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This work is a probabilistic study of the 'primes' of the Cramér model, which consists with sums S n = ∑ n i=3 ξ i , n ≥ 3, where ξ i are independent random variables such that P{ξ i = 1} = 1 -P{ξ i = 1} = 1/log i, i ≥ 3. We prove that there exists a set of integers S of density 1 such that (0.0.1) lim inf

and that for b > 1 2 , the formula (0.0.2)

in which m n = E S n , B n = Var S n , holds true for all n ∈ S , n → ∞.

Further we prove that for any 0 < η < 1, and all n large enough and

according to Pintz's terminology, where c > 0 and γ is Euler's constant. We also test which infinite sequences of primes are ultimately avoided by the 'primes' of the Cramér model, with probability 1. Moreover we show that the Cramér model has incidences on the Prime Number Theorem, since it predicts that the error term is sensitive to subsequences. We obtain sharp results on the length and the number of occurences of intervals I such as for some z > 0, (0.0.3) sup n∈I |S nm n | √ B n ≤ z, which are tied with the spectrum of the Sturm-Liouville equation.

INTRODUCTION.

Let P = {p i , i ≥ 1} denote the sequence of consecutive prime numbers. Cramér's probabilistic model basically consists with a sequence of independent random variables ξ i , defined for i ≥ 3 by (1.1)

P{ξ i = 1} = 1 log i , P{ξ i = 0} = 1 - 1 log i .
This work is a probabilistic study of the 'primes' of the Cramér model, most of the results obtained have an easy arithmetical interpretation. We show that the Cramér 'primes' are contained in the set of 'primes' of the Bernoulli model. This is applied to test which infinite sequences of primes are with probability 1, ultimately avoided by the 'primes' of the model. We further thoroughly study the probability P{S n prime } and P{S n ζ -quasiprime} (sections 4, 3).

We also describe new results of different type. Some preliminary facts, at first it is easy to check that for this model, the standard limit theorems from probability theory are fulfilled: the strong law of large numbers (SLLN), the central limit theorem (CLT), the law of the iterated logarithm (LIL), the local limit theorem (LLT), and also an invariance principle (IP) hold (Proposition 2.3). This is true in a wider setting. These points are briefly detailed and completed in Appendix A, which also contains a sharp estimate of the characteristic function of S n = ∑ n i=3 ξ i and the value-distribution description of the divisors of S n . Let C = { j ≥ 3: ξ j = 1}. Note that obviously S x = # ν ∈ C : ν ≤ x for all reals x ≥ 3. In particular, the LIL implies that We question the analogy made with (1.3) and prove that this model possesses finer tied properties, enlighting the above analogy somehow differently. We notably prove that if x runs along any increasing subsequence of integers N ,

(1.5) # ν ∈ C : ν ≤ x = x 2 dt logt + O √ x ϕ N (x) ,
with probability one. And we may have that ϕ N (x) = o( √ log log x), in fact ϕ N (x) can be as slow as desired, along a suitable subsequence N .

Thus (1.5) implies that 'the prime number theorem' in Cramér's model is sensitive to the subsequence on which x is running, which seems not corroborated with any existing result concerning the counting function π(x).

In the limiting case ϕ N (x)≡ Const, we study the number of occurences and the length of intervals I for which (1.6) sup

n∈I |S n -E S n | Var(S n ) ≤ z,
z being some positive real. Such a property, namely the maximal duration of small amplitudes of S n around E S n , is quite sensitive to the value taken by z, and turns up to be tied with the spectrum of the Sturm-Liouville equation. We obtain in Theorems 2.2, 2.4 quite sharp results. The proofs combine the IP with small local oscillation results of the Ornstein-Uhlenbeck process.

Write C = {P j , j ≥ 1}, where P j are the instants of jumps of the random walk {S n , n ≥ 1}, which are recursively defined as follows, (1.7) P 1 = inf{n ≥ 3 : S n = 1}, P ν+1 = inf{n > P ν : S n = 1} ν ≥ 1.

The main characteristic of Cramér's model is that heuristically C should imitate well the sequence P. He proved that with probability one, one has (1.8) lim sup ν→∞ P ν+1 -P ν log 2 P ν = 1.

On the basis of this result, he wrote in [START_REF] Cramér | On the order of magnitude of the difference between consecutive prime numbers[END_REF] p. 28, "Obviously we may take this as a suggestion that, for the particular sequence of ordinary prime numbers p n , some similar relation may hold." He conjectured (Cramér's conjecture) that for some positive constant c,

(1.9) lim sup ν→∞ p ν+1 -p ν log 2 p ν = c.
The almost sure limit result (1.8) has no arithmetical content, as it is purely probabilistic. Further the sequence of differences {P ν+1 -P ν , ν ≥ 1} is a sequence of independent random variables, which is a very strong property. Impressive numerical evidences (up to 10 18 ) of (1.9) are given [START_REF] Nicely | First occurrence prime gaps[END_REF], see also [START_REF] Granville | Harald Cramér and the Distribution of Prime Numbers[END_REF], but depending on the scale of the observed phenomenon, 10 18 might be a very little number (at least in the fast-growing hierarchy of numbers), and paraphrasing Odlyzko's note [START_REF] Odlyzko | An improved bound for the Bruijn-Newman constant[END_REF], that conjecture, if true, can be just barely true. On the other hand, if the conjecture were true, no real singularity should appear, in other words the observed phenomenon is being from the beginning locally 'similar'. If so, one may wonder what could be a reason. We refer the reader to [START_REF] Cramér | Some theorems concerning prime numbers[END_REF], [START_REF] Cramér | On the order of magnitude of the difference between consecutive prime numbers[END_REF], [START_REF] Granville | Harald Cramér and the Distribution of Prime Numbers[END_REF], [START_REF] Petrov | Sums of Independent Random Variables[END_REF], [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF] notably, for results conforting or contrary to the Cramér conjecture, which nowadays still appears as a mathematical 'spell'.

Cramér's model does not assert that there are any primes in the sequence C , and variants of this model either. An important question, apparently overlooked in the related literature, thus concerns the possible primality of S n , namely the study of the probability P{S n prime}, prior to the one of probability P{P ν prime}. The LIL (for instance) shows that such a property is tightly related to the distribution of primes in small intervals, making thereby vain the hope of obtaining definitive results, even on assuming RH. Let

m n = E S n = ∑ n j=3 1 log j , B n = VarS n = ∑ n j=3 1 log j (1 -1 log j ). Let b > 1. The intervals I n = [m n -2bB n log log n, m n + 2bB n log log n],
are no longer overlapping as soon as n runs along very moderated growing subsequences. Along such a subsequence S n can be prime, n large, only if I n contains a prime number. These intervals are of type

[x -c x 1 2 (log log x) 1 2 , x],
for some c > 0. It is at present quite out of reach, even on assuming the validity of the RH, to decide for which x, such an interval contains a prime number. One can also makes the similar observation from the sharpened version of the local limit theorem given in Proposition 3.1.

Thus we are in a case where we have a model predicting largest size of gaps between primes, whereas, even on RH, we could not know whether the 'primes' of the model are prime. Recall some results on primes in small intervals. Assuming the RH, the best result known to us states as follows,

(1.10) π(x) -π(x -y) = x x-y dt logt + O x 1 2 log y x 1 2 log x
for y in the range 2x

1 2 log x ≤ y ≤ x. Thus for M ≥ 2 fixed, (1.11) π(x) -π(x -Mx 1 2 log x) ∼ x 1 2 M + O log M .
See Heath-Brown [START_REF] Heath-Brown | The number of primes in a short interval[END_REF], see also the recent paper [START_REF] Heath-Brown | The Differences Between Consecutive Primes. V[END_REF] and the references therein. Without assuming RH, Heath-Brown proved in [START_REF] Heath-Brown | The number of primes in a short interval[END_REF] 

that if ε(x) > 0, ε(x) → 0 as x → ∞, then (1.12) π(x) -π(x -y) = y log x 1 + O(ε 4 (x)) + O log log x log x 4
for y in the range x 7 12 -ε(x) ≤ y ≤ x (log x) 4 . This slightly improves Huxley's earlier result in [START_REF] Huxley | On the differences between consecutive primes[END_REF] corresponding to ε(x) = 0. Huxley's result shows that the PNT extends to intervals of the type

[x, x + x ϑ ], x 7 12 ≤ ϑ ≤ x (log x) 4 , namely that, (1.13) #{[x, x + x ϑ ] ∩ P} ∼ x ϑ log x .
We however obtain in Theorem 2.5, without assuming RH, a sharp estimate of P{S n prime }, for almost all n, namely for all n, n → ∞ through a set S of natural density 1. The lower bound, (1.14) lim inf

S n→∞ (log n)P{S n prime} > 0,
is also proved.

Further the property for S n to be z-quasiprime is investigated. We obtain in Theorem 2.6 a sharp estimate of the probability that S k be ζ -quasiprime, k large and for the range of values ζ 0 ≤ ζ ≤ exp clog(k)/log log(k) , c > 0.

MAIN RESULTS.

It is well-known that the LIL (at least for centered square integrable i.i.d. sums) has slower amplitude than the one given by the classical normalizing factor √ 2n log log n, when n is restricted to subsequences. For instance, if n runs along the subsequence N = {2 2 k , k ≥ 1}, then the LIL restricted to N holds with normalizing factor √ 2n log log log n. See [START_REF] Weber | The law of the iterated logarithm for subsequences-Characterizations[END_REF] for a characterization of the LIL for subsequences. The same phenomenon holds in fact -with no additional requirementfor the Cramér model. Theorem 2.1. Let N be any increasing sequence of integers. Then,

lim sup N j→∞ |S j -m j | B j ϕ N ( j) = 1,
almost surely, where function ϕ N (n) is defined in (7.1).

Roughly speaking, given M > 1,

I k =]M k , M k+1 ], ϕ N (n) is defined as being equal to 2 log(p + 2) if n ∈ N ∩ I κ p , I κ p being the p-th interval intersecting N .
In the next Theorems we obtain very sharp results on the length, and also the frequencies of the intervals I for which (1.6) 

(2.1) ψ (x) -xψ (x) = -λ ψ(x), ψ(-z) = ψ(z) = 0.
This is a positive strictly decreasing continuous function of z on ]0, ∞[. Further,

(2.2) λ (z) ∼ π 2 4z 2 , as z → 0.
Towards this aim, we prove that Cramér's model satisfies an invariance principle:

Proposition 2.3 (IP). Let 1/α < β < 1/2.
There exists a Brownian motion W such that if

ϒ = sup n 1 B β n sup j≤n |S j -m j -W (B j )| then, E ϒ α < ∞, 0 ≤ α < α.
Thanks to the IP above, the question studied in (1.6) can be transferred into a similar one concerning Brownian motion. This is done in section 6, where Theorem 2.2 is proved.

We also obtain a sharp estimate on the number of occurences of the sets

(2.3) B k ( f , z) = sup j∈J e k |S j -m j | B j ≤ z , k = 1, 2, . . . where J N = { j : N ≤ B j < N f (N)}. Let A k ( f , z) = sup e k ≤t≤e k f (e k ) |W (t)| √ t ≤ z ,
and let also

ν n ( f , z) = ∑ n k=1 P{A k ( f , z)}. Theorem 2.4. Let 0 < z < z < z . Let also 0 < c ≤ 1/λ (z ). Then for a > 3/2, P n ∑ k=1 χ B k ( f c ,z) ≤ ν n ( f c , z ) + O a ν 1/2 n ( f c , z ) log a ν n ( f c , z ) , n ultimately = 1, P ν n ( f c , z ) ≤ n ∑ k=1 χ B k ( f c ,z) + O a ν 1/2 n ( f c , z ) log a ν n ( f c , z ) , n ultimately = 1.
Further for all n,

K 1 (z) n ∑ k=1 k -cλ (z) ≤ ν n ( f c , z) ≤ K 2 (z) n ∑ k=1 k -cλ (z) .
Estimates of the sums ∑ n k=1 k -cλ (z) are given in (6.6). The question arises whether the refinements obtained (Theorems 2.1, 2.2, 2.4) may also have an interpretation on the function π(x).

The Cramér model is used to 'predict' several, sometimes quite elaborated results on the distribution of primes. The example given in (1.5) is very striking, as the subsequence-LIL is a well-known companion result of the standard LIL, and cannot be dissociated from it. Thus if one uses the Cramér model to make such a prediction concerning the PNT (see after (1.2) and (1.4)) from the standard LIL, probably its most simple prediction, one should also consider the prediction which arises with (1.5), and argue whether this is another deficiency of the model or not.

The same sort of considerations is in order concerning the frequency of large gaps between 'primes'. See (A.5) and after in Appendix A.3.

Concerning the probability that S n be prime or quasi-prime, and the primality of P n , we prove the following results. 

P{S n prime } = 1 √ 2πB n m n + √ 2bB n log n m n - √ 2bB n log n e -(t-mn) 2 2Bn dπ(t) + O (log n) 3/2 √ n ,
as n → ∞.

(ii) There exists a set of integers S of density 1, such that

(2.2) P{S n prime } = (1 + o(1)) √ 2πB n m n + √ 2bB n log n m n - √ 2bB n log n e -(t-mn) 2 2Bn dπ(t),
as n → ∞, n ∈ S . Further,

(2.3) lim inf S n→∞ (log n)P{S n prime} ≥ 1 √ 2πe .
The proof uses a result of Selberg [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF].

2.2. Quasi-primality of S n . Let Π z = ∏ p≤z p. According to Pintz [START_REF] Petrov | Sums of Independent Random Variables[END_REF],

an integer m is z-quasiprime, if (m, Π z ) = 1. Let S n = ∑ n j=8 ξ j , n ≥ 8.
Note that the introduction of S n in place of S n is not affecting Cramér's conjecture, see Remark (A.7). In the next Theorem we study for all n large enough, the probability that S n be z-quasiprime.

Theorem 2.6. We have for any 0 < η < 1, and all n large enough and

ζ 0 ≤ ζ ≤ exp c log n log log n , P S n ζ -quasiprime ≥ (1 -η) e -γ log ζ .
where γ is Euler's constant and c is a positive constant.

The approaches used to prove the above Theorems not apply to the study of the primality of P ν .

2.3. Primality of P n . We show that when the 'primes' P ν are observed along moderately growing subsequences, then with probability 1, they ultimately avoid any given infinite set of primes satisfying a reasonable tail's condition. We also test which infinite sequences of primes are ultimately avoided by the 'primes' P ν , with probability 1. More precisely we answer the following question:

Question 2.7. Given an increasing sequence of naturals K and increasing sequence of primes P, under which conditions is P avoided by all P ν , ν large enough, ν ∈ K , with probability 1?

Theorem 2.8. Let K be an increasing sequence of naturals such that the series ∑ k∈K k -β converges for some β ∈]0, 1 2 [. Let P be an increasing sequence of primes such that for some b > 1,

sup k∈K #{P ∩ [k, bk]} k 1 2 -β < ∞. Then P ∆ k / ∈ P, k ∈ K ultimately = 1.
Further,

P P ν / ∈ P, ν ∈ K ultimately = 1.
Moreover (case β = 1/2), let P be such that ∑ p∈P, p>y p -1/2 = O y -1/2 , and K be such that

∑ k∈K k -1/2 < ∞. Then P P ν / ∈ P, ν ∈ K ultimately = 1.
The paper is organized as follows. The study of the quasi-primality of S k is made in section 4, the one of the primality of S n occupies the whole section 3, and the one of the primality of P n is made in section 5. These sections are a forming the main body of the paper. Theorem 2.1 is proved in section 7. In section 6, we prove the IP, as well as Theorem 2.2, after some preliminary background, and Theorem 2.4. The standard limit theorems for the Cramér model, statements and proofs, and various results (sharp estimate of the characteristic function of S n , divisors of Bernoulli sums) used in the course of the proofs are moved to the Appendix A. Some remarks concerning Cramér's proof are also included.

3. PRIMALITY OF S n : PROOF OF THEOREM 2.5.

We need a sharper form of the local limit theorem for S n than the one given in Lemma A.1. Proposition 3.1. We have the following estimate

P{S n = κ} - e -(κ-mn) 2 2Bn √ 2πB n ≤ C (log n) 3/2 n , for all κ ∈ Z such that |κ -m n | ≤ C n 3/4 log n .
The remainder term is of order O(

(log n) 3/2 n ), which is much better than o(( log n n ) 1/2 ) in Lemma A.
1. This is a consequence of Corollary 1.11 in [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF]. For the reader convenience we recall it. Introduce first the necessary notation. Let v 0 and D > 0 be real numbers. We denote by L (v 0 , D) the lattice defined by the sequence v k = v 0 + Dk, k ∈ Z. We associate to any random variable X taking values in L (v 0 , D) with probability one, the following characteristic,

ϑ X = ∑ k∈Z P{X = v k } ∧ P{X = v k+1 }, (3.1) where a ∧ b = min(a, b). Note that ϑ X < 1. Lemma 3.2 ([8], Cor. 1.11). Let X 1 , . . . , X n be independent random variables taking almost surely values in a common lattice L (v 0 , D) = {v k , k ∈ Z}, where v k = v 0 + Dk, k ∈ Z, v 0 and D > 0 are real numbers. We assume that (3.2) ϑ X j > 0, j = 1, . . . , n.
Let S n = X 1 + . . . + X n . Let ψ : R → R + be even, convex and such that ψ(x) x 2 and x 3 ψ(x) are nondecreasing on R + . We assume that

(3.3) E ψ(X j ) < ∞, j = 1, . . . , n. Put L n = ∑ n j=1 E ψ(X j ) ψ( Var(S n )) . Let 0 < ϑ j ≤ ϑ X j and denote Θ n = ∑ n j=1 ϑ j . Further assume that log Θ n Θ n ≤ 1/14. Then, for all κ ∈ L (v 0 n, D) such that (κ -E S n ) 2 Var(S n ) ≤ Θ n 14 log Θ n ,
we have

P{S n = κ} - De -(κ-E Sn) 2 2Var(Sn) 2πVar(S n ) ≤ C 3 D log Θ n Var(S n )Θ n 1/2 + L n + Θ -1 n √ Θ n .
And C is an absolute constant.

Proof of Proposition 3.1. In our case D = 1. Further for j = 3, . . . , n, P{ξ j = k} ∧ P{ξ j = k + 1} = 1 log j+2 , if k = 0, and equals 0 for k ∈ Z * . Thus ϑ ξ j = 1 log j . We choose

ϑ j = ϑ X j , ψ(x) = |x| 3 . Then Θ n = E S n ∼ n log n , Var(S n ) = B n ∼ n log n , L n ∼ ( log n n ) 1/2 . Thus (m n = ∑ n k=1 1 log k , B n = ∑ n k=1 (1 -1 log k )( 1 log k )) P{S n = κ} - e -(κ-mn) 2 2Bn √ 2πB n ≤ C (log n) 3/2 n , for all κ ∈ Z such that |κ -m n | ≤ C n 3/4 log n .
Proof of Theorem 2.5. (i) By Lemma 7.1 p. 240 in [START_REF] Petrov | Sums of Independent Random Variables[END_REF], for 0

≤ x ≤ B n P{|S n -m n | ≥ x} = P{S n -m n ≥ x} + P{-(S n -m n ) ≥ x} ≤ 2 exp - x 2 2B n 1 - x 2B n , noticing that {-ξ j } j also satisfies the conditions of Kolmogorov's Theorem. Let b > b > 1/2.
Then for all sufficiently large n, since log B n ∼ log n,

(3.4) P{|S n -m n | ≥ 2bB n log n} ≤ 2 n -b . We have P{S n ∈ P} -P{S n ∈ P ∩ [m n -2bB n log n, m n + 2bB n log n]} ≤ P{|S n -m n | ≥ 2bB n log n} ≤ n -b .
Further,

P{S n ∈ P ∩ [m n -2bB n log n, m n + 2bB n log n]} - ∑ κ∈P∩[m n - √ 2bB n log n,m n + √ 2bB n log n] e -(κ-mn) 2 2Bn √ 2πB n ≤ ∑ κ∈P∩[m n - √ 2bB n log n,m n + √ 2bB n log n] P{S n = κ} - e -(κ-mn) 2 2Bn √ 2πB n ≤ C # P ∩ [m n -2bB n log n, m n + 2bB n log n] • (log n) 3/2 n ≤ C √ b (log n) 3/2 √ n . Therefore (3.5) P{S n ∈ P} - ∑ κ∈P∩[m n - √ 2bB n log n,m n + √ 2bB n log n] e -(κ-mn) 2 2Bn √ 2πB n ≤ C √ b (log n) 3/2 √ n .
By expressing the inner sum as a Riemann-Stieltjes integral [1, p. 77], we get

(3.6) P{S n ∈ P} = m n + √ 2bB n log n m n - √ 2bB n log n e -(t-mn) 2 2Bn √ 2πB n dπ(t) + O (log n) 3/2 √ n .
(ii) We note that

m n + √ 2bB n m n - √ 2bB n e -(t-mn) 2 2Bn √ 2πB n dπ(t) ≥ L π(m n + √ 2bB n ) -π(m n - √ 2bB n ) √ B n , (3.7) with L = e -b √ 2π .
We use a well-known result of Selberg [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF]Th. 1]. Let Φ(x) be positive and increasing and such that Φ(x)

x decreasing for x > 0. Further assume that

(a) lim x→∞ Φ(x) x = 0 (b) lim inf x→∞ log Φ(x) log x > 19 77 . (3.8)
Then there exists a (Borel measurable) set S of positive reals of density one such that (3.9) lim

S x→∞ π(x + Φ(x)) -π(x) (Φ(x)/log x) = 1. Let Φ(x) = √ 2bx.
Then the requirements in (3.8) are fulfilled, and so (3.9) holds true. Now let C be some possibly large but fixed positive number, as well as some positive real δ < 1/2. By (3.9), the set of x > 0, call it S δ , such that

(3.10) π(x + Φ(x)) -π(x) ≥ (1 -δ ) Φ(x) log x . has density 1. Note that if δ < δ then S δ ⊆ S δ . Pick x ∈ S δ and let ∆(x) = π(x + Φ(x)) -π(x). Note that if |y -x| ≤ C, Φ(y) -Φ(x) = o(1) for x large. Thus for every y ∈ [x -C, x +C], ∆(y) -∆(x) ≤ C , and so ∆(y) ≥ (1 -δ ) Φ(x) log x -C .
the constant C depending on C only. As Φ(x) log x -Φ(y) log y ≤ C 2 √

x log x , we have

∆(y) ≥ (1 -δ ) Φ(y) log y -C - C 2 √
x log x .

Thus every y ∈ [x -C, x +C] also satisfies

(3.11) ∆(y) ≥ (1 -2δ ) Φ(y) log y , if x is large enough. Let ν = ν(x) be the unique integer such that m ν-1 < x ≤ m ν . As m ν -m ν-1 = o(1), ν → ∞, it follows that m ν ∈ [x -C,
x +C] provided that x is large enough, in which case we have by (3.11),

(3.12) π(m ν + Φ(m ν )) -π(m ν ) Φ(m ν ) ≥ 1 -2δ log m ν .
Let X ≥ 1 be a large positive integer and ε a small positive real. The number N(X)

of intervals ]µ -1, µ], µ ≤ X such that S δ ∩]µ -1, µ] = / 0 verifies N(X)/X ∼ 1, X → ∞, since S δ has density 1. Given such an µ ≤ X, pick x ∈ S δ ∩]µ -1, µ]. We know (recalling that m ν -m ν-1 = o(1), ν → ∞) that some m ν , ν = ν(x) belongs to ]µ -1 -ε, µ + ε],
and that (3.12) is satisfied. The union of these intervals

[µ -1 -ε, µ + ε] is contained in [1 -ε, X + ε].
It follows that the number of ν such that (3.12) is satisfied, forms a set of density 1.

We now use an induction argument in order to replace 2δ in (3.12) by a quantity ε(ν) which tends to 0 as ν tends to infinity along some other set of density 1, which we shall build explicitly. Let T n be the set of ν's of density 1, corresponding to δ = 1 n , n ≥ 3. Let X 3 be large enough so that #{T 3 ∩ [1, X]} ≥ X(1 -1/3) for all X ≥ X 3 . Next let X 4 > X 3 be sufficiently large so that #{T 4 ∩ [X 3 , X]} ≥ X(1 -1/4) for all X ≥ X 4 . Like this we manufacture an increasing sequence X j , verifying for all j ≥ 3,

#{T j ∩ [X j-1 , X]} ≥ X(1 -1/ j),
for all X ≥ X j .

The resulting set

T = ∞ j=3 T j ∩ [X j-1 , X j ]
has density 1 and further we have the inclusions

T ∩ [X l-1 , ∞) = ∞ j=l T j ∩ [X j-1 , X j ] ⊂ T l ∩ ∞ j=l [X j-1 , ∞) = T l ∩ [X l-1 , ∞), l ≥ 4,
as the sets T j are decreasing with j by definition.

We finally have by (3.7),

(3.13) π(m ν + Φ(m ν )) -π(m ν ) Φ(m ν ) ≥ 1 -ε(ν) log m ν ,
along T , for some sequence of reals ε(ν) ↓ 0 as ν → ∞. Therefore

m ν + √ 2bB ν m ν - √ 2bB ν e -(t-mν ) 2 2Bν √ 2πB ν dπ(t) ≥ L π(m ν + √ 2bB ν ) -π(m ν - √ 2bB ν ) √ B ν ≥ L 1 -ε(ν) log m ν , (3.14)
for all ν ∈ T , recalling that L = e -b √ 2π . Also (3.15) lim inf

T ν→∞ (log ν)P{S ν prime} ≥ 1 √ 2πe .
It further follows from (3.6) that (3.16)

P{S ν prime} = 1 + o(1) m ν + √ 2bB ν log ν m ν - √ 2bB ν log ν e -(t-mν ) 2 2Bν √ 2πB ν dπ(t),
all ν ∈ T . This achieves the proof of Theorem 2.5.

Some remarks: estimate (3.9) extends the PNT to smalls intervals [x, x + Φ(x)] for almost all x. Selberg (developing Cramér's first results [START_REF] Cramér | Some theorems concerning prime numbers[END_REF]) proved with Theorem 4 in [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF] a much stronger result since an error term is provided. Assuming the RH, he proved that for any fixed ϑ > 0, (1.13) is true for almost all x. This is an easy consequence of the very sharp Theorem 1 in [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF]. The approach used, as well as the alternate approach in Richards [START_REF] Richards | On the normal density of primes in short intervals[END_REF], seem not allow one to treat the question whether there exists a version of the PNT with an error term valid for almost all integers. This question is in relation with the one on the sensitivity of the error term to subsequences (cf. Introduction, Theorems 2.1, 2.2).

4. QUASI-PRIMALITY OF S n : PROOF OF THEOREM 2.6. Theorem 2.6 is a direct consequence of a more general result, which we shall prove now. Let 2 < λ 1 < λ 2 < . . . be an increasing sequence of reals. Let {ζ j , j ≥ 1} be a sequence of independent binomial random variables defined by

P{ζ j = 1} = 1 λ j = 1 -P{ζ j = 0}. Theorem 4.1. Let T k = ∑ k j=1 ζ j , k ≥ 1. Assume that µ k = ∑ k j=1 λ -1 j ↑ ∞ with k.
For any 0 < δ < 1, we have for any 0 < η < 1, and all k large enough and

ζ 0 ≤ ζ ≤ exp log(2δ µ k ) log log(2δ µ k ) , P T k is ζ -quasiprime ≥ (1 -η) e -γ log ζ ,
where γ is Euler's constant and c is a positive constant.

The case λ j = log( j + 2), j ≥ 8 corresponds to the Cramér model, and we have in particular the following Corollary 4.2. We have for any 0 < η < 1, and all n large enough and ζ 0 ≤ ζ ≤ exp c log n log log n ,

P S n ζ -quasiprime ≥ (1 -η) e -γ log ζ .
The proof is based on a randomization argument, and uses the Lemma below.

Lemma 4.3. [19, Theorem 2.3] Let X 1 , . . . , X k be independent random variables, with 0 ≤ X j ≤ 1 for each j. Let Y k = ∑ k j=1 X j and µ = EY k . For any ε > 0,

(a) P Y k ≥ (1 + ε)µ ≤ e -ε 2 µ 2(1+ε/3) . (b) P Y k ≤ (1 -ε)µ ≤ e -ε 2 µ 2 .
Proof of Theorem 4.1. Let {ε j , j ≥ 1} be a sequence of independent Bernoulli random variables. Let { ζ j , j ≥ 1} be another sequence of independent random variables, which is independent from the sequence {ε j , j ≥ 1}, and such that ζ j a.s.

= ζ j ε j for all j. Let Ě (resp. P) denote the conditional expectation (resp. conditional probability) with respect to the σ -field generated by the sequence ζ j , j ≥ 1. Write T k = ∑ k j=1 ζ j ε j . We have (4.1)

P P -(T k ) > ζ = Ě P P - k ∑ j=1 ζ j ε j > ζ = Ě P P -B ∑ k j=1 ζ j > ζ .
According to Theorem A.9, there exist a positive real c and positive constants C 0 , ζ 0 such that for k large enough we have, (4.2)

P P -(B k ) > ζ - e -γ log ζ ≤ C 0 log 2 ζ ( ζ 0 ≤ ζ ≤ k c/ log log k ).
Let 0 < δ < 1 and set

A k = exp c log(∑ k j=1 ζ j ) log log(∑ k j=1 ζ j ) ≥ ζ , C k = k ∑ j=1 ζ j > 2δ µ k .
Assume that

ζ 0 ≤ ζ ≤ exp c log(2δ µ k ) log log(2δ µ k ) . On C k , exp c log(∑ k j=1 ζ j ) log log(∑ k j=1 ζ j ) > exp c log(2δ µ k ) log log(2δ µ k ) ≥ ζ ,
and so C k ⊂ A k . Therefore on C k ,

P P -B ∑ k j=1 ζ j > ζ - e -γ log ζ ≤ C 0 log 2 ζ .
We have

P P -(T k ) > ζ = Ě P P -B ∑ k j=1 ζ j > ζ ≥ Ě χ{C k } P P -B ∑ k j=1 ζ j > ζ ≥ e -γ log ζ - C 0 log 2 ζ P{C k }. Consequently, for ζ 0 ≤ ζ ≤ exp c log(2δ µ k ) log log(2δ µ k ) , P P -(T k ) > ζ ≥ e -γ log ζ - C 0 log 2 ζ P{C k }.
We apply Lemma 4.3 with X j = ζ j . The random variables ζ j are independent and verify P{

ζ j = 1} = 1 -P{ ζ j = 0} = 2λ -1 j . Further let μk = E ∑ k j=1 ζ j = 2 ∑ k j=1 λ -1 j . By assumption ∑ k j=1 λ -1 j ↑ ∞ with k. Let 0 < ρ < 1. By Lemma 4.3, (4.3) P k ∑ j=1 ζ j ≤ δ μk ≤ e -(1-δ ) 2 μk 2 ≤ ρ,
for all k ≥ k ρ say. Thus (4.4)

P{C k } = P k ∑ j=1 ζ j > δ μk ≥ 1 -ρ.
We therefore arrive at

P T k is ζ -quasiprime ≥ (1 -ρ) e -γ log ζ - C 0 log 2 ζ for any ζ 0 ≤ ζ ≤ exp c log(2δ µ k )
log log(2δ µ k ) . As ρ can be a small as we wish, we can state that for any given 0 < δ < 1, we have for any 0 < η < 1, and all k large enough and any

ζ 0 ≤ ζ ≤ exp c log(2δ µ k ) log log(2δ µ k ) , P T k is ζ -quasiprime ≥ (1 -η) e -γ log ζ .
Theorem 4.4. Let (n k ) k≥1 be an increasing sequence of integers such that,

∑ k≥1 log log n k log n k < ∞ .
Then, P T n k not prime, k ultimately = 1. In particular, P S n k not prime, k ultimately = 1.

Proof. We also have

P T k prime = Ě P k ∑ j=1 ζ j ε j prime = Ě P B ∑ k j=1 ζ j prime (4.5)
By Corollary A.10 in Appendix A.4, there exists an absolute constant C 1 such that for all n large enough,

P B n prime ≤ C 1 log log n c log n ,
(c is the same constant as in Theorem A.9). This along with (4.3), imply

P T k prime = Ě P B ∑ k j=1 ζ j prime ≤ P{ k ∑ j=1 ζ j ≤ δ μk +C 1 Ě χ{ k ∑ j=1 ζ j > δ μk } log log ∑ k j=1 ζ j c log ∑ k j=1 ζ j ≤ e -(1-δ ) 2 μk 2 +C 1 log log δ μk c log δ μk ≤ C(c, δ ) log log δ μk c log δ μk , (4.6)
for all k ≥ κ(c, δ ). Theorem 4.4 now follows from Borel-Cantelli lemma.

5. PRIMALITY OF P n .

The inclusion C ⊂ B.

We use the fact (Introduction) that on a possibly larger probability space, ξ j = ξ j ε j , j ≥ 8, almost surely, where {ε j , j ≥ 8} is a sequence of independent Bernoulli random variables and { ξ j , j ≥ 8}, a sequence of independent binomial random variables which is independent from the sequence {ε j , j ≥ 8}. This is well defined since 2/ log j < 1, if j ≥ 8. The indices such that ξ j ε j = 1 are obviously contained in the set of indices such that ε j = 1. So that if

C 1 = { j ≥ 8 : ξ j = 1}, B = { j ≥ 1 : ε j = 1} and B 1 = { j ≥ 8 : ε j = 1}, the inclusion (5.1) C 1 ⊂ B 1 ,
is satisfied with probability 1. Whence also, 

δ = inf{n ≥ 1 : ε n+δ 1 +•••+δ -1 = 1}, ∆ k = δ 1 + • • • + δ k .
We have B := { j ≥ 1:

ε j = 1} = {∆ k , k ≥ 1}. Proposition 5.
1 suggests to first study the probability that ∆ k be prime. We first establish some necessary properties of δ and ∆ k . (ii) Then E δ 1 = 2, Var(δ 1 ) = 2. Further,

E e 2iπδ 1 t = ∞ ∑ m=1 e 2iπmt 2 m , E e 2iπ∆ k t = ∞ ∑ ν=1 e 2iπνt 2 ν C k-1 ν-1 . (5.2) (iii) For all k ≥ 1, m ≥ 1, P{∆ k = m} = C k-1 m-1 2 m = 1 2 P{B m-1 = k -1}.
(iv) With probability one,

lim sup n→∞ δ k log k = 1, lim sup n→∞ ∆ k -2k 2 √ k log log k = 1.
(v) The central limit theorem and the local limit theorem holds, namely

∆ k -2k √ 2k D ⇒ N (0, 1), as k → ∞ and sup n √ kP{∆ k = n} - 1 2 √ π e -(n-2k) 2 4k = O k -1/2 . Proof. (i) As {δ 1 = µ} = {β 1 = . . . = β µ-1 = 0, β µ = 1} ∈ σ (β 1 , . . . , β µ ), we have P{δ 1 = µ} = P{β 1 = . . . = β µ-1 = 0 , β µ = 1} = 2 -µ
. By recursion on ≥ 1, one establishes

P{δ +1 = m} = ∞ ∑ m 1 =1 . . . ∞ ∑ m =1 P δ 1 = m 1 , . . . , δ = m , β m 1 +...+m +1 = . . . = β m 1 +...+m +m-1 = 0 , β m 1 +...+m +m = 1 = ∞ ∑ m 1 =1 . . . ∞ ∑ m =1 ∏ i=1 P δ i = m i P β m 1 +...+m +1 = . . . = β m 1 +...+m +m-1 = 0 , β m 1 +...+m +m = 1 = ∞ ∑ m 1 =1 . . . ∞ ∑ m =1 2 -m 1 -...-m 2 -m = 2 -m ,
and also find that

P{δ 1 = a 1 , . . . , δ +1 = a +1 } = ∏ +1 i=1 P{δ i = a i }, for all positive integers a i , 1 ≤ i ≤ + 1. Further {δ 1 = m 1 , δ 2 = m 2 , . . . , δ +1 = m +1 } ∈ σ (β 1 , . . . , β m 1 +...+m +1 ). (ii) The characteristic function of δ 1 being E e 2iπδ 1 t = ∑ ∞ m=1 e 2iπmt
2 m , we have

(5.3) E e 2iπ∆ k t = ∞ ∑ m=1 e 2iπmt 2 m k = ∞ ∑ m 1 =1 . . . ∞ ∑ m k =1 e 2iπ(m 1 +...+m k )t 2 m 1 +...+m k = ∞ ∑ ν=k e 2iπνt 2 ν C k-1 ν-1 . Let S(u) = ∑ ∞ a=0 e -au , then S(u) = 1 1-e -u , S (u) = -e -u (1-e -u ) 2 = -∑ ∞ a=1 ae -au , S (u) = e -u (1+e -u ) (1-e -u ) 3 = -∑ ∞
a=1 a 2 e -au . Thus first and second moments of δ 1 can be computed and one finds that E δ 1 = 2, Var(δ 1 ) = 2.

(iii) Follows from

P{∆ k = m} = ∑ m i ≥1 , 1≤i≤k m 1 +...+m k =m P{δ 1 = m 1 , . . . , δ k = m k } = ∑ m i ≥1 , 1≤i≤k m 1 +...+m k =m 1 2 m 1 +...+m k = q k (m) 2 m = C k-1 m-1 2 m = 1 2 P{B m-1 = k -1}. (5.4) (iv) Immediate. (v)
The central limit theorem is obvious since the δ k 's are i.i.d. and square integrable. By Theorem 6 p.197 in [START_REF] Petrov | Sums of Independent Random Variables[END_REF], as E |δ 1 | 3 < ∞, we have (5.5) sup

n √ kP{∆ k = n} - 1 2 √ π e -(n-2k) 2 4k = O k -1/2 .
We see that the divisors of the jump's instants ∆ k admit a simple formulation. In particular, we have from (iii), (5.6)

P ∆ k prime = 1 2 ∑ ν≥k ν prime P{B ν-1 = k -1}. The formula ∑ ∞ v=0 C z v+z x v = 1 (1-x) z+1 , valid for |x| < 1, further implies 1 2 ∑ ν≥k P{B ν-1 = k -1} = 1. (5.7)
5.3. Proof of Theorem 2.8. (i) By the local limit theorem for Bernoulli sums

sup z P B n = z} - 2 πn e -(2z-n) 2 2n = o 1 n 3/2 . (5.1) Besides by Theorem 5.2-(iii), P{∆ k = m} = 1 2 P{B m-1 = k -1}. Thus P ∆ k ∈ P = ∑ ν≥k ν∈P P{∆ k = ν} = 1 2 ∑ ν≥k ν∈P P{B ν-1 = k -1} = ∑ ν≥k ν∈P 1 2π(ν -1) e -(2k-ν-1) 2 2(ν-1) + o ∑ ν≥k ν∈P 1 ν 3/2 = ∑ ν≥k ν∈P 1 2π(ν -1) e -(2k-ν-1) 2 2(ν-1) + o 1 √ k . Obviously ∑ ν≥3k 1 √ ν e -(2k-ν-1) 2 2(ν-1) ≤ e -C 1 k . Now by assumption, for k ∈ K , ∑ k≤ν≤bk ν∈P 1 √ ν e -(2k-ν-1) 2 2(ν-1) ≤ C #{P ∩ [k, bk]} √ k ≤ C k -β .
It easily follows that

P ∆ k ∈ P ≤ C b k -β , k ∈ K .
The series

∑ k∈K P ∆ k ∈ < ∞ converges. It follows from Borel-Cantelli lemma that P ∆ k / ∈ P, k ∈ K ultimately = 1.
To prove the same assertion concerning the sequence P, it suffices to argue as before Proposition 5.1, by considering the sequence { ξ j ε j , j ∈ K }.

INSTANTS OF SMALL AMPLITUDE IN THE CRAM ÉR MODEL: PROOFS.

Before giving the proofs of Theorem 2.2, Proposition 2.3 and Theorem 2.4, it is necessary for the understanding of the matter to recall some notation and results from [START_REF] Weber | Instants of small amplitude of the Brownian motion and application to the Kubilius model[END_REF]. Let f : [1, ∞) → R + be here and throughout a non-decreasing function such that f (t) ↑ ∞ with t and f (t) = o ρ (t ρ ). The intervals I considered (cf. (1.6)) are of type [e k , e k f (e k )], k = 1, 2, . . .. Put (6.1)

A k ( f , z) = sup e k ≤t≤e k f (e k ) |W (t)| √ t < z , k = 1, 2, . . .
Let U(t) = W (e t )e -t/2 ,t ∈ R be the Ornstein-Uhlenbeck process. It will be more convenient to work with U instead of W . Observe that

A k ( f , z) = sup k≤s≤k+log f (e k ) |U(s)| ≤ z .
And so as U is stationary

P{A k ( f , z)} = P sup 0≤s≤log f (e k ) |U(s)| ≤ z .
We say that f ∈ U z whenever P lim sup k→∞ A k ( f , z) = 0, and that f ∈ V z if P lim sup k→∞ A k ( f , z) = 1. By the 0-1 law (since U is strongly mixing), the latter probabilities can only be 0 or 1.

Notice that if f ∈ U z , then with probability one

J( f ) := lim inf k→∞ sup k≤s≤k+log f (e k ) |U(s)| ≥ z, whereas J( f ) ≤ z, almost surely if f ∈ V z .
Introduce also for n = 1, 2, . . . the counting function

N n ( f , z) = n ∑ k=1 χ A k ( f ,z) ,
with corresponding mean

ν n ( f , z) := E N n ( f , z).
The classes U z and V z have been characterized in [START_REF] Weber | Instants of small amplitude of the Brownian motion and application to the Kubilius model[END_REF]Th. 1.1], where the following simple convergence criterion is proved.

Theorem 6.1. Let Σ( f ) = ∑ k f (e k ) -λ (z) , where λ (z) > 0 is defined in Theorem 2.2. Then f ∈ U z (resp. ∈ V z ) ⇐⇒ Σ( f ) < ∞ (resp. = ∞). Further if Σ( f ) = ∞, for any a > 3/2, N n ( f , z) = ν n ( f , z) + O ν 1/2 n ( f , z) log a ν n ( f , z) ,
with probability one. And there are positive constants K 1 (z), K 2 (z) depending on z only, such that for all n

K 1 (z) ≤ ν n ( f , z) ∑ n k=1 f (e k ) -λ (z) ≤ K 2 (z).
In [START_REF] Weber | Instants of small amplitude of the Brownian motion and application to the Kubilius model[END_REF], applications to the Kubilius model are given. The class of functions f c (t) = log c t, c > 0, is of special interest in view of such applications. For these functions, Theorem 6.1 implies

Corollary 6.2. If c > 1/λ (z), then f c ∈ U z whereas f c ∈ V z if 0 < c ≤ 1/λ (z). Further, for any 0 < c ≤ 1/λ (z) and a > 3/2, N n ( f c , z) a.s. = ν n ( f c , z) + O ν 1/2 n ( f c , z) log a ν n ( f c , z) .
And for all n, K 1 (z) ≤ ν n ( f c ,z)

∑ n k=1 k -cλ (z) ≤ K 2 (z). Accordingly, if (6.2) I( f ) := lim inf k→∞ sup e k ≤t≤e k f (e k ) |W (t)| √ t ,
then P{I( f c ) ≤ z} = 1 if and only if 0 < c ≤ 1/λ (z). This is clear in view of (6.1). Noticing that I( f ) ≤ I(g) whenever f (N) ≤ g(N) for all N large, we therefore also deduce Corollary 6.3. We have P{I( f c ) ≤ z} = 1 if and only if 0 < c ≤ 1/λ (z). And P{I( f

) = ∞} = 1 if f (t) c f c (t) for all c.
We need a suitable invariance principle for sums of independent random variables, which will be also used in the next section. This one is due to Sakhanenko (see [START_REF] Sakhanenko | Estimates in the invariance principle in terms of truncated power moments[END_REF], Theorem 1).

Let {ξ j , j ≥ 1} be independent centered random variables with absolute second moments. Let t k = ∑ k j=1 E ξ 2 j , S k = ∑ k j=1 ξ j and let {r k , k ≥ 1} be some non-decreasing sequence of positive reals. Let α ≥ 2, y > 0. Put successively,

∆ n = sup k≤n |S k -W (t k )|, ∆ = sup n≥1 ∆ n r n , ξ = sup j≥1 |ξ j | r j , L α (y) = ∑ j≥1 E min |ξ j | α y α r α j , |ξ j | 2 y 2 r 2 j . (6.3)
Lemma 6.4. There exists an absolute constant C such that for any fixed α, there exists a Brownian motion W such that for all x > 0,

P ∆ ≥ Cαx ≤ L α (x).
In our case, we choose

X i = ξ i -E ξ i . Let 1/α < β < 1/2. Take r j = (∑ j i=1 E |X i | 2 ) β = B β j . Since B j j log j , j → ∞, it follows ∑ j≥1 E |X j | α r α j = ∑ j≥1 E |X j | α B αβ j ≤ C ∑ j≥2 1 ( j/ log j) αβ (log j) < ∞, as αβ > 1. Thus L α (y) ≤ y -α ∑ j≥1 E |X j | α r α j ≤ C α y -α .
By Lemma 6.4, there exists a Brownian motion W such that for all x > 0,

P sup n 1 r n sup j≤n |S j -m j -W (B j )| ≥ Cαx ≤ C α x -α .
By a simple use of Tchebycheff's inequality, letting

ϒ = sup n 1 r n sup j≤n |S j -m j -W (B j )|, we deduce that E ϒ α < ∞, (α < α).
We shall now use Theorem 1.5 in [START_REF] Weber | Instants of small amplitude of the Brownian motion and application to the Kubilius model[END_REF]. We first note that E X 2 j = 1 log j (1 -1 log j ), and for α > 2, as

|X j | is bounded by 1 + 1 log j ≤ C, say, we have E |X j | α ≤ C α-2 E X 2 j . Further E |X j | α ≥ (E |X j | 2 ) α/2 ≥ C log j α/2 . Thus (6.4) v := sup j≥1 E |X j | α E |X j | 2 < ∞.
Therefore assumption (1.4) of Th. 1.5 in [START_REF] Weber | Instants of small amplitude of the Brownian motion and application to the Kubilius model[END_REF] We pass to the proof of Theorem 2.4. Let N be for the moment unspecified. Then,

sup j∈J N |S j -m j | B j -sup j∈J N |W (B j )| B j ≤ sup j∈J N 1 B 1-2β j ϒ → 0 , (6.5)
as N tends to infinity, with probability one.

Recall that

A k ( f , z) = sup e k ≤t≤e k f (e k ) |W (t)| √ t ≤ z , by (6.1) and that ν n ( f c , z) = ∑ n k=1 P{A k ( f c , z)}.
Further by Corollary 6.2, for all n,

K 1 (z) n ∑ k=1 k -cλ (z) ≤ ν n ( f c , z) ≤ K 2 (z) n ∑ k=1 k -cλ (z) , and 
(6.6) n ∑ k=1 k -cλ (z) = n 1-cλ (z) 1-cλ (z) + ζ (cλ (z)) + O n -cλ (z) if 0 < cλ (z) < 1, log n + γ + O( 1 n ) if cλ (z) = 1,
where γ is Euler's constant, recalling that ζ (s) = lim x→∞ ∑ n≤x 1 n s -x 1-s 1-s , 0 < s < 1. Choose N = e k , k = 1, 2, . . . and write now more simply B e k ( f , z) = B k ( f , z). Let also 0 < z < z < z . By (6.5), on a measurable set of probability as close to one as we please, call it Ω * , we have for k large enough, k ≥ k 0 say, (6.7)

A k ( f , z ) ⊂ B k ( f , z) ⊂ A k ( f , z ). As λ (z) is a positive strictly decreasing continuous function of z on ]0, ∞[, we have 0 < λ (z ) < λ (z) < λ (z ). Let f = f c with 0 < c ≤ 1/λ (z)
, and note that c ≤ 1/λ (z ). Let a > 3/2. By using Corollary 6.2, we get that on Ω * , for all n large enough, (6.8)

n ∑ k=k 0 χ B k ( f c ,z) ≤ n ∑ k=k 0 χ A k ( f c ,z ) = ν n ( f c , z ) + O a ν 1/2 n ( f c , z ) log a ν n ( f c , z ) .
We deduce that (6.9)

P n ∑ k=1 χ B k ( f c ,z) ≤ ν n ( f c , z ) + O a ν 1/2 n ( f c , z ) log a ν n ( f c , z ) , n ultimately = 1.
Similarly, on Ω * for all n large enough,

n ∑ k=k 0 χ A k ( f c ,z ) ≤ n ∑ k=k 0 χ B k ( f c ,z) . (6.10)
Assume that 0 < c ≤ 1/λ (z ). By using Theorem 6.1, we get (6.11)

P n ∑ k=1 χ B k ( f c ,z) ≥ ν n ( f c , z ) -O a ν 1/2 n ( f c , z ) log a ν n ( f c , z ) , n ultimately = 1.
Note that (6.9) is also valid if 0 < c ≤ 1/λ (z ).

Hence we have proved Theorem 2.4.

7. SUBSEQUENCE LIL RESULTS FOR THE CRAM ÉR MODEL: PROOFS.

Let N = {n k , k ≥ 1} be any increasing sequence of integers and M > 1; the value of M will be irrelevant. Let I 0 =]0, M] and for each integer k ≥ 1, let

I k =]M k , M k+1
]. The subsequence of intervals I k such that I k ∩ N = / 0, determines an increasing sequence of indices, which we denote by κ = {κ p , p ≥ 1}. For any n ∈ N we put

(7.1) ϕ N (n) = 2 log(p + 2) if n ∈ N ∩ I κ p .
Recall that r j = B β j and that

ϒ = sup n 1 r n sup j≤n |S j -m j -W (B j )|. Now let j * p = max{ j : B j ∈ N ∩]2 p-1 , 2 p ]}. As We have sup 2 p-1 <B j ≤2 p j∈N |S j -m j | B j ϕ( j) -sup 2 p-1 <B j ≤2 p j∈N |W (B j )| B j ϕ( j) ≤ sup 2 p-1 <B j ≤2 p j∈N |S j -m j -W (B j )| B j ϕ( j) = sup 2 p-1 <B j ≤2 p j∈N |S j -m j -W (B j )| B 1/2-β j B β j ϕ( j) ≤ sup 2 p-1 <B j ≤2 p j∈N 1 B 1/2-β j ϕ( j) sup 2 p-1 <B j ≤2 p j∈N |S j -m j -W (B j )| r j ≤ sup 2 p-1 <B j ≤2 p j∈N 1 B 1/2-β j ϕ( j) 2 β r j * p sup j≤ j * p |S j -m j -W (B j )| ≤ 2 β sup 2 p-1 <B j ≤2 p j∈N 1 B 1/2-β j ϕ( j) • ϒ → 0, as p → ∞ almost surely, since β < 1/2. Therefore lim sup N j→∞ |S j -m j | B j ϕ( j) = lim sup N j→∞ |W (B j )| B j ϕ( j) , almost surely. Now that lim sup N j→∞ |W (B j )| B j ϕ( j) = 1,
almost surely, follows from the proof of Theorem 3.3 in [START_REF] Weber | The law of the iterated logarithm for subsequences-Characterizations[END_REF]. This is rather easy to observe from estimates (3.22), (3.23), (3.24) in [START_REF] Weber | The law of the iterated logarithm for subsequences-Characterizations[END_REF].

Bibliographic Notes. We mainly refered during this work, to Cramér [START_REF] Cramér | Some theorems concerning prime numbers[END_REF], [3], Granville's exposition in [START_REF] Granville | Harald Cramér and the Distribution of Prime Numbers[END_REF], Pintz's systematic analysis of Cramér's model in [START_REF] Petrov | Sums of Independent Random Variables[END_REF], Ellison's seminar paper [START_REF] Ellison | Differences between prime numbers, Séminaire Delange-Pisot-Poitou. Théorie des nombres[END_REF], which notably contains a detailed proof of Hoheisel's seminal result [START_REF] Hoheisel | Primzahlprobleme in der Analysis[END_REF], Ingham [START_REF] Ingham | On the differences between consecutive primes[END_REF], Selberg [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF], Richards [START_REF] Richards | On the normal density of primes in short intervals[END_REF] where an interesting alternative approach to derive some of Selberg's results, under a weaker form, is purposed.

Theorem A.3. Let {X j , j ≥ 1} be independent, integer valued random variables with partial sums S n = X 1 + . . . + X n and let f j (k) = P{X j = k}. Also for each j and n, let

q( f j ) = ∑ k [ f j (k) ∧ f j (k + 1)], Q n = n ∑ j=1 q( f j )
and assume that q( f j ) > 0 for each j ≥ 1. Further assume that there exist numbers b n > 0, a n such that lim

n→∞ b n = ∞, lim sup n→∞ b 2 n /Q n < ∞, and S n -a n b n D =⇒ N (0, 1). Then lim n→∞ sup k b n P{S n = k} - 1 √ 2π e -(k-an) 2 2b 2 n = 0.
With the notation used, f j (k) = P{X j = k} and so

q( f j ) = ∑ k f j (k) ∧ f j (k + 1) = f j (1) ∧ f j (0) = (p j ∧ 1 -p j ) > 0. Further Q n = ∑ n j=1 q( f j ) = ∑ n j=1 (p j ∧ 1 -p j ), and b 2 n = B n = ∑ n j=1 p j (1 -p j ). Thus lim n→∞ b n = ∞, lim sup n→∞ b 2 n /Q n = lim sup n→∞ ∑ n j=1 p j (1 -p j ) ∑ n j=1 (p j ∧ 1 -p j ) < ∞.
As moreover the CLT holds, we infer from the above cited result, For the proof, we use the Lemma below which is inspired by Lemma 3 in Freiman-Pitman [START_REF] Freiman | Partitions into distinct large parts[END_REF]. The goal being to obtain an estimate of Φ(t) with explicit constants, this however requires to base the proof on different calculations. In particular we use the convenient estimate (Lemma 4.14 in Kallenberg [START_REF] Kallenberg | Foundations of modern probability theory[END_REF] . This achieves the proof.

One can derive from Proposition A.4 the following value distribution result on divisors of S n . We omit the proof. 

  with probability one. The same result for the prime sequence P is equivalent to the Riemann Hypothesis (RH).The LIL is a consequence of Kolmogorov's LIL, and yields the more precise result(1.4) lim sup x→∞ # ν ∈ C : ν ≤ x -x 2 dt logt 2 x log x log log x = 1,with probability one.

2. 1 .

 1 Primality of S n . Theorem 2.5. (i) For any constant b > 1/2, (2.1)

Proposition 5 . 1 . 5 . 2 .

 5152 The inclusion C ⊂ B holds true with positive probability. Instants of jump in the Bernoulli model. The instants of jump of the sequence {B k , k ≥ 1} are defined as follows: Put δ 0 = 0, ∆ 0 = 0 and for any integers ≥ 1, k ≥ 1, (5.1)

Theorem 5 . 2 .

 52 (i) The random variables δ k are i.i.d., exponentially distributed, P{δ = m} = 2 -m for all ≥ 1 and m ≥ 1.

2 .Proposition A. 4 . 3 .Bn = e -y 2 2 2 √

 24322 The characteristic function of S n . Let ϕ k (t) be the characteristic function of ξ k , ϕ k (t) = E e 2iπξ k t . Let alsoΦ n (t) = E e 2iπtS n = n ∏ k=1 ϕ k (t),be the characteristic function of S n . We prove the following estimate with explicit constants. We have|Φ n (t)| ≤ exp -2B n sin 2 πt . Further Φ n (t) = e 2iπtm n -2B n (πt)2 +E n (t) , with |E n (t)| ≤ 12 m n (π|t|) +E n (y) , and |E n (y)| ≤ log n |y| 3 √ n .

Theorem A. 6 .A. 3 .

 63 Let Θ(d, m, B) be the elliptic Theta function defined by Θ(d, m, B) = P{d|S n } -Θ(d, m n , B n ) d = O (log n) 3 n . (A.9) Remarks complementary to Cramér's proof. Recall the way (1.8) is established. We provide details, which are necessary for the sequel. Let c > 0, and set E m = ξ m+ j = 0, 1 ≤ j ≤ c(log m) 2 , Introduce the increasing sequence of integers m 1 = 2 and m r+1 = m r + [c(log m r ) 2 ] + 1. -If c ≤ 1, the events E m r being independent, by the second Borel-Cantelli lemma P{lim sup r→∞ E m r } = 1, in other words, almost surely, S m r+1 -S m r ≥ c(log m r ) 2 , r infinitely often. -If c > 1, by the first Borel-Cantelli lemma, the above probability is 0. Thus with probability one, S m+[c(log m) 2 ] -S m ≤ c(log m) 2 , m ultimately. This suffices to imply (1.8), indeed: (i) If c > 1, let P ν(m) denote the greatest P ν less than S m . As with probability one ξ m+ j = 1, for some 1 ≤ j ≤ c(log m) 2 , m ultimately, P ν(m+1) cannot be larger than S m+[c(log m) 2 ] . Thus P ν(m+1) -P ν(m) ≤ c(log m) 2 , m ultimately, almost surely. Now by Lemma A.1, S m ∼ m log m , almost surely, thus log S m ∼ log m. We deduce that for any c > c fixed, P ν(m+1) -P ν(m) ≤ c (log P ν(m) ) 2 , m ultimately, almost surely, which naturally implies that the limsup in (1.8) is less or equal to 1. In addition, letting m = m r , r ≥ 1 in the above, we have since m r+1 = m r + [c(log m r ) 2 ] + 1, that with probability one: for any r large enough, there exists a jump in the interval [m r , m r+1 ]. Therefore (A.2) P{∃r 0 : ∀r ≥ r 0 , P r ≤ m r+1 + m r 1 } = 1. (ii) If c ≤ 1, then almost surely P ν(m r+1 ) -P ν(m r ) ≥ c(log m r ) 2 ≥ c(log P ν(m r ) ) 2 , r infinitely often. Thus (1.8) is supported by the probability of the set lim sup r→∞ E m (resp. lim sup r→∞ E m r ) which is trivially 0 (resp. 1) depending on c > 1 (resp. c ≤ 1).

  is fulfilled. We deduce that there exists a Brownian motion W such that

	lim inf k→∞	sup e k ≤B j ≤e k f (e k )	|S j | B j	= lim inf k→∞	sup e k ≤B j ≤e k f (e k )	|W (B j )| s j	,
	with probability 1. By Corollary 6.3,					
		lim inf k→∞	sup e k ≤B j ≤e k f c (e k )	|S j | B j	≤ z,
	with probability 1, if and only if c ≤ 1/λ (z).				

  |C k (t)| ≤ 12(π|t|) 3 log k . Recalling that m n = ∑ n E e 2iπtS n = Φ n (t) = e 2iπtm n -2π 2 B n t 2 +D n (t) , and |D n (t)| ≤ 12 m n (π|t|)3 . In particular,

						j=3	1 log j , B n = ∑ n j=3	1 log j (1 -1 log j ), it follows that
	(A.7)								
	(A.8)			E e	iy Sn-mn √ Bn = e -y 2 2 +E n (y) ,
	with |E n (y)| ≤ 3m n 2 ( y √ B n	) 3 ≤ 2	√ log n|y| 3 √ n					
	),								
	(A.1)		e ix -	n ∑ k=0	(ix) k k!	≤	2|x| n n!	∧	|x| n+1 (n + 1)!	,

valid for any x ∈ R and n ∈ Z + .

where
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This is an immediate consequence of the following Lemma.

Lemma A.2. Let {X j , j ≥ 1} be independent binomial random variables with P{X j = 0} = 1 -P{X j = 1} = p j , for all j and let S n = ∑ n j=1 X j , n ≥ 1. Further let σ 2 j = Var(X j ) = p j (1p j ), B n = Var(S n ) = ∑ n j=1 p j (1p j ). Assume that the series ∑ j p j diverges and that p j = o(1). Then the SLLN, CLT, LIL and LLT hold true.

Proof. Let ε > 0. Then,

As the series ∑ j p j diverges and p j = o(1), the above summands are 0 for all n ≥ n ε , say. This implies that

for any positive ε. Whence the Lindeberg condition is satisfied, and so the CLT holds:

Concerning the LIL, Kolmogorov's condition that Lemma A.5. Let m be a positive real and p be a real such that 0 < p < 1. Let β be a random variable defined by P{β = 0} = p, P{β = m} = 1p = q. Let ϕ(t) = E e 2iπtβ . Then we have the following estimates,

.

In order to estimate u 2 , we let

, and write (e 2iπmt -1) 2 under the form

Then (e 2iπmt -1) 2 + (2πmt) 2 = A(2t) -2A(t), and so u 2 2 = -2q 2 (πmt) 2 + q 2 2 (A(2t) -2A(t)). Let u 0 = 2 3 so that C 0 = 1. We assumed q| sin πtm| ≤ 1/3, thus |u| ≤ 2/3. We consequently get with (A.2), ϕ(t) = e q(e 2iπmt -1)-u 2 2 +B = e q(e 2iπmt -1)+2q 2 (πmt)

Using the rough bound δ (x) ≤ |x| 3 6 , and |B| ≤ 8q 3 1 ∧ πm|t| 3 , we get

We conclude by inserting estimate (A.5) into (A.3).

Proof of Proposition A.4. Here we have m

Further condition q| sin πtm| ≤ 1/3 in Lemma A.5 reduces for ϕ k (t) to 1 log k | sin πt| ≤ 1/3. Thus

Remark A.7. As (1.8) does not depend on the first random variables ξ j , it follows that the jumps associated to the truncated sequence S a n = ∑ n j=a ξ j , a integer, n > a, also satisfy the same asymptotic property. Therefore there is no harm in Cramér's conjecture to consider instead the 'primes' associated to this one.

We now indicate several interesting results complementing (1.8).

(1) Let N J = ∑ J r=1 χ E mr , J ≥ 1, and put B J = ∑ J r=1 P(E m r ) 1 -P(E m r ) . By Kolmogorov's LIL,

(2) Further, by Berry-Esseen inequality [START_REF] Petrov | Sums of Independent Random Variables[END_REF],

.

(3) Let 0 < c < 1. From (A.3), (A.1) and m r c r(log r) 2 , it follows that with probability one (A.5) N J J 1-c (log J) -2c , for any J large enough.

Whence it follows that for any J large enough, the interval [1, cJ(log J]) 2 ] contains at least C J 1-c (log J) -2c 'primes' P ν with large gaps, namely such that P ν+1 -P ν ≥ c log 2 P ν . Therefore the Cramér model also predicts that with probability one, for any J large enough, the number of large gaps between 'primes' in the interval , in which d ≥ 2 and 0 ≤ ρ < d are integers. This is clear from the following uniform estimate proved in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], see also [START_REF] Weber | Distribution and Correlation Properties of Divisors in the Bernoulli Model for Integers[END_REF], to which we refer for details, and from Poisson's summation formula.

Theorem A.8.

where Θ(d, n) is the elliptic Theta function

By applying Poisson's summation formula:

we further get

The series in (A.3) is of the type given in (A.1). An indication of the behavior of these series when d and n may simultaneously vary, is given by the already sharp estimate,

The following estimate is also proved in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF].

Theorem A.9. There exist a positive real c and positive constants C 0 , ζ 0 such that for k large enough we have,

As P B n is prime ≤ P P -(B n ) > ζ , the following corollary is immediate.

Corollary A.10. There exists an absolute constant C 1 , such that for all n large enough,

The constant c is the same as in Theorem A.9.

By using Borel-Cantelli Lemma it follows that, along subsequences of integers growing at least exponentially, B n is ultimately not prime with probability 1.

The collection of variables D = χ{d|B n }, n ≥ 1, d ≥ 1 further forms a mixing system, that is the correlation function The second order theory of this system is thoroughly studied in [START_REF] Weber | Distribution and Correlation Properties of Divisors in the Bernoulli Model for Integers[END_REF]. Three zones of dependence, weak independence and strong independence can be identified, according to the cases n < m ≤ n + n c , n + n c ≤ m ≤ 2n and m ≥ 2n, where 0 < c < 1. The corresponding correlation estimates are established in [START_REF] Weber | Distribution and Correlation Properties of Divisors in the Bernoulli Model for Integers[END_REF].