobe, all these sites are populated
by a particle while for the N = 52 lobe, only one of the part-
ners of each pair is populated while the other one is empty.
The remaining eight wells form the shortest eightfold ring in
the center and one of every two wells contains a particle for
both the N = 52 and N = 60 lobes. For each lobe, there are
several configurations corresponding to the choice of the filled
and empty sites, and we find that the QMC density profile ran-
domly blinks between them all, hence spontaneously breaking
the eightfold rotation symmetry. Similar symmetry breaking
was previously found for long-range interactions [59]. Here,
we quite unexpectedly find it for short-range interactions. We
attribute this behavior to significant repulsion from the tails
of the states bound in the nearest wells of the quasicrystal
potential. Although their overlap is weak, strong-enough in-
teractions prevent two particles from sitting even in different
wells.

Figure 3(c)-(e) show the density profile for three selected
points in the phase diagram, see Fig. 3(a). The first one cor-
responds to the N = 40 MI with exactly one particle in the
40 deepest wells. The second one corresponds to a BG. It
features N = 56 particles in 56 distinct wells plus an incom-
mensurate number of particles in the central eight wells. The
latter form a small superfluid ring, which contributes a small
finite compressibility but not global superfluidity. When the

chemical potential increases or the interactions decrease, such
local superfluids proliferate and finally merge. The third den-
sity plot corresponds to a global SF with delocalized particles.

Conclusions.— We have determined the quantum phase
diagram of weakly and strongly interacting 2D bosons in a
shallow quasicrystal potential. The SF, BG, and MI quantum
phases can be observed in current generation experiments with
ultracold atoms using a combination of interference, spec-
troscopy, and transport measurements [46, 48, 51]. We have
considered the same eightfold potential as in Refs. [16, 51] but
we expect our results to qualitatively hold also for other qua-
sicrystalline potentials [15, 38] as well as other configurations
designed for photonic systems in the nonlinear regime [7].
Control of the 2D interaction in the range 0.05 . g̃ . 3
has been demonstrated in Ref. [77]. It is sufficient to ob-
serve the phase diagram of Fig. 3(a) and in particular the still
elusive BG phase in 2D. Using sufficiently large samples in
box-shaped traps could, for instance, yield further insight to
the transitions discussed in this work, including critical expo-
nents.

The use of shallow quasiperiodic potentials as considered
in this Letter is promising for overcoming stringent temper-
ature effects in the observation of the BG phase, as recently
shown in 1D [29]. Yet, finite temperatures show richer be-
havior in 2D compared to 1D, in particular topological phase
transitions. For instance, in a uniform 2D Bose gas, the
SF-to-normal fluid transition is of the Berezinskii-Kosterlitz-
Thouless type, at some critical temperature [78–82]. While
disorder with short-range correlations does not affect this tran-
sition [83, 84], to our knowledge, the effect of long-range
quasiperiodic order remains an open question.

We thank Markus Holzmann and Hélène Perrin for discus-
sions about 2D scattering theory, and the CPHT computer
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Paris region DIM-SIRTEQ. The numerical calculations were
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2019-A0070510300) and make use of the ALPS scheduler li-
brary and statistical analysis tools [85–87].
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Supplemental Material for

Strongly-Interacting Bosons in a Two-Dimensional Quasicrystal Lattice

In this supplemental material, we provide details about the single-particle localization properties of the 2D quasicrystal po-
tential (Sec. S1), 2D scattering theory (Sec. S2), and quantum Monte Carlo (QMC) calculations, including the derivation of the
complete interaction propagator (Sec. S3).

S1. SINGLE-PARTICLE PROBLEM

In this section, we discuss the single-particle localization transition and the critical exponent for the two-dimensional (2D)
quasicrystal potential of Eq. (2) in the main paper, using the same approach as in Refs. [29, 30]. The quasicrystal potential is
shown in Fig. S1. The two left panels show the potential V (r), with r the 2D vector position, for a square lattice of size L× L
with L = 8a, as a 3D colorplot in (a) and as a 2D plot in (b). Panel (c) shows V (r) truncated at V = V0 for L = 20a, hence
highlighting the potential wells.

To study the single-particle localization properties of this quasicrystal potential, we solve the Hamiltonian

ĥ = − ~2

2m
∇2 + V (r̂), (S1)

that is the Hamiltonian (1) of the main paper for a single particle, using exact diagonalization. We compute the inverse partici-
pation ratio (IPR) of the n-th eigenstate ψn,

IPRn =

´
dr|ψn(r)|4(´
dr|ψn(r)|2

)2 . (S2)

In 2D, it scales as IPRn ∼ 1/L2 for an extended state and as IPRn ∼ 1 for a localized state.
Figure S2(a) shows a finite-size scaling of the IPR of the ground state, IPR0, against the potential amplitude V0/Er for

increasingly large systems, from L = 16a (light grey) to L = 256a (black). Increasing the potential amplitude V0, a sharp
transition is found from the extended phase with vanishingly small IPR to the localized phase with finite IPR. To locate the
critical point accurately, we rescale the IPR by the size of the system L. It yields a new quantity, IPR× L/a, that scales as 1/L
for an extended phase and L for a localized phase. Figure S2(b) shows this rescaled IPR in log scale in a range of potential
amplitudes nearby to the critical potential. In this figure, all the lines corresponding to increasing system sizes cross at a nearly
single point thus indicating the critical point. The critical potential is calculated as such and yields Vc/Er ∼ 1.76(1) in good
agreement with the result of Ref. [66] found using another approach (ground-state curvature).

We have also studied the critical exponent ν of the potential, defined as IPR0 ∼ (V0 − Vc)ν . In Figure S2(c), we plot the
IPR0 against the potential amplitude (V0 − Vc)/Er in log-log scale, for the same system sizes as in the panels (a) and (b). For

Figure S1. Eightfold quasicrystal potential of Eq. (2) in the main paper. (a) 3D plot for the size L = 8a. (b) Same as (a) shown from the top.
(c) 2D plot for size L = 20a with a truncation of the colorscale at V = V0. The values of the potential between V0 and 4V0 thus appear in
white, hence enlightening the potential wells (dark blue).
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Figure S2. Critical potential and critical exponent for the single-particle problem in the quasicrystal potential of Eq. (2) in the main paper.
(a) IPR of the ground state, IPR0, versus the quasicrystal amplitude V0/Er. Darker lines correspond to increasing system sizes: L/a = 16
(light grey), 32 (light blue), 64 (blue), 128 (dark blue), and 256 (black). (b) Rescaled IPR of the ground state, IPR0 × L/a, using the same
data as in panel (a). (c) IPR0, in log-log scale, for a potential amplitude above the critical value Vc ' 1.76(1). The dashed red line is a fit to
the black line, corresponding to the largest system. It yields the critical exponent ν ' 0.33(1).

a large-enough system, we find a straight line in log-log scale, confirming the scaling IPR ∝ (V0 − Vc)
ν . Note that all the

finite-size simulations converge towards the same straight line for large enough potential amplitudes. The red dashed line shows
a linear fit of the largest size (black line). It yields the critical exponent of ν = 0.33(1). Remarkably, this critical exponent is
similar to that found in Ref [29] for 1D quasiperiodic potentials.

S2. SCATTERING THEORY IN QUASI-2D BOSE GASES

In Refs. [67, 68], Petrov et al. have solved the scattering problem of two bosons interacting via a 3D short-range interaction
potential in a quasi-2D geometry. The interaction strength in free 3D space is characterized by the scattering length a3D. The
bosons are confined by a harmonic trap in the direction orthognonal to the 2D plane of interest, with the angular frequency
ω⊥. Assuming ~ω⊥ � kBT, µ, the dynamics is frozen to zero point transverse oscillations and the scattering amplitude in this
channel takes the form of its purely-2D counterpart, with the 2D scattering length [69]

a2D ' 2.092l⊥exp

(
−
√
π

2

l⊥
a3D

)
, (S3)

with l⊥ =
√

~/mω⊥ the width of the transverse harmonic oscillator, i.e. Eq. (3) of the main paper. Moreover, they find the
mean field coupling constant

g̃ ' 2
√

2π

l⊥/a3D + 1/
√

2π ln(1/πq2l2⊥)
, (S4)

with q =
√

2m|µ|/~2 the quasi-momentum.

Elimination of the transverse degrees of freedom. — In our mean field and quantum Monte Carlo calculations, the transverse
direction is integrated out and we work in 2D. It is thus convenient to eliminate the transverse degrees of freedom from Eq. (S4).
Using Eq. (S3), we substitute the first term in the denominator by l⊥/a3D =

√
2/π ln (2.092l⊥/a2D). Then, writing q as a

function of µ and using logarithmic identities, we find

g̃ ' 4π

2 ln(a/a2D) + ln (ΛEr/µ)
, (S5)

with Λ ' 2.0922/π3 ' 0.141 and Er = π2~2/2ma2 the recoil energy. Note that a may be seen as an arbitrary length and one
can eliminate it from Eq. (S5) using logarithmic identities. Here, we take a to be the lattice spacing of the quasicrystal potential.
Equation (S5) is the same Eq. (4) of the main paper with the interaction parameter

g̃0 =
2π

ln(a/a2D)
(S6)

used in our work. It is a convenient form in our work for two reasons. Firstly, all the transverse degrees of freedom have been
eliminated, in particular the transverse length l⊥. Secondly, we separated out the contributions of the parameter characterizing
the interaction strength, i.e. a2D or equivalently g̃0, and from the chemical potential µ.
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Quasi-2D versus purely-2D regimes. — We now discuss the relevant scattering regimes in ultracold-atom experiments. Here
we rely on Eqs. (S3) and (S4) rather than Eqs. (S5) and (S29).

For intermediate confinement strengths such that

a3D � l⊥ and µ� ~ω⊥, (S7)

the dynamics is frozen to zero point oscillations but the scattering conserves its 3D character [67, 68]. Except in extreme cases,
the logarithmic term in the denominator of Eq. (S4) is negligible and one finds

g̃ =
2
√

2πa3D

l⊥
=

2π

ln
(

2.092l⊥
a2D

) , (S8)

where we have used Eq. (S3). This regime, known as the quasi-2D regime is the most usual one in ultracold-atom experiments,
see for instance Refs. [51, 80, 88, 89]. Since a3D � l⊥, the quasi-2D Bose gas is always in the weakly interacting regime, g̃ � 1.
Note that the quasi-2D regime is also characterized by a2D � l⊥ � λT , ξ. Owing to the logarithm, however, it requires that a2D

is significantly much smaller than l⊥.

For a stronger confinement,

l⊥ . a3D and µ� ~ω⊥, (S9)

the logarithmic term in the denominator of Eq. (S4) may dominate and one finds

g̃ ' 4π

ln
(

~2

2πmµl2⊥

) . (S10)

It is then possible to reach the strongly-interacting regime with g̃ ∼ 1 for moderately small chemical potentials. For instance,
values up to g̃ ' 3 have been reported in Ref. [77].

For very strong confinement strengths,

l⊥ � a3D and µ� ~ω⊥, (S11)

the 2D scattering length saturates,

a2D ' 2.092l⊥, (S12)

see Eq. (S3). This regime is known as the purely-2D regime. In the ultra-dilute limit, na2
2D � 1, we may use the equation of

state of the purely 2D Bose gas [90],

µ =
4π~2n/m

ln(1/na2
2D)
. (S13)

One then finds

ln

(
~2

2πmµl2⊥

)
' ln

(
1/na2

2D

)
+ ln ln

(
1/na2

2D

)
+ cst.

Inserting this expression into Eq. (S10), one finds

g̃ ' 4π

ln(1/na2
2D)

(S14)

up to logarithmic accuracy. It is consistent with Eq. (S13) and µ ' g̃~2n/m.

Note that here we have defined the terms quasi-2D and purely-2D according to the respective values of the 3D scattering
length a3D and the oscillation length l⊥, similarly as in Refs. [57, 69, 77, 84, 89, 91, 92] for instance. Other authors define it by
comparing the temperature kBT with the energy scale ~ω⊥, see for instance Refs. [67, 68, 93].
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S3. QUANTUM MONTE CARLO CALCULATIONS

In this section, we outline the path integral Monte Carlo (PIMC) approach used in the main paper. In particular, we show how
to derive a complete 2D interaction propagator valid in any regime of interactions.

A. Generalities

We consider a system of N identical bosons governed by the Hamiltonian Ĥ . In the canonical ensemble at temperature T , the
expectation value of an observable Â reads as

〈A〉 =
Tr
(

e−βĤÂ
)

Tr
(

e−βĤ
) , (S15)

where β = 1/kBT and Tr(X̂) = 1/N !
∑
σ∈SN

´
dR 〈σ ·R| X̂ |R〉. In this expression of the trace, the particle positions are

contained in a collective variable, R = (r1, r2, . . . rN ), and σ ·R = (rσ(1), rσ(2), . . . rσ(N)), where σ spans theN ! permutations
of indices. To derive an expression suitable for numerical estimation, the exponential terms in Eq. (S15) are split into J factors
of imaginary time ε = β/J and completeness relations are inserted at every time slice, such that the numerator of Eq. (S15)
becomes

Tr
(

e−βĤÂ
)

=
1

N !

∑
σ∈SN

ˆ
dR0dR1 . . . dRJ−1 〈σ ·R0| e−εĤ |RJ−1〉 . . . 〈R1| e−εĤÂ |R0〉 . (S16)

The denominator of Eq. (S15) is the same as Eq. (S16) with Â = 1. A configuration C is the set of positions of the particles
at every time slice (R0, . . . ,RJ−1,RJ = σ ·R0) where RJ is a permutation of the initial positions due to the trace. The
integrals and sums in Eq. (S16) are thus replaced by an integration over all the configurations C. The path-integral estimator
for the observable Â is defined as A(C) ≡ 〈R1| e−εĤÂ |R0〉 / 〈R1| e−εĤ |R0〉. In practice, using the invariance under cyclic
permutation of the trace in Eq. (S16), one can make the operator Â appear between any pair of consecutive positions Rj and
Rj+1. Therefore, to take full advantage of the information contained in a given configuration C, the path-integral estimator is
numerically calculated as the average over all pairs of consecutive positions. With these notations, the expectation value of Â
can be rewritten as

〈A〉 =

ˆ
dC π(C)A(C) (S17)

where

π(C) =
〈σ ·R0| e−εĤ |RJ−1〉 . . . 〈R1| e−εĤ |R0〉´
dC 〈σ ·R0| e−εĤ |RJ−1〉 . . . 〈R1| e−εĤ |R0〉

(S18)

is the statistical weight of configuration C. Note that the normalization condition is
´

dC π(C) = 1. As explicitely shown by
Eqs. (S17) and (S18), the many-body propagator ρ(R,R′, ε) = 〈R′| e−εĤ |R〉 plays a central role in the evaluation of 〈A〉. Its
derivation are discussed in the next sections.

B. Pair-product approximation

We now consider a system governed by a Hamiltonian with two-body interactions, given by

Ĥ =
∑
j

h(r̂j) +
∑
j<k

U(r̂j − r̂k). (S19)

where h(r̂j) is the single-particle Hamiltonian of particle j (including the kinetic and potential energies), and U(r̂j − r̂k) is
the interaction Hamiltonian between particles j and k. Due to translation invariance, the interaction term only depends on the
relative position of the two particles j and k, i.e. rjk = rj − rk, and it is convenient to use the interacting Hamiltonian of the
reduced particle [94]

H rel(r̂jk) = H rel
0 (r̂jk) + U(r̂jk), (S20)



12

where H rel
0 (r̂jk) = ~2∇̂2

rjk
/m is the noninteracting Hamiltonian (kinetic term) of the reduced particle, the mass of which is

m/2. Inserting Eq. (S20) into Eq. (S19) and using the pair-product approximation, the many-body propagator then reads as

ρ(R,R′, ε) ≈
N∏
j=1

ρ1(rj , r
′
j , ε)

N∏
j<k

ρrel(rjk, r
′
jk, ε)

ρrel
0 (rjk, r′jk, ε)

, (S21)

where ρ1 is the one-body density matrix of the noninteracting problem, and

ρrel(rjk, r
′
jk, ε) = 〈r′jk| e−εĤ

rel
|rjk〉 (S22)

is that of the relative particle, ρrel
0 (rjk, r

′
jk, ε) being its counterpart in the absence of interactions.

C. Two-dimensional interaction propagator

To derive the relative-particle propagator ρrel(r, r′, ε), we consider two particles of mass m and relative position r = r1 −
r2. Due to global rotational invariance, the eigenstates of energy Ek = ~2k2/m may be written in the form ψkl(r, θ) =
Rkl(r)Θl(θ), where the quantities Θl(θ) = eilθ/

√
2π are the eigenstates of the in-plane angular momentum operator, with

l ∈ Z the corresponding quantum number. The propagator then reads as

ρrel(r, r′, ε) =
∑
l

ˆ
dk ψ∗kl(r

′)e−εk
2

ψkl(r). (S23)

Plugging the expression ψkl(r, θ) = Rkl(r)Θl(θ) into the 2D Schrödinger equation yields

d2Rkl
dr2

+
1

r

dRkl
dr

+

(
k2 − l2

r2

)
Rkl =

mU(r)

~2
Rkl. (S24)

For noninteracting particles, U(r) = 0, Eq. (S24) is known as the Bessel equation, the general solution of which reads as

Rkl(r) = Ckl [cos(δkl)Jl(kr)− sin(δkl)Yl(kr)] (S25)

where Jl and Yl are Bessel functions of the first and second kind respectively, Ckl is a normalization constant and δkl
is a phase shift. In the noninteracting case, the set of solutions with a nonzero contribution of Yl are expected to van-
ish due to their divergence at r = 0, thus yielding δkl = 0. In addition, the normalization and completeness relations´

dr
´

dk ψ∗kl(r)ψkl(r) = 1 and
´

dk ψ∗kl(r
′)ψkl(r) = δ(r − r′) yield Ckl =

√
k. The noninteracting wavefunction is thus

given by ψkl(r, θ) =
√
k/2πJl(kr)eilθ. Inserting this formula into the Eq. (S23) and using the following identities on Bessel

functions,
ˆ
ke−εk

2

Jl(kr)Jl(kr
′)dk =

1

2ε
exp

(
−r

2 + r′2

4ε

)
Il

(
rr′

2ε

)
and

∑
l

Il(x)tl = exp

(
1

2
x

(
t+

1

t

))
, (S26)

we then recover the well-known free-particle propagator,

ρrel,0(r, r′, ε) =
1

4πε
e−

(r−r′)2
4ε . (S27)

The full 2D interacting problem is generally difficult to solve. For a short-range interaction potential in the s-wave scattering
limit, with 2D scattering length a2D, however, the wavefunction is expected to keep its noninteracting form when the particles
are sufficiently far apart. Equation (S25) still holds but with a nonzero phase shift δkl, which hence accounts for the short-range
interactions. In the s-wave scattering limit, the contributions with l 6= 0 are neglected and the phase shift is found from the
boundary condition at r = 0+ [95]. It yields tk ≡ tan δk0 = π/2 ln(ηka2D), where η = eγ/2 ≈ 0.89054 and γ is Euler’s
constant [96]. Using the eigenbasis decomposition, Eq. (S23), the 2D interaction propagator reads

ρrel(r, r′, ε) = ρrel,0(r, r′, ε)− 1

2π

ˆ
dk ke−εk

2 t2k
1 + t2k

J0(kr)J0(kr′)

− 1

2π

ˆ
dk ke−εk

2 tk
1 + t2k

[J0(kr)Y0(kr′) + J0(kr′)Y0(kr)]

+
1

2π

ˆ
dk ke−εk

2 t2k
1 + t2k

Y0(kr)Y0(kr′).

(S28)
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Figure S3. Diagonal term of the generalized interaction propagator (solid lines) and of the weak-interaction propagator as used in Ref. [84]
(dashed lines), for three values of the interaction strength g̃0 and for ε = 0.1. The lighter solid and dashed lines correspond to the weakly-
interacting regime where both propagators match. The blue dashed line gives the noninteracting limit with ρrel,0(r, r, ε) = (4πε)−1. For each
line, the corresponding values of 2D scattering length are a2D/a ' 9 × 10−18 (yellow, g̃0 = 0.16), a2D/a ' 2 × 10−2 (orange, g̃0 = 1.6),
and a2D/a ' 7× 10−1 (brown, g̃0 = 16).

In the numerical implementation of the worm-algorithm QMC, the pair-propagator ρrel(r, r′, ε) in Eq. (S28) is preprocessed
and tabulated for a grid-like set of position values. The actual pair-propagator used in the simulations in then evaluated from the
cubic interpolation of these tabulated values.

Figure S3 shows the diagonal term of the interaction propagator ρrel(r, r, ε) for various interaction strengths from weak to
strong, g̃0 = 0.16 (yellow), for g̃0 = 1.6 (orange) and for g̃0 = 16 (brown). We recall that the interaction parameter is

g̃0 =
2π

ln(a/a2D)
, (S29)

see Eq. (5) of the main paper, which yields the relation

1

tk
+

4

g̃0
=

2

π
ln(ηka). (S30)

The diagonal terms of the propagator correspond to the probability of finding the two interacting particles at a distance r, while
the nondiagonal terms give the probability for the two particles to jump from distance r to r′. The diagonal terms thus give
a rough idea of how terms with r ≈ r′ behave. Figure S3 shows that, as expected, the propagator increases with the distance
between particles for r > a2D and that it converges to the noninteracting value (blue dashed line) for r � a2D. However, the
propagator diverges for r � a2D due to the nonexact treatment of the interaction term in the short-range region. To remedy this
problem in numerical simulations, we chose to cut the propagator for radii below the scattering length, i.e. ρrel(r, r′, ε) = 0 if
r < a2D or r′ < a2D. In practice, it removes the pairs of particles at a distance smaller than the 2D scattering length. It sets the
validity condition of our simulations to na2

2D < 1. This condition is fulfilled for all our calculations. Note also that our algorithm
works in the grand-canonical ensemble. It allows for fluctuations in the total number of particles so that the averaged density is
maintained in the simulations and does not drift to zero owing to particle removals.

D. Limit of the propagator for weak interactions

In the weakly-interacting regime, g̃ ' g̃0 � 1, Eq. (S30) can be simplified to −tk ≈ g̃/4 � 1 by neglecting the logarithmic
correction. In this regime, the interacting propagator, Eq. (S28) is dominated by the lowest (first)-order term in tk and we find

ρrel(r, r′, ε) = ρrel,0(r, r′, ε) +
g̃

8π

ˆ
dk ke−εk

2

[J0(kr)Y0(kr′) + J0(kr′)Y0(kr)] , (S31)

which is the propagator as used in Ref. [84]. The diagonal term of the weak-interaction propagator is shown on Fig. S3 as dashed
lines for the same values. For the lowest value, g̃0 = 0.16, the two propagators match perfectly (the dashed line, on top of the
solid line, is not visble on the plot). For higher values, g̃0 = 1.6 and g̃0 = 16, however, the two propagators exhibit significant
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differences, which impact the numerical results. In particular, the full propagator has a richer behavior at large r. While the
weakly-interacting propagator quickly converges to the value of the non-interacting case at 1/4πε, the full propagator shows
deviation on a wider range.
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