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Abstract

An extended interval is a range A = [A,A] where A may be bigger than A. This is

not really natural but is what has been used as definition of extended interval so far. In

the present work we introduce a new, natural, and very intuitive way to see an extended

interval. From now on, an extended interval is a subset of the Cartesian product R×Z2, where

Z2 = {0, 1} is the set of directions and the direction 0 is for increasing intervals and 1 for

decreasing ones. For instance [3, 6]×{1} stands for the decreasing interval [6, 3]. Thereafter,

we introduce on the set of extended intervals a family of metrics dγ , depending on a function

γ(t), and show that there exists a unique metric dγ for which γ(t)dt is what we have called

"adapted measure". This unique metric has very good properties, is simple to compute and

has been implemented in the software R. Furthermore, we use this metric to define variability

for random extended intervals. We further study extended interval-valued ARMA time series

and prove the Wold decomposition theorem for stationary extended interval-valued times

series.

Keywords: Random extended interval, distance, measure, time series

1 Introduction

Intervals analysis (see Bauch (1992); Moore (1966); Jaulin et al. (2001); Alefeld and Herzberger

(2012)) initially developed from the 1960s to take into account in a rigorous way, different types

of uncertainties (rounding errors due to finite precision calculations, measurement uncertainties,
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linearization errors) makes it possible to build supersets of the domain of variation of a real

function. Coupled with the usual theorems of existence, for example, the Brouwer or Miranda

theorems, the interval theory also makes it possible to rigorously prove the existence of solutions

for a system of equations (see Goldsztejn et al. (2005)). With interval analysis, it was now

possible to modeling interval data.

In recent years, more precisely since the end of 1980s years, interval modeling has caught

the attention of a growing number of researchers. The advantage of an interval-valued time

series over a point-valued time series lies in that it contains both the trend (or level) information

and volatility information (e.g., the range between the boundaries), while some informational

loss is encountered when one uses a conventional point-valued data set, e.g., the closing prices

of a stock collected at a specific time point within each time period, since it fails to record the

valuable intraday information. Higher-frequency point-valued observations could result in hardly

discriminating information from noises. A solution is to analyze the information in an interval

format by collecting the maximum and minimum prices in a day, which avoids undesirable noises

in the intraday data and contains more information than point-valued observations Sun et al.

(2018).

A huge progress in the field of interval-valued time series has been done by Billard and Diday

Billard and Diday (2000, 2003) who first proposed a linear regression model for the center points

of 37 interval-valued data. They have been followed by other authors Maia et al. (2008); Hsu and

Wu (2008); Wang and Li (2011); González-Rivera and Lin (2013); Wang et al. (2016). To study

interval data, all those references apply point-valued techniques on the center, the left bound or

the right bound. By so doing, they may not efficiently make use of the information contained in

interval data. In 2016, Han et al Han et al. (2016) developed a minimum-distance estimator to

match the interval model predictor with the observed interval data as much as possible. They

proposed a parsimonious autoregressive model for a vector of interval-valued time series processes

with exogenous explanatory interval variables in which an interval observation is considered as

a set of ordered numbers. It is shown that their model can efficiently utilize the information

contained in interval data, and thus provides more efficient inferences than point-based data and

models Han et al. (2015). Despite all those good items, the classical theory of interval modeling

has some inconveniences. We can enumerate two which are address in another work and in the

present paper, respectively.

Firstly, the set of random intervals (or more generally random sets) is not a vector space.
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Indeed, the set of intervals is not an abelian group for the classical addition of intervals. So,

all the useful theorems obtain through orthogonal projection as Wold decomposition Theorem

cannot be extended to interval-valued processes. Secondly, in time series, interval-valued data

does not take into account some specifications or details of the study period, as for instance

in the financial markets where a movement in stock prices during a given trading period is an

observation of bounded intervals by maximum and minimum daily prices (see Han et al. (2016)).

One can use two concepts to address each of those both inconveniences. One can consider the set

of random intervals as a "pseudovector space" where vectors do not necessarily have opposites.

This concept of pseudovector space has been developed in Kamdem et al. (2020) to address

the first inconvenience stated above. The second inconvenience can be address by working with

"extended intervals" instead of classical intervals; as in the present paper.

Indeed, it may be often more relevant to consider extended intervals formed by the opening

and closing prices, regarding stock prices. Also, for the daily temperature in meteorology, instead

of taking the max and min, it would be better in some cases to take the morning and evening

temperature, as well as for the systolic and diastolic blood pressures in medicine. For this last

example of blood pressure, when plotting the blood pressure of somebody as extended intervals

of morning and evening records, one can see easily days where the morning blood pressure was

higher than the evening one, which can indicate illness or emotional issue.

Therefore, given the constraints imposed by classical interval theory and its application on

time series, our approach is based on the concept of extended or generalized intervals for which

the left bound is not necessarily less than the right one. This generalization makes our modeling

approach relevant for time series analysis. This generalization guarantees the completeness of

interval space and consistency between interval operations. Extended intervals are also used for

time series analysis in Han et al. (2012) but their approach does not highlight the advantages of

generalized interval-valued variables.

Our contribution is therefore both theoretical and empirical. In other words, we have concep-

tualized and redefined some of the specific characteristics of the set of extended intervals. More

precisely, we define on the set of extended intervals, a topology which generalizes the natural

topology on the set of classical interval, unlike the topology introduces by Ortolf and Kaucher

Ortolf (1969); Kaucher (1973) on generalized intervals, and which restricted on classical interval

is completely different from their natural topology.

The rest of the work is organized as follows: The main purpose of Section 2 is to fix notations,

3



give a novel and consistent definition of extended intervals. In Section 3 we introduce a suitable

class of distances on the set of random extended intervals, that solves a disadvantage of the

Hausdorff. We use this new distance to define variance and covariance of random extended

intervals and we show that they share some useful properties with point-valued random variables,

(see propositions 3.2 and 3.3). Section 4 is concerned with stationary extended interval-valued

time series and ARMA model are investigated. In Section 5, we prove the Wold decomposition

version of extended interval-valued time series. Section 6 is about numerical studies. In this

section we present an algorithm to convert efficiently point-valued data to extended interval-

valued data. We make a simulation of an I-AR(1) process and illustrate the interpretation of a

plot of extended intervals on a few data on blood pressure. We also do empirical analysis and

forecasting of the French CAC 40 market index from June 1st to July 26, 2019. The paper end

with a short conclusion.

2 Extended intervals

In this section, we first recall some basic concepts related to standard intervals. Next, we define

what people mean by "extended interval" and we introduce the set R← of real numbers run

in the reverse direction as a Cartesian product. At the end of this section, we present a novel

representation of extended intervals.

Let Kkc(R) be the set of nonempty compact (and convex) intervals. For A = [a1, a2], B =

[b1, b2] ∈ Kkc(R) and λ ∈ R, we recall the operations

A+B = [a1 + b1, a2 + b2] (1)

λA =


[λa1, λa2] if λ ≥ 0

[λa2, λa1] if λ ≤ 0

. (2)

It is noteworthy that Kkc(R) is closed under those operations, but it is not a vector space, since

A + (−1)A is not necessarily {0}, unless A = {0}. The Hausdorff distance dH is defined for

closed intervals [a1, a2] and [b1, b2] by

dH([a1, a2], [b1, b2]) = max(|b1 − a1|, |b2 − a2|).

It is well-known that (Kkc(R), dH) is a complete metric space (see Yang and Li (2005) for details).
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For A ∈ Kkc(R), the support function of A is the function s(·, A) : R→ R defined by

s(x,A) = sup{ax ; a ∈ A}. (3)

Equivalently, if we set A = [a1, a2],

s(x,A) = max(xa1, xa2).

Keep in mind that s(x,A) returns x times the left bound of A when x is negative and x times

the right bound of A when x is positive. This observation will be used to extend the support

function on "extended closed intervals".

Definition 2.1. An extended interval is a range A of real numbers between A and A, with

A,A ∈ R ∪ {±∞}, runs through from A to A.

The difference with standard intervals is that, for extended intervals we do not impose that

A ≤ A, but the running direction is important. We say that A is an increasing extended

interval or a proper interval when A < A, is an decreasing extended interval or an

improper interval when A > A and is a degenerate interval when A = A. When A and A

are in A, we say that A is an extended closed interval and denote it by A = bA,Ac. We also

have extended open intervals cA,Ab, R =c −∞,∞b and R← :=c∞,−∞b.

Every non-degenerate extended interval A represents the classical interval from min(A,A)

to max(A,A) ran in the increasing direction (for increasing extended interval) or ran in the

decreasing direction (for decreasing extended interval). We call A the left bound and A the right

bound of the extended interval A.

2.1 A new way to see extended intervals

An extended interval can be seen as a subset of the product set

R� := R× Z2 = R× {0, 1} =: R× {+,−}.

An element of R� is then a pair (x, α) where x ∈ R and the direction α ∈ {0, 1}. In this structure,

we have two kinds of degenerate extended intervals, namely {a}+ := {a} × {0} and {a}− :=

{a}×{1}. A decreasing extended interval (when A > A) is written as cA,Ab:= [A,A]×{1} and

an increasing interval (when A < A) as cA,Ab:= [A,A]× {0}.
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Thus, R� is the set of real numbers R endowed with two directions represented by the

elements of the Abelian group Z2. The direction 0 (or +) means you move on the real line from

the left to the right, and the direction 1 (or −) means you move from the right to the left. More,

the product [2, 4]× {0, 1} is the subset of R� in which one can move either from 2 to 4 or from

4 to 2. Equivalently, [2, 4]× {0, 1} = ([2, 4]× {0}) ∪ ([2, 4]× {1}).

We agree to denote [a, b] × {0} by [a, b]+ or just [a, b], and [a, b] × {1} by [a, b]−. Also, we

denote (x, 0) by x+ or just x, and (x, 1) by x−. For instance, 3 ∈ [2, 4] and 3 6∈ [2, 4]−, while

3− 6∈ [2, 4] and 3− ∈ [2, 4]−.

Practically, talking about the French CAC40 index, if we say that we got 4922− today, this

will mean that we got a value of 4922 and the index was decreasing when we got this value. This

is an example of how this new structure of extended intervals can be very useful in the context

of trading market, and more.

The best choice of topology on the second member {0, 1} of R� is the discrete topology:

every subset is open. So, if we also endow R with its natural topology, the only compact and

convex subset for the product topology in R�, are the closed extended intervals bA,Ac.

we need now to clarify how to compute the intersection of extended intervals with our nota-

tions. First observe that A ⊆ B means that B ≤ A ≤ A ≤ B or B ≥ A ≥ A ≥ B. For instance,

b1, 2c * b3, 1c. In fact, the elements of b1, 2c are 1+, 1.2+, 1.5+, and so on, and do not belong to

b3, 1c = [1, 3]−. The only obstruction for the inclusion to hold in this example is the difference

in the running direction between both intervals.

Proposition 2.1. Let A and B be two compact and convex extended intervals. If A and B are

running in opposite directions then A ∩ B = ∅. Otherwise, the intersection A ∩ B is the biggest

extended interval C such that C ⊆ A and C ⊆ B. This is naturally extended to general subsets

A and B.

Example 1. b0, 1c ∩ b1, 2c = {1}, b1, 0c ∩ b2, 1c = {1}←, b0, 1c ∩ b2, 1c = ∅, b2, 1c ∩

b3, 1c = b2, 1c, b3, 1c ∩ b4, 2c = b3, 2c, R ∩ R← = ∅.

Now that union and intersection are well defined for subsets of R�, one can define topologies

on this latter.

Definition 2.2. The natural topology of R� is the topology generated by the set of extended open

intervals.
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The topology induced on R by the one of R� coincide with the natural topology of R.

We denote by K(R) the set of all compact and convex extended intervals except decreasing

degenerate extended intervals. That means, all degenerate intervals in K(R) are increasing. We

extend Hausdorff distance on K(R) as

dH(A,B) = max(|A−B|, |A−B|). (4)

Example 2. In K(R), the extended closed interval bA,Ac and bA,Ac are different, unless A = A,

and dH(bA,Ac, bA,Ac) = |A−A|. This distance can be viewed as the effort needed to turn bA,Ac

into bA,Ac.

Theorem 1. (K(R), dH) is a complete metric space.

Proof. Assume that (An = bAn, Anc)n is a Cauchy sequence. Then (An)n and (An)n are Cauchy

sequences in R and so converge, say to A and A respectively. In fact dH(Ap, Aq) = max(|Aq −

Ap|, |Aq − Ap|) goes to 0 as p, q go to infinity implies that |Aq − Ap| and |Aq − Ap|) goes to 0

as p, q go to infinity. Finally, (An)n converges to A = bA,Ac since dH(An, A) = max(|An −

A|, |An −A|).

We endow K(R) with the topology induced by the Hausdorff distance dH . We extend multi-

plication (2) on extended intervals in such a way that multiplication of an increasing extended

interval by a negative number gives a decreasing extended interval and vice versa. This ensure

the consistency of the extensions on K(R) of the internal composition laws (1)-(2):

λ×A = bλA, λAc, A−B = bA−B,A−Bc, ∀λ ∈ R. (5)

The operator − can be seen as an extension the difference of Hukuhara defines for standard

intervals by A − B = [min(A − B,A − B),max(A − B,A − B)]. It is nothing to see that

(K(R),+, ·) is a vector space and 0 := [0, 0] is the zero vector.

For extended closed intervals A and B the support function reads

sA(u) =


sup{ux; x ∈ A} if A ≤ A

inf{ux; x ∈ A} if A < A

. (6)

For instance, sA(−1) = −A and sA(1) = A. Hence the support function from the vector space of
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extended closed intervals to the vector space R{−1,1} of maps from {−1, 1} to R, is linear. That

is for all compact and convex extended intervals A,B,

sA+B = sA + sB

sλA = λsA, ∀λ ∈ R

sA−B = sA − sB.

For any extended interval A, we call vector of sA the column vector SA = (−sA(−1), sA(1))′.

3 Extended interval-valued random variables

Let (Ω,A , P ) be a probability space. For any A ∈ K(R), we set

hits(A) = {B ∈ K(R);A ∩B 6= ∅}

the set of compact and convex extended intervals that hit A. We endow the set K(R) of compact

and convex extended intervals with the σ−algebra B(K(R)) generated by {hits(A); A ∈ K(R)}.

For simplicity, we denote X−1(hits(A)) := {ω ∈ Ω; X(ω) ∩ A 6= ∅} by X−1(A) and call it the

inverse image of A by X. This inverse image X−1(A) is the collection of ω ∈ Ω such that X(ω)

hits A. The following definition is equivalent to the one given in Han et al. (2012).

Definition 3.1. A random extended interval on a probability space (Ω,A , P ) is a map X : Ω→

K(R) such that for any A ∈ K(R), X−1(A) ∈ A .

So, a random extended interval is a measurable map X : Ω → K(R) from the underlying

probability space to K(R) endowed with the σ−algebra B(K(R)). We denote by U [Ω,K(R)] the

set of random extended intervals. U [Ω,K(R)] inherit from the vector space structure of K(R).

The distribution of X ∈ U [Ω,K(R)] is the map PX : B(K(R))→ [0, 1] defined on O ∈ B(K(R))

by

PX(O) := P (X ∈ O).

Definition 3.2. A map f : Ω → R is called a selection map for a random extended interval

X when f(ω) ∈ X(ω) for almost every ω ∈ Ω.

Selection maps for X = bX,Xc are then maps leaving between X and X. For instance, X

and X are selection maps for X. The expectation of X is the set of expectations of measurable
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selection maps for X. More precisely,

Definition 3.3. The expectation of a random extended interval X on a probability space

(Ω,A , P ) is the extended interval

E[X] = bE[X], E[X]c. (7)

Proposition 3.1. For any X,Y ∈ U [Ω,K(R)] and λ ∈ R, E[X + λY ] = E[X] + λE[Y ].

We denote by SX = {f ∈ L1(Ω) and f is a selection map for X} the set of integrable se-

lection maps for X and SX(A0) = {f ∈ L1(Ω,A0) and f is a selection map for X} the set of

(Ω,A0)−integrable selection maps for X, being A0 a sub−σ−field of A . The expectation of X

is the classical interval {E[f ] ; f ∈ SX} together with the running direction coming from X.

3.1 The distance Dγ

To quantify the variability of X, that is the dispersion of X around its expectation, we need a

suitable distance measure on random extended intervals. The first distance that could come to

mind is the Hausdorff distance. But, a disadvantage of the Hausdorff distance is for instance

that dH([0, 2], [5, 6]) = 5 = dH([0, 2], [5, 7]), while intuitively the distance between [0, 2] and [5, 6]

should be less than the distance between [0, 2] and [5, 7].

In Bertoluzza et al. (1995) the authors defined the squared distance d2
γ(A,B) between two

standard intervals as follow. For any interval A = [A,A], we consider the one-to-one map

∇A : [0, 1]→ A, t 7→ tA+ (1− t)A. Then the squared distance d2
γ(A,B) is given by

d2
γ(A,B) =

∫ 1

0
(∇A(t)−∇B(t))2 γ(t)dt =

∫ 1

0

(
t(A−B) + (1− t)(A−B)

)2
γ(t)dt, (8)

where γ(t)dt is a Borel measure on [0, 1] such that:

γ(t) ≥ 0 for every t ∈ [0, 1]; (9a)∫ 1

0
γ(t)dt = 1; (9b)

γ(t) = γ(1− t); (9c)

γ(0) > 0 (9d)

We extend dγ on extended intervals with the same formula (8) and assumptions (9a)-(9d).
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If d2
γ(A,B) = 0 then ∇A(t) = ∇B(t) for almost every t ∈ [0, 1], which implies that A = B and

A = B; thus A = B. For triangular inequality, we first write

(∇A(t)−∇C(t))2 = (∇A(t)−∇B(t))2 + (∇B(t)−∇C(t)) + 2(∇A(t)−∇B(t))(∇B(t)−∇C(t)).

Hence,

d2
γ(A,C) = d2

γ(A,B) + d2
γ(B,C) + 2

∫ 1

0
(∇A(t)−∇B(t))(∇B(t)−∇C(t))γ(t)dt. (10)

From here, using Hölder’s inequality, one gets the triangular inequality. Thus, dγ is a distance

on the set K(R) of extended intervals. The two extended intervals A = bA,Ac and Ã = bA,Ac

represent the same standard interval but are different in K(R), and dγ(A, Ã) = |A−A|cst (with

cst =
(∫ 1

0 (2t− 1)2γ(t)dt
)1/2

6= 0) vanishes if and only if A = A. This distance can be seen as

the effort needs to turn Ã into A.

Conditions (9a)-(9b) are required if we want the distance dγ on degenerate intervals [a, a]

and [b, b] gives the usual distance |b− a|. In other hand, the distance dγ is suitable for intervals

since it doesn’t share some disadvantages of the Hausdorff distance, see Bertoluzza et al. (1995)

for more details.

The norm of an interval A is the distance between A and 0: ‖A‖ = dγ(A, 0). Condition

(9c) means that there is no preferable position between left and right bounds. More precisely,

this condition implies that ‖ba, 0c‖ = ‖b0, ac‖ = |a|
(∫ 1

0 t
2γ(t)dt

)1/2
. The previous observation

justifies the following definition.

Definition 3.4. We say that γ(t)dt is an adapted measure if in addition of conditions (9a)-(9d)

one has ∫ 1

0
t2γ(t)dt = 1 (9f)

Example 3. One can check that with

γ(t) = t(1− t)
(

480− 10240

3π

√
t(1− t)

)
+ 1,

γ(t)dt is an adapted measure. We will refer to this as the standard adapted measure. It has been

used in the software R to check Lemma 3.1.
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Generally for any c ∈ (0,∞), the formula

γc(t) = t(1− t)
(
a+ b

√
t(1− t)

)
+ c,

defined an adapted measure for a = −30c+ 510 and b = 512(c−21)
3π .

This dγ distance can be related to the DK distance measure developed by Körner and Näther

(2002) as follows:

d2
γ(A,B) = (sA(−1)− sB(−1))2K(−1,−1) + (sA(1)− sB(1))2K(1, 1)

− 2(sA(−1)− sB(−1))(sA(1)− sB(1))K(−1, 1)

=

−sA(−1) + sB(−1)

sA(1)− sB(1)


′K(−1,−1) K(−1, 1)

K(1,−1) K(1, 1)


−sA(−1) + sB(−1)

sA(1)− sB(1)


d2
γ(A,B) = S′A−BKγSA−B (11)

where the kernel Kγ = (K(i, j))i,j=−1,1 introduced by Han et al. (2012) is given by


K(−1,−1) =

∫ 1
0 t

2γ(t)dt

K(1, 1) =
∫ 1

0 (1− t)2γ(t)dt

K(−1, 1) = K(1,−1) =
∫ 1

0 t(1− t)γ(t)dt

. (12)

We will often denote 〈SA−B, SA−B〉γ := d2
γ(A,B). As observed before by Han et al. (2012), the

kernel Kγ is symmetric positive definite and defined an inner product on K(R). We use some

properties of this inner product in order to perform the proofs of Lemma 3.2 and Theorem 2. The

following lemma shows that there exists a unique distance dγ with γ(t)dt an adapted measure.

This lemma is also useful for numerical simulations.

Lemma 3.1. All adapted measure induce the same metric given by

Kγ =

 1 −1/2

−1/2 1

 and d2
γ(A,B) = (A−B)2 + (A−B)2 − (A−B)(A−B).

Proof. If γ(t)dt is an adapted measure then K(1, 1) = K(−1,−1) =
∫ 1

0 t
2γ(t)dt = 1. Using

conditions (9a)-(9d) one shows that K(−1, 1) = K(1,−1) = −1/2.
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Let X and Y be two random intervals. For any ω ∈ Ω, X(ω) and Y (ω) are two extended in-

tervals and one can compute the distance dγ(X(ω), Y (ω)). We defined a new distance on random

extended intervals by taking the squared root of the mean of squared distance d2
γ(X(ω), Y (ω))

in (Ω,A , P ).

Definition 3.5. The Dγ distance is defined for two random extended intervals X,Y by

Dγ(X,Y ) =
(
E[d2

γ(X,Y )]
)1/2

=

√∫
Ω

∫ 1

0

(
∇X(ω)(t)−∇Y (ω)(t)

)2
γ(t)dt dP (ω),

provided the integral converges.

We denote by L2[Ω,K(R)] the set of random extended intervals X such that E‖X‖2γ :=

E(d2
γ(X, 0)) = D2

γ(X, 0) <∞.

Lemma 3.2. L2[Ω,K(R)] is a vector space under laws (1)-(2).

Proof. It is enough to show that L2[Ω,K(R)] is a sub-vector space of U [Ω,K(R)]. Let X,Y ∈

L2[Ω,K(R)] and λ ∈ R. then Dγ(λX, 0) = |λ|Dγ(X, 0) and

D2
γ(X + Y,0) = E

[
S′X+YKγSX+Y

]
= E

[
(SX + SY )′Kγ(SX + SY )

]
= D2

γ(X, 0) +D2
γ(Y, 0) + 2E

[
S′XKγSY

]
≤ 2D2

γ(X, 0) + 2D2
γ(Y, 0).

Last inequality come from the fact that using Cauchy-Schwarz inequality,

2S′XKγSY = 2〈SX , SY 〉γ ≤ 2
√
〈SX , SX〉γ

√
〈SY , SY 〉γ ≤ 〈SX , SX〉γ + 〈SY , SY 〉γ

It is nothing to see that for any X,Y ∈ L2[Ω,K(R)], 0 ≤ Dγ(X,Y ) <∞ and the triangular

inequality for Dγ follows from the one of dγ. However, Dγ is not a metric on L2[Ω,K(R)] since

Dγ(X,Y ) = 0 does not implies the strict equality X = Y ; but that there are equal almost

everywhere. We denote by L2[Ω,K(R)] the quotient set of L2[Ω,K(R)] under the equivalent

relation "being equal almost everywhere". Then, Dγ is a metric on L2[Ω,K(R)]. We will keep

denoting any class in L2[Ω,K(R)] by a representative X ∈ L2[Ω,K(R)].
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Theorem 2. (K(R), dγ) and
(
L2[Ω,K(R)], Dγ

)
are complete metric spaces.

Proof. Assume that (An = bAn, Anc)n is a dγ−Cauchy sequence in K(R). Then (An, An)′n is a

Cauchy sequence in R2 and so converges, say to (A,A)′. In fact dγ(Ap, Aq) = S′Ap−Aq
KγSAp−Aq

goes to 0 as p, q go to infinity implies that SAp−Aq = (−Ap + Aq, Ap − Aq)′ goes to 0 as p, q

go to infinity. Also, (An)n converges to A = bA,Ac since dγ(An, A) = S′An−AKγSAn−A. Hence

(K(R), dγ) is a Complete metric space. Now, assume that (Xn = bXn, Xnc)n is a Dγ−Cauchy

sequence in L2[Ω,K(R)]. Then from Fatou’s Lemma and Definition 3.5,

E[lim inf
p,q→∞

d2
γ(Xp(ω), Xq(ω))] ≤ lim inf

p,q→∞
E[d2

γ(Xp(ω), Xq(ω))] = 0.

HenceE[lim inf
p,q→∞

d2
γ(Xp(ω), Xq(ω))] = 0, which implies that for almost every ω ∈ Ω, lim inf

p,q→∞
d2
γ(Xp(ω), Xq(ω)) =

0. Hence there exists a subsequence (Xnk
(ω)) which is a Cauchy sequence in the complete met-

ric space (K(R), dγ). So, for almost every ω, (Xnk
(ω))k dγ-converges to X(ω) = bX(ω), X(ω)c,

say; setting X(ω) to be 0 for the remaining ω, one obtains an random extended interval X. As

lim
k→∞

d2
γ(Xnk

, X) = 0, we also have that lim
k→∞

d2
γ(Xn, Xnk

) = d2
γ(Xn, X) for any n. Using Fatou’s

lemma again,

lim
n→∞

E[d2
γ(Xn, X)] = lim

n→∞
E[lim inf

k→∞
d2
γ(Xn, Xnk

)] ≤ lim
n→∞

lim inf
k→∞

E[d2
γ(Xn, Xnk

)] = 0,

since lim
p,q→∞

E[d2
γ(Xp(ω), Xq(ω))] = 0 implies that lim

n,k→∞
E[d2

γ(Xn, Xnk
)] = 0.

Definition 3.6. We say that a sequence (Xn) of random extended intervals converges to X in

probability under the metric dγ when (d2
γ(Xn, X)) converges to 0 in probability, that is

∀ε > 0, lim
n→∞

P (d2
γ(Xn, X) ≥ ε) = 0.

Theorem 3. A sequence (Xn) such that sup
n
E‖Xn‖ <∞, converges to X in (L2[Ω,K(R)], Dγ)

if and only if (Xn) converges to X in probability under the metric dγ.

Proof. Let’s assume that (Xn) converges to X, that is (D2
γ(Xn, X) = E[d2

γ(Xn, X)]) converges

to 0. That means that (dγ(Xn, X)) converges to 0 in norm L2 in (Ω,A , P ), which implies that

(d2
γ(Xn, X)) converges to 0 in probability. Conversely, assume that (Xn) converges to X in

probability under the metric dγ . So, the inequality |dγ(Xn, 0) − dγ(X, 0)| ≤ dγ(Xn, X) implies
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that (‖Xn‖) converges to ‖X‖ in probability. By Fatou’s Lemma,

E‖X‖ ≤ lim inf
n→∞

E‖Xn‖ ≤ sup
n
E‖Xn‖ <∞.

The inequality

d2
γ(Xn, X) ≤ 2‖Xn‖2 + 2‖X‖2

implies that (dγ(Xn, X)) is uniformly integrable. Finally, the dominated convergence theorem

implies that (Dγ(Xn, X)) converges to 0.

Corollary 3.1. Let (Xn) be a sequence of random extended intervals such that sup
n
E‖Xn‖ <∞

and (λn) a family of nonnegative real numbers such that
∑
λ2
n < ∞. Then (Sn =

∑n
i=0 λiXi)

converges in probability under the metric dγ.

Definition 3.7 (Han et al. (2012)). The covariance of two random extended intervals X, Y is

the real

Cov(X,Y ) := E〈SX−E[X], SY−E[Y ]〉γ

=

∫
Ω

∫ 1

0

(
∇X(ω)(t)−∇E[X](t)

) (
∇Y (ω)(t)−∇E[Y ](t)

)
γ(t)dt dP (ω). (13)

The variance of X is the real

V ar(X) = Cov(X,X) = E〈SX−E[X], SX−E[X]〉γ = D2
γ(X,E[X]). (14)

The next proposition is the extended interval version of Theorem 4.1 of Yang and Li (2005).

Proposition 3.2. For all random extended intervals X,Y, Z the following hold:

À V ar(C) = 0, for every constant interval C;

Á V ar(X + Y ) = V ar(X) + 2Cov(X,Y ) + V ar(Y );

Â Cov(X,Y ) = Cov(Y,X);

Ã Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z);

Ä Cov(λX, Y ) = λCov(X,Y );

Å V ar(λX) = λ2V ar(X), for every λ ∈ R;
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Æ P (dγ(X,E[X]) ≥ ε) ≤ V ar(X)/ε2 for every ε > 0 (Chebyshev inequality).

Proof. For any constant extended interval C one has E[C] = C and V ar(C) = 0 follows. Using

the linearity of S and the form (11) of the metric dγ one proves items Á-Å. Chebyshev inequality

follows from the fact that P (dγ(X,E[X]) ≥ ε) ≤ E[dγ(X,E[X])2]/ε2.

In the particular case of adapted measures, we have the following results, which are very

useful in numerical simulations.

Proposition 3.3. If γ(t)dt is an adapted measure, a, b are random variables and X and random

extended interval then

À V ar(ba, 0c) = V ar(b0, ac) = V ar(a);

Á V ar(ba, ac) = V ar(a);

Â Cov(ba, 0c, b0, bc) = −1
2Cov(a, b);

Ã V ar(X) = V ar(X)− Cov(X,X) + V ar(X);

Ä Cov(X,Y ) = Cov(X,Y ) + Cov(X,Y )− 1
2Cov(X,Y )− 1

2Cov(Y ,X);

Å E‖X‖2 = E[X2] + E[X
2
]− E[XX].

The item Ä of above proposition is similar to the one obtain for classical intervals in Example

4.1 of Yang and Li (2005), but the two last terms −1
2Cov(X,Y )− 1

2Cov(Y ,X) are not present

in the formula of Yang and Li. This difference can be explained by the fact that for our distance

dγ , there is no preference between the left and the right bound, which is not the case for the

distance dp used by Yang and Li (2005). From the formula of Yang, if the left bounds of X,Y

are independent and their right bounds are also independent then Cov(X,Y ) = 0, which is not

the case for our formula Ä above.

Let L2[Ω,K(R)]0 = {X ∈ U [Ω,K(R)];E[X] = 0 and E[‖X‖2γ ] < ∞}, that is the sub-vector

space of L2[Ω,K(R)] made by random extended interval with mean zero. For an random extended

interval X ∈ L2[Ω,K(R)]0, Cov(X,X) = 0 means that X = E[X] = 0 almost everywhere. Hence

formula (13) cannot define a scalar product on L2[Ω,K(R)]0. We denote by L2[Ω,K(R)]0 the

set of classes of zero mean random extended interval equals almost everywhere. We will keep

denoting any class in L2[Ω,K(R)]0 by a representative X ∈ L2[Ω,K(R)]0. L2[Ω,K(R)]0 inherits
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from the structure of vector space of L2[Ω,K(R)]0 and for X,Y ∈ L2[Ω,K(R)]0, the formula (13)

reads

Cov(X,Y ) = E〈SX , SY 〉γ =

∫
Ω

∫ 1

0
∇X(ω)∇Y (ω)γ(t)dtdP (ω) (15)

and is a scalar product on L2[Ω,K(R)]0.

Theorem 4. (L2[Ω,K(R)]0, Cov) is a Hilbert space.

Proof. From what is written above, Cov is a scalar product on L2[Ω,K(R)]0. For the complete-

ness, use fact that 〈, 〉γ defined a scalar product on R2.

Example 4. Let’s consider the random ex-

tended interval

X = bf(ω), g(ω)c, (16)

the left and right bounds being respectively

f(ω) = (1/
√

2π) exp(−0.5ω2)

g(ω) = 0.3 exp(−0.3ω).

We may write X  NE(0, 1, 0.3) to say that

the left bound of X follows the standard nor-

mal distribution and its right bound follows the

exponential distribution with parameter 0.3.

Figure 1: We represent extended intervals with arrows.
Arrow point up for increasing extended intervals and down
for decreasing extended intervals.

4 Stationary extended interval time series

Let (Xt)t∈Z be an extended interval time series; that is for any integer t, Xt is an random

extended interval. We denote by At the expectation of Xt and by Ct(j) = Cov(Xt, Xt−j) the

auto-covariance function.

Definition 4.1. We say that an extended interval time series (Xt) is stationary when neither

At nor Ct(j) depends on t. In this case, we just denote them A and C(j) respectively.
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For any n ∈ Z+, the auto-covariance matrix is given by

Cn = (C(i− j))1≤i,j≤n =



C(0) C(1) · · · C(n− 1)

C(1) C(0) · · · C(n− 2)

...
...

...
...

C(n− 1) C(n− 2) · · · C(0)


. (17)

The proof of the following theorem is similar to the one of Theorem 4 in Wang et al. (2016).

Theorem 5. The auto-covariance function of any stationary process satisfies:

À C(k) = C(−k) for all k ∈ Z;

Á |C(k)| ≤ C(0) for all k ∈ Z;

Â the auto-covariance matrix Cn is positive semi-definite;

Ã if C(0) > 0 and (C(k)) converges to to 0 then Cn is positives definite.

LetX1, . . . , XT be a sample of a stationary extended interval time series (Xt) with expectation

A. An unbiased estimator of A is given by

mX =
X1 + · · ·+XT

T
(18)

and the sample-covariance is given by

Ĉ(k) =
1

T

T−|k|∑
i=1

∫ 1

0
(∇Xi+|k|(t)−∇mX(t))(∇Xi+|k|(t)−∇mX(t))γ(t)dt. (19)

Theorem 6. Let (Xt) be a stationary extended interval-valued time series with expectation A

and auto-covariance function C(k) such that (C(k)) converges to 0. Then mX is a consistent

estimator of A; that is for any ε > 0, lim
T→∞

P (dγ(mX,A) ≥ ε) = 0.

Proof. One has

V ar(mX) = D2
γ(mX,A) = E〈SmX−A, SmX−A〉γ =

1

T 2

T∑
i,j=1

E〈SXi−A, SXj−A〉γ

=
1

T 2

T∑
i,j=1

C(i− j) =
1

T 2

T∑
i−j=−T

(T − |i− j|)C(i− j) =
1

T

T∑
k=−T

(
1− k

T

)
C(k).
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So, V ar(mX) goes to 0 as T goes to infinity since (C(k)) converges to 0. By Chebyshev inequality,

∀ε > 0, P (dγ(m,A) ≥ ε) ≤ V ar(mX)/ε2 goes to 0 as T goes to infinity.

As usually, Ĉ(k) is not an unbiased estimator of C(k) (unless mX = A) but,

Theorem 7. If (C(k)) converges to 0 as k goes to infinity, then for any k, Ĉ(k) is an asymp-

totically unbiased estimator of C(k), that is lim
T→∞

E[Ĉ(k)] = C(k).

Proof.

Ĉ(k) =
1

T

T−|k|∑
i=1

∫ 1

0
(∇Xi+|k|(t)−∇mX(t))(∇Xi(t)−∇mX(t))γ(t)dt

=
1

T

T−|k|∑
i=1

∫ 1

0
(∇Xi+|k|(t)−∇A(t))(∇Xi(t)−∇A(t))γ(t)dt+

1

T

T−|k|∑
i=1

∫ 1

0
(∇mX(t)−∇A(t))2γ(t)dt

− 1

T

T−|k|∑
i=1

∫ 1

0
(∇mX(t)−∇A(t))(∇Xi+|k|(t) +∇Xi(t)− 2∇A(t))γ(t)dt

Hence,

lim
T→∞

E[Ĉ(k)] = lim
T→∞

1

T

T−|k|∑
i=1

E[C(k)] + lim
T→∞

1

T

T−|k|∑
i=1

V ar(mX)

− lim
T→∞

1

T

T−|k|∑
i=1

(
Cov(mX,Xi+|k|) + Cov(mX,Xi)

)
= C(k)− lim

T→∞

1

T 2

T−|k|∑
i=1

T∑
j=1

(
Cov(Xj , Xi+|k|) + Cov(Xj , Xi)

)
= C(k)− lim

T→∞

1

T 2

T∑
j−i=−T

(T − |j − i|) (C(j − i− |k|) + C(j − i))

= C(k)− lim
T→∞

1

T

T∑
l=−T

(
1− |l|

T

)
(C(l − |k|) + C(l)) = C(k)

4.1 Extended Interval-valued AutoRegressive Moving-Average

process

Let (Xt) be an extended interval-valued stationary time series with expectation A and auto-

covariance function C(k). To capture the dynamics of (Xt) one can assumed that it follows an
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interval autoregressive moving-average (I-ARMA) process of order (p, q), that is

Xt = K +

p∑
i=1

θiXt−i + εt +

q∑
i=1

φiεt−i, (20)

being K a constant extended interval, φi and θi are the parameters of the model, (εt)  

IID({0}, σ2) and for each t, εt is uncorrelated with the past of Xt. This model has been

introduced and study by Han et al. (2012). They call such a model an Autoregressive Condi-

tional Interval Models, and they proposed a DK−distance based estimation method to estimate

the parameters. Our interest in this method is to do forecasting and we propose a different

estimation method, based on Yule-Walker equation.

By taking expectation at the both sides of (20) one finds

λA = K, (21)

where λ = 1 − θ1 − · · · − θp. So, as in the case of real random variables, the expectation µt

of Xt doesn’t depend on t and the new series X ′t = Xt − 1
λK is a zero-mean I-ARMA process,

ie Equation (20) with K = 0. In what follows, till numerical study section, we assume that

K = 0, that is (Xt) is a zero-mean stationary process. When p = 0, the process (Xt) is called

an extended interval-valued moving-average time series process of order q, I-MA(q), and when

q = 0, one obtains an extended interval-valued autoregressive time series process of order p,

I-AR(p).

Let L be the delay operator, thus LXt = Xt−1. Setting Θ(L) = 1 − θ1L − · · · − θpLp and

Φ(L) = 1 + φ1L+ · · ·+ φqL
q, equation (20) can be written as

Θ(L)Xt = Φ(L)εt. (22)

The functions Θ and Φ are called autoregressive and moving-average polynomials respectively.

In particular, if (Xt) is an I-MA(1) process: Xt = εt + φεt−1; then

C(1) = φσ2. (23)

In section 5 we show that any non-deterministic zero-mean stationary random extended interval

process can be expressed as a MA(∞).
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If the moving-average polynomial Φ = 1 then (22) leads to

Xt = (1−Θ(L))Xt + εt. (24)

which is an extended interval-valued autoregressive process of order p, I-AR(p). In this case,

the existence and the uniqueness of a stationary solution is not guaranteed. However when a

stationary solution exits, using Proposition 3.2 it is nothing to show that its auto-covariance

function satisfies

C(k)−
p∑
i=1

θiC(k − i) = 0, for any 1 ≤ k ≤ p. (25)

Hence the parameters of an I-AR(p) process satisfy the following Yule-Walker equation

CpΘ = cp, (26)

where cp = (C(1), . . . , C(p))T , Θ = (θ1, . . . , θp)
T and Cp is the auto-covariance matrix (17).

Theorem 8. Any AR(1) process Xt = θXt−1 +εt, with 0 < θ < 1 and sup
t
E‖εt‖ <∞, possesses

a unique stationary solution given by Xt =
∑∞

i=0 θ
iεt−i.

Proof. One has

Xt = θXt−1 + εt = θ2Xt−2 + θεt−1 + εt = θn+1Xt−n−1 +

n∑
i=0

θiεt−i.

As 0 < θ < 1 one has that
∑
θ2i < ∞. This together with suptE‖εt‖ < ∞ implies that

(Sn =
∑n

i=0 θ
iεt−i) converges in probability under the metric dγ by Corollary 3.1. Since (Xt) is

stationary V ar(Xt) = E‖Xt‖2 is constant and

E

∥∥∥∥∥Xt −
n∑
i=0

θiεt−i

∥∥∥∥∥
2

= E‖θn+1Xt−n−1‖2 = θ2(n+1)E‖Xt−n−1‖2

goes to 0 as n goes to infinity. Hence E
∥∥Xt −

∑∞
i=0 θ

iεt−i
∥∥2

= 0. This implies that Xt =∑∞
i=0 θ

iεt−i a.e. From this solution we have

Cov(Xt+k, Xt) = σ2
∞∑
i=k

θkθi−k = σ2 θk

1− θ2
.
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Now, if (Xt) is an I-ARMA(1, 1) process: Xt = θXt−1 + εt + φεt−1. Then

C(2) = θC(1) and C(1) = θC(0) + φσ2. (27)

5 Wold decomposition for extended interval-valued time series

Let (Xt)t∈Z be a zero-mean extended interval-valued stationary process. The sets St = Span({Xk}tk=−∞)

and S−∞ =
∞⋂

t=−∞
St are Hilbert spaces of L2[Ω,K(R)]0. For any j ≥ 0, the projection PSt−jXt of

Xt on St−j is called the prediction of Xt on St−j . We shall say that an extended interval-valued

process (Xt)t∈Z is deterministic if for any t ∈ Z, Xt ∈ St−1. Xt − PSt−1Xt is called the error

in the projection of Xt on St−1 and when PSt−1Xt = Xt one says that (Xt)t∈Z is (perfectly) pre-

dictable. As (L2[Ω,K(R)]0, Cov) is a Hilbert space, we have the following Wold decomposition

for extended interval time series.

Theorem 9. Let (Xt)t∈Z be a non-deterministic extended interval-valued stationary time series

process with expectation {0} and auto-covariance function (C(k)). Then Xt can be expressed as

Xt =
∞∑
k=0

αkεt−k +Wt a.s (28)

where:

(i) αk = 1
σ2Cov(Xt, εt−k), α0 = 1 and

∞∑
k=0

α2
k <∞;

(ii) {εt} WN({0}, σ2), with σ2 = V ar(Xt − PSt−1Xt);

(iii) Cov(Wt, εs) = 0 for all t, s ∈ Z;

(iv) (Wt)t∈Z is zero-mean, stationary and deterministic.

Proof. For any t ∈ Z, application of the Theorem 4 in Bierens (2012) to the regular sequence

(Xt−k)
∞
k=0 gives that Xt can be expressed as

Xt =

∞∑
k=0

θket−k +Wt a.s (29)

where {et−k}∞k=0 is an uncorrelated process with Cov(ei, ej) = δij , θk = Cov(Xt, et−k),
∞∑
k=1

θ2
k <

∞, Wt ∈ U⊥t with Ut = Span({ek}tk=−∞) ⊂ St. Since the process (Xt)t∈Z is non-deterministic,

the residual εt = Xt − PSt−1Xt is different from 0 and εt = ‖εt‖et, hence (28) holds with
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αk = θk/‖εt−k‖, and (εt) is also uncorrelated. As Wt, εt ∈ L2[Ω,K(R)]0, E[Wt] = 0 = E[εt].

Wt ∈ U⊥t implies that Cov(Wt, εs) = 0 for any s ≤ t. For s > t, taking scalar product of (29)

with εs one has Cov(Wt, εs) = Cov(Xt, εs) = 0 since εs ∈ S⊥s−1 and Xt ∈ St ⊂ Ss−1 for s > t.

This proves (iii). Let Xt,n be the projection of Xt on St,n = span({Xt−j}nj=1) and εt,n the

residual. Then Xt,n takes the form

Xt,n =
n∑
j=1

βj,nXt−j ,

where the scalars βk,n do not depend on t, since they are solutions of the system of equations

n∑
j=1

βj,nC(j − k) = C(k), k = 1, . . . , n.

Hence E[Xt,n] = 0, E[εt,n] = 0. Moreover,

V ar(εt,n) = ‖Xt −Xt,n‖2 =

∥∥∥∥∥∥Xt −
n∑
j=1

βj,nXt−j

∥∥∥∥∥∥
2

= C(0) +
n∑

i,j=1

βi,nβj,nC(i− j)− 2
n∑
j=1

βj,nC(j).

Hence V ar(εt,n) = σn does not depend on t and so does for σ = ‖εt‖ = lim
n→∞

σn. Also,

Cov(Xt+k, εt,n) = C(k)−
n∑
j=1

βj,nC(k + j),

which does not depend on t. Using Cauchy-Schwarz inequality,

lim
n→∞

|Cov(Xt+k, εt,n − εt)| ≤
√
C(0) lim

n→∞
‖εt,n − εt‖ = 0,

which implies that Cov(Xt+k, εt) = lim
n→∞

Cov(Xt+k, εt,n) and does not depend on t. So,

αk =
1

‖εt‖
Cov(Xt+k, ek) =

1

‖εt‖2
Cov(Xt+k, εt)

does not depend on t. Moreover, α0 = Cov(Xt,εt)
‖εt‖2 = 1. All this completes the proof of (i) and
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(ii). For k ≥ 0,

Cov(Wt,Wt−k) = Cov

Xt−k −
∞∑
j=0

αjεt−k−j , Xt −
∞∑
j=0

αjεt−j


= C(k)−

∞∑
j=0

αjCov(Xt, εt−k−j)−
∞∑
j=k

αjCov(Xt−k, εt−j) + σ2
∞∑
j=0

αj+kαj

= C(k)− σ2
∞∑
j=0

αj+kαj ,

which does not depend on t. As Wt ∈ St, one can write Wt =
∑∞

k=0 akXt−k. Taking co-

variance with εt and using the fact that εt ⊥ Span(Xt−1, Xt−2, . . .) one gets Cov(Wt, εt) =

a0Cov(Xt, εt) = a0‖εt‖2. Since Cov(Wt, εt) = 0, one deduces that a0 = 0 hence Wt ∈ St−1, thus

(Wt) is deterministic from the past of (Xt). This completes the proof of (iv).

6 Numerical studies

Let (Xt) is an AR(1) process:

Xt = K + θXt−1 + εt. (30)

Then from Yule-Walker equation, the parameter θ can be estimated by θ̂ = Ĉ(1)

Ĉ(0)
with

Ĉ(0) =
1

T

T∑
i=1

∫ 1

0
(∇Xi −∇mX)2γ(t)dt =

1

T

T∑
i=1

d2
γ(Xi,mX),

Ĉ(1) =
1

T

T−1∑
i=1

∫ 1

0
(∇Xi+1 −∇mX)(∇Xi −∇mX)γ(t)dt

=
1

2T

T−1∑
t=1

(
d2
γ(Xi+1,mX) + d2

γ(Xi,mX)− d2
γ(Xi+1, Xi)

)
,

where Ĉ(1) and Ĉ(0) are the sample-covariance.

More generally, if we assume that the I-AR(p) process (24) is stationary then from Theorem

5, when C(0) > 0 and (C(k)) converges to 0, Yule-Walker equation (26) is well-posed and from

a large sample X1, . . . , XT , the coefficients of the I-AR(p) process can be estimated by

Θ̂ = Ĉpĉp.
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Using (10) and (19) the sample-covariance can be written as

Ĉ(k) =
1

2T

T−|k|∑
i=1

(
d2
γ(Xi+k,mX) + d2

γ(Xi,mX)− d2
γ(Xi+k, Xi)

)
. (31)

It is natural to assume that γ(t)dt is an adapted measure and in this case, the distance dγ is

given by Lemma 3.1 and it easy to numerically compute.

6.1 Using extended intervals to display data efficiently

Extended intervals can be very useful for displaying data. The plot of just one extended interval

A gives many informations: (a) the range of values of the considered index during the recording;

(b) the direction of variation of the considered index : decreasing when the arrow is pointing

down and increasing when the arrow is pointing up.
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Figure 2: Systolic blood pressure in blue and diastolic blood pressure in red, of the same person, recorded over 4 days in
2004. Left bounds are the morning records and right bounds are the afternoon records.

Figure 2 displays systolic (in blue) and diastolic (in red) blood pressure of a person recorded

in the morning (left bounds) and in the afternoon (right bounds), over 4 days in 2004. One

sees easily that on the 11.03.04, blood pressure recorded in the morning is higher than the one

recorded in the afternoon, both for systolic and diastolic.

6.2 Simulations

Now, we plot the model (30) with θ = 0.2, K = [13.31, 14.2], εt and εt following independent

standard normal distributions. Figure 3(a) shows a sample for this model for T = 100, when

24



the interval standard normal distribution used is the one plotted on Figure 3(b). One sees

that most of the outputs of this sample are standard intervals (71 standard intervals versus 29

decreasing ones) while for the error (interval standard normal distribution), they seem to be the

same number (41 standard intervals versus 59 decreasing). Figure 4 displays the estimated auto-

covariance function C(k) and shows that it goes to 0 as k becomes large. Also, K is estimated

using the formula K̂ = (1− θ̂)mX.

T K̂ C(T − 2) θ̂ Error
100 [13.31, 14.2] −0.02807759 0.1747072 0.02529285

500 [13.51569, 14.41001] 0.01240641 0.1892873 0.01071265

Table 1: Some estimations with R

6.2.1 Forecasting with Extended intervals

In Figure 5, we have plotted as standard min-max intervals (in blue) and open-close extended

intervals (in red), CAC 40 Stock Index from the 2nd January to the 31st May 2019 (105 trading

days). Extended intervals are formed by the opening values (left bounds) and the closing values

(right bounds). This figure shows that most often, neither opening nor closing values are the

lowest or the highest value of the index for the day. Notice that in such an index, what is

important most often is not just opening and closing values, but also to know how it has been

fluctuating along the day. For instance, the plot shows many days where opening value and

closing value are the same with a fluctuation along the day. Now, we wish to find the I-ARMA

model which best fits )this data. The first step is to test stationarity. Augmented Dickey–Fuller

Test shows that neither the data nor its first difference are stationaries but its second difference

is stationary. So, we take the second difference data and use AIC to determine the optimal

order (p, q). We define the AIC of the random interval to be the summation of the AIC of
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Figure 3: Simulation for the model (30) with T = 100
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Figure 4: Auto-Covariance estimated for the model (30) for T = 100
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Figure 5: CAC 40 Stock Index from 2nd January to 31st May 2019. Red arrows represent the extended intervals
with left bounds the opening values (in EUR) and right bounds the closing values. The blue line segments represent the
interval-valued prices composed of the lowest and highest prices of each day.

the bounds, and we assume that p, q = 1, 2, 3, 4. Figure 6 shows that the optimal order is

p = q = 1. Finally, using equation (27) we estimated the coefficients of the I-ARMA model by

θ̂ = Ĉ(2)

Ĉ(1)
, φ̂ = Ĉ(1)− θ̂Ĉ(0) and we found

θ̂ = −0.2519991 and φ̂ = −0.5326387. (32)

Figure 7 shows the forecast of the differentiated CAC 40 for the next 40 trading days.
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Figure 6: AIC as function of q for p = 1, 2, 3, 4.

-200

-100

0

100

200

0 50 100 150

di
ff(

CA
C

 4
0)

Figure 7: Forecast values from the 1st June to 26 July 2019 (red) and real values from the 2nd January to 26 July.

6.3 An algorithm to pretreat data

In this paragraph we present how data are usually pretreated and show that this process can be

better performed when one wishes to use extended intervals.

Let us consider an index ID (for example the French CAC40 index) that we try to modeling

for predicting future values. Let us assume that the values of this index are changing every

minute and that we want to analyze it over one year. That will make a huge set of data to
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analyze if we consider every single value of the index.

What people do most often is to consider a frequency; in the case of ID, on can decide to

analyze daily values. But, we have something like 1440 values every day and have to decide for

the value of the day. In point-value analysis, people consider either the opening value or the

closing value or the average value of the day as the value of that day. It is clear that a lot of

values have been neglected and this could lead to an inconsistent analysis.

In analysis with standard interval, people most often consider the highest and lowest values

of a day to form the interval representing the value of the index that day. (See for example Wang

and Li (2011).) By so doing, every interval contains really all the values of the index that day.

But, the interval can be irreasonably large and does not reflect the variations of the index during

the day. One can still do better by using extended intervals.

With extended intervals, one can proceed as follows. The first value is the left bound of the

first interval. If the next value is smaller (resp. bigger) then we keep looking for the next value

until either the index is no more significantly decreasing (resp. increasing), or we have passed

1440 values (the period cannot exceed 1 day). The right bound of the first interval is then the

previous value recorded and the actual value is the left bound of the second interval and me

repeat this process until the end of the data set. This process is summarized as Algorithm 1,

which returns the sequence Res of extended intervals obtained and the corresponding sequence

of time intervals. There is a need to explain when we say "corresponding sequence of time

intervals". The left bound of the first time interval is the time when the left bound of the first

extended interval of Res has been recorded, and so on.

By applying this algorithm, we don’t have a regular period, which is needed for a time series

analysis. The period can be taken here as the average of the periods of extended intervals

obtained.

We have implemented Algorithm 1 in R and test it on the CAC 40 stock index recorded

minute by minute during five days: from June 22, to June 26, 2020. After having treated the

2169 data we obtained 787 extended intervals as shown in Figure 8. The initial data was recorded

everyday from 9:00 am to 6:05 pm, except the last day that it ends at 10:52 am. So, the total

time of recording was 38 hours and 12 minutes. As we obtained 787 extended intervals, we can

take as period for time series analysis: 3 minutes. That’s we assume that every extended interval

is recorded during a lap time of 3 minutes.

Observe that the minimum value per day as well as the maximum value of the CAC 40 during
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Algorithm 1 Transform point-values to extended intervals
Require: data, time, ε, frequency=1440
Res← {}, ResT ime← {}
N ← length(data), i← 1
A← data[i], T ← time[i]
while i < N do
if data[i+ 1] ≤ data[i] then
i← i+ 1, j ← 1
while the index is decreasing or is not significantly (use ε) increasing do
i← i+ 1, j ← j + 1
if j > frequency then
break

end if
end while
A← data[i], T ← time[i]
add A = bA,Ac in Res and T = bT , T c in Restime
i← i+ 1

end if
if data[i+ 1] > data[i] then
i← i+ 1, j ← 1
while the index is increasing or is not significantly (use ε) decreasing do
i← i+ 1, j ← j + 1
if j > frequency then
break

end if
end while
A← data[i], T ← time[i]
add A = bA,Ac in Res and T = bT , T c in ResT ime
i← i+ 1

end if
end while
return Res and ResT ime
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Figure 8: Example of data pretreated in R using Algorithm 1.

considered five days is the same. So those data couldn’t be analyzed with min-max standard

intervals. In Figure 9, we have plotted the extended intervals that we have obtained.
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Figure 9: CAC 40 Stock Index from June 22, to June 26, 2020

7 Conclusion

In this work, we have redefined extended intervals in a more natural manner and written an

algorithm to efficiently transform point-valued data to extended interval-valued data. An ex-

tended interval is now a standard interval endowed with a direction α, which is an element of

the Abelian group Z2 = {0, 1}. The direction 0 means you move on the real line from the left

30



to the right, and the direction 1 means you move from the right to the left. This process can be

generalized on Rn. For example, one could define extended rectangles on R2 with 4 directions

represented by the Abelian group Z4.

We have seen that by using extended intervals to record the values of a given index, every

extended interval gives the value of the index and the direction of variation at the time of

recording. We have proposed a language that we hope will be use in the future in the trading

markets. Precisely, talking about the French CAC40 index, if we say that we got 4922− today,

this would mean that we got a value of 4922 and the index was decreasing when we got this

value. This is an example of how this new structure of extended intervals can be very useful

in the context of trading market, and more. A suitable distance has been defined on extended

intervals and used to define variance and covariance on random extended intervals, in a natural

way. We have studied ARMA processes with extended interval-valued both theoretically and

numerically. In the numerical part, we have made forecasting on CAC 40 stock index from the

2nd January to 26 July 2019.
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