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1. INTRODUCTION 
The increasing sample sizes from neuroimaging studies should allow detection of image measures are associated with 
phenotypic traits with smaller effect sizes, which will advance progress in the mapping of the brain regions associated 
with traits and diseases [1]. The UK Biobank (UKB) is one of the best example of this new generation of samples [2]. 
Multimodal Brain MRI collection is currently ongoing, with tens of thousands of individuals already imaged out of a 
target of 100,000 [2]. The large sample size, together with the breadth of phenotyping (incl. self-reports, in lab 
assessments, prescription and medical history), should allow new insights into the factors contributing to brain 
differences between older adults.    

 The current approach to map brain regions associated with a trait of interest, consists in mass-univariate 
analyses, where one tests the association between the trait of interest and each vertex/voxel in turn. The state of the art 
approach, implemented in most neuroimaging pipelines, uses a general linear model (GLM), which controls for 
covariates (often age, sex and head size).  

The structure of correlation present in neuroimaging data (here, cortical and subcortical thickness and surface 
area) introduces additional complexity in association testing. It implies that association at a vertex also tags association 
from other vertices (with which it is correlated) causing an inflation of false positives rate. We previously demonstrated 
this concern [3], and showed that state of the art GLM could result in more than 60% of the significant clusters being 
false positives. Instead, we proposed a Linear Mixed Model approach (LMM), which allows controlling for all vertices 
by fitting them as random effects in the model. We found that LMMs can limit the contamination of signal due to 
correlation between features, leading to increased mapping precision (smaller true positive clusters) and a greatly 
reduced probability to observe false positive clusters [3].  

However, LMMs exhibited false positive clusters in about 16% of the time, which is still above the 5% mark 
that one usually considers acceptable. In addition, LMMs may suffer from a slightly reduced power compared to GLM, 
though it is difficult to compare power when the methods exhibit such different rates of false positive associations [3].  

In the present paper, we attempted to overcome these problems, by considering a more complex mixed model, 
called MOMENT (Multi-cOmponent Mixed model ExcludiNg the Target), which has been used to solve similar issues in 
omics association studies [4]. MOMENT excludes the target vertex (vertex being tested and those locally correlated with 
it) from the random effects which avoids the reduction of power seen in LMMs due to “double fitting” [5]. In addition, 
MOMENT partitions the vertices into two groups (null and associated vertices) in a data driven manner. This allows 
relaxing the hypothesis of a single normal distribution of effect sizes in the random effect, for example allowing for 
strongly associated vertices. We evaluated the performance of MOMENT using phenotypes simulated from real MRI 
images. This allows comparison of false positive and true positive rates of the competing methods.  

 

2. DATA 
2.1. UK Biobank participants 

Our final sample for the analyses comprised 8,662 volunteers imaged as part of the UK Biobank imaging study [2]. 
Participants were 62.5 years old on average (SD=7.5, range 44-79), and 52.4% were females. The individuals in our 



 
 

 
 

 
 

sample had i) a T1w image labelled “usable” by the biobank; ii) a complete FreeSurfer 6.0 + ENIGMA-shape 
processing; iii) non-outlying brain as per our automated quality control. All aspects of image processing and quality 
control have been described previously [3, 6].   

We used an additional 4,160 UKB participants (63.1 years old, SD=7.46, range 46.1-80.3, with 52.1% of females) as 
an independent sample to evaluate prediction accuracy achieved from significant grey-matter regions. The data from 
these participants was from the second release of data from the UKB and were processed in the same way. 

2.2. MRI image processing 

Our brain MRI processing relied on T1w and T2 FLAIR images (T1w only when T2 was not usable, <3% of 
participants [3, 6]). We performed the FreeSurfer 6.0 “recon-all” pipeline to extract fine grained cortical thickness and 
surface area (“fsaverage” mesh, ~600,000 measurements per individual). In addition, we used the ENIGMA-Shape 
package [7, 8] to extract subcortical thickness and surface area of seven subcortical structures (~50,000 additional 
measurements). We did not smooth the cortical grey-matter maps, because we previously observed that smoothing 
reduced the amount of information contained in the processed images, for a wide range of UKB traits [6]. 

 

3. METHODOLOGY 
3.1. Simulation of synthetic phenotypes from real MRI images 

We simulated phenotypes from the processed MRI images, varying the number of associated brain regions and the 
strength of these associations. In the first scenario, we simulated phenotypes associated with 10 grey-matter regions, 
each accounting for 2% of the trait variance (i.e. brain-morphometricity of R2=0.2 in total). Then, we simulated traits 
associated with 100 grey-matter regions each accounting for 0.5% of the variance (morphometricity of R2=0.5). Finally, 
we used 1000 associated brain regions, each accounting for 0.04% of the trait variance (morphometricity of R2=0.4). We 
selected the associated brain regions at random, and simulated 100 phenotypes for each scenario (see [3] for more 
details).  

3.2. Mass-univariate association models 

The different models may be written as: 
GLM controlling for age, sex and ICV:  phenotype = u + b1*age + b2*sex + b3*ICV + b*vertex + 𝜀  (1) 
 
LMM – (global BRM): phenotype = u + b*vertex + 𝛽 + 𝜀 ;  with 𝛽 ~ N(0, BRM * 𝜎2)   (2) 
𝛽 is a vector of random effects, which accounts for the effects of all vertices Z (Nxp matrix, p>N) [3]. BRM is the brain 
relatedness matrix defined as BRM=ZZ’/p, which measures the grey-matter resemblance between each pair of 
individuals. 𝜎2 is the brain morphometricity of the phenotype. 
   
MOMENT: phenotype = u + b*vertex + 𝛽0 + 𝛽1 + 𝜀       (3) 
𝛽0 ~ N(0, BRM0 * 𝜎0

2) the random effect corresponding to “non-associated” vertices. 𝛽1 ~ N(0, BRM1 * 𝜎1
2) the 

random effect of “associated” vertices (excluding target and correlated region). 
 
We used an efficient approximation of the MOMENT model, in order to avoid re-estimating the BRMs and the variance 
components (𝜎0

2 and 𝜎1
2) for each vertex tested, which requires a huge computational cost [5, 9]. First, we selected the 

vertices that did not reach significance (after Bonferroni correction) using a GLM, to be fitted in 𝛽0. For each “target 
vertex” not included in 𝛽0, we adapted 𝛽1 to include vertices not in 𝛽0 with the exception of the target vertex and its 
“flanking region” (vertices strongly correlated with target vertex). This approach prevents from a loss of power because 
of fitting the vertex of interest twice in the model (once as fixed and again as a random effect) [5, 9]. Our approximated 
MOMENT is computationally efficient if the number of vertices included in 𝛽1 remains limited. However, MOMENT 
requires to define a “flanking region”, for which we used a cut-off based on the coefficient of determination (R2 or 
correlation squared) with the target vertex. Thus, the “flanking region” should contain the surrounding vertices in strong 
correlation with the target but could also include distal vertices. In the following, we considered eight different R2 cut-
offs and compared the different MOMENT performances to that of GLM and LMM.  



 
 

 
 

 
 

We tested the association with each vertex using a χ  2 test, and corrected for multiple testing using Bonferroni 
correction. We used the OSCA software [4] for phenotype simulation and mass-univariate analyses, and R (3.6.2) [10] 
for plots and interpretation of the associations.  
 

3.3. Comparison of the model performances 

As in a previous study[3], we first quantified the inflation of test-statistics observed on non-associated (null) vertices. We 
used the inflation factor, which is the ratio of observed/expected median test statistic of the null vertices. Next, we 
measured statistical power using the True Positive Rate (proportion of truly associated vertices reaching significance, 
after Bonferroni correction). Regarding false positives, we reported the Family-Wise Error Rate (FWER, proportion of 
replicates with at least one false positive vertex), the cluster FWER (proportion of replicates with at least one positive 
cluster) and the cluster False Discovery Rate (FDR) defined as the proportion of significant clusters that are false 
positives. We expect the FWER to be greater than 5% in presence of strong local correlation between neighboring 
vertices, which leads to clusters of associations comprising several contiguous vertices. The cluster FWER is thus our 
main metric of false positive, as it quantifies the probability of observing an association in a non-associated brain region. 
We further reported mapping precision as median size of the true positive clusters, and prediction accuracy achieved 
from significant grey-matter regions.    
 

4. RESULTS 
First, we studied the distribution of test-statistics across null vertices. We found that using GLMs resulted in an inflation 
of the null test statistics, while using the LMM or MOMENT appropriately controlled the inflation (Figure 1). As for 
statistical power (measured using the true positive rate), we found MOMENT to be as powerful as the GLM, while the 
LMM “global BRM” exhibited a slight reduction in number of true associations reaching significance (most notable for 
scenario 2, see Figure 1).  

For scenarios 2 and 3, MOMENT failed to reduce the probability of detecting a false positive vertex (FWER) or 
cluster (cluster FWER, Figure 1), compared to the LMM. The proportion of false positive clusters (cluster FDR) was 
also greater using MOMENT than when using LMM, even if it was much lower than that seen using GLM. Of note, 
MOMENT did outperform the LMM in the simplest scenario (10 associated vertices), which may be due to the presence 
of large(r) associations, though we cannot rule out it may be influenced by the location of those associations in the brain.  

The cut-off value used to define the flanking region in MOMENT, had little effect on the metrics presented in 
Figure 1. The most notable effect was observed on cluster FDR in scenario 3, where lowering the cut-off led to an 
increased proportion of false positive clusters (Figure 1).   

Beyond power and false positives, using MOMENT offered an increased mapping precision, which superseded 
the best performing LMM, within each type of measurement (Figure 2). Finally, we evaluated how the differences in 
power, false positives and estimates could impact precision accuracy, which we use as a global metric of model 
performance. We found that MOMENT tended to yield the best prediction accuracy, on par or greater than the other 
models (Figure 2). We also observed that the number of significant clusters (hence number of vertices included in the 
predictor) was lower, and less variable, when using R2 values between 0.2 and 0.8 to define the flanking region. This 
suggests that values in this range should be preferred in order to be conservative, even though the greater number of 
significant clusters does not seem to worsen the cluster FWER and FDR.  

 
 



 
 

 
 

 
 

 
Figure 1: Test inflation, statistical power and false positives of the different models 
Here, we compare the performances of GLM, LMM and MOMENT in three different simulation scenarios (columns). 
Depending on the metric, we report the distribution (boxplots) or estimates and SE (point plots) over the 100 phenotypes 
simulated. The numbers following the MOMENT label correspond to the R2 used to define the flanking region.  
 
 



 
 

 
 

 
 

 
Figure 2: Mapping precision and prediction accuracy from significant clusters using the different models 
Here, we compare the performances of GLM, LMM and MOMENT in three different simulation scenarios (columns). 
We report the metrics distribution (boxplots) over the 100 phenotypes simulated. The numbers following the MOMENT 
label correspond to the R2 used to define the flanking region.  
 



 
 

 
 

 
 

5. CONCLUSION 
We evaluated MOMENT, a multi-component mixed model which has been proposed for MWAS, in order to minimize 
the probability of false positives. We used MOMENT on traits simulated from grey-matter vertex-wise data and 
compared its performance against that of traditional GLM and more parsimonious LMM.  

In terms of association, we found somewhat mixed results for MOMENT. On the plus side, MOMENT did not 
show any inflation of the null test statistic, which is a characteristic of mixed models [5]. MOMENT also had the highest 
true positive rate, on par with that of GLM, and greater than that of LMM (Figure 1). Finally, MOMENT maximized 
mapping precision, out of all models considered, with a median true positive cluster size of less than 30 vertices (Figure 
2). However, MOMENT performed worse than LMM at controlling the probability of false positive clusters and their 
proportion (in particular for simulations with >100 associated brain regions, Figure 1). For the simplest phenotypes (10 
associated brain regions), MOMENT did seem to minimize the cluster FWER and cluster FDR, which may be due to the 
presence of large(r) brain-trait associations. Indeed, MOMENT allows for large(r) associations to be present, which is 
the main advantage of the multi-component approach.   

For prediction, MOMENT maximized the out of sample prediction, from significant clusters, suggesting that 
the power increase could compensate the worsening of false positive rate. The different hyper-parameters we evaluated 
for MOMENT had little effect on the results and model performances, even if some of the extreme values considered 
(>0.8 and <0.2) may lead to more variable results (Figure 2). The OSCA default definition of the flanking region 
(R2>0.6) appears appropriate for analyzing the grey-matter data.  

Our results contrast with those reported for MWAS, where MOMENT was showed to minimize false positive 
rate but to result in a lower power than LMM [4]. More work is needed to identify the factors that influence the 
performances of MOMENT. Such factors might include the presence of large associations (see scenario 1), more 
generally the pattern of correlation between features (including the correlation induced by confounders), or the definition 
of the flanking region. Indeed, unlike in the original MOMENT paper [4], we defined the flanking regions based on the 
R2, rather than on the physical distance between features. This is because distance is difficult to define within a folded 
mesh, and even more between meshes.  

In conclusion, we evaluated a new model for mass-univariate association studies of grey-matter structure. In 
association studies, its mixed performances may limit its use for situations where discoverability is the main objective of 
the study. For conservative inference, our data suggest that LMM should be preferred, even though MOMENT may be 
more appropriate in presence of large effect sizes. On the other hand, MOMENT led to the highest out-of-sample 
prediction accuracy which suggests that it could be the method of choice in this setting. 
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