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In this short note, we study two specific generalized inverses, the (b, c)-inverse of Drazin and the inverse along an element of the present author, in a categorical way. Precisely, we prove that the (b, c)-inverse and the inverse along an element in a semigroup are actually genuine inverse when considered as morphisms in the Schutzenberger category of the semigroup. This category was first defined and studied by Costa and Steinberg, and its definition is based on Green's preoders and relations. In the last section, applications to the Reverse Order Law are given and some new formulas are provided. Examples are also given.

1. Green's relations and the Schutzenberger category of a semigroup 1.1. Green's preorders and relations. In this article, S denotes a semigroup, E(S) its set of idempotents and S 1 the monoid generated by S. We recall below the definitions of Green's preorders and relations [START_REF] Green | On the structure of semigroups[END_REF].

Let S be a semigroup. For any two elements a, b ∈ S:

a ≤ L b ⇐⇒ S 1 a ⊆ S 1 b ⇐⇒ (∃x ∈ S 1 ) a = xb; a ≤ R b ⇐⇒ aS 1 ⊆ bS 1 ⇐⇒ (∃x ∈ S 1 ) a = bx;
a ≤ H b ⇐⇒ {a ≤ L b and a ≤ R b}.

If ≤ K is one of these preorders, then aKb ⇔ {a ≤ K b and b ≤ K a}, and K a = {b ∈ S, bKa} denotes the K-class of a.

In particular, H = L ∧ R is the meet of L and R, and any nonempty intersection of a L-class and a R-class is a H-class. Finally, D = L ∨ R = L • R denotes the both the join and the relative product of L and R since the two relations commute: aDb ⇐⇒ (∃x ∈ S) aLxRb ⇐⇒ (∃y ∈ S) aRyLb

The following cancellation property (and its dual) will prove very useful in the sequel. Let a, b ∈ S be such that a ≤ L b. Then for any x, y ∈ S 1 , if bx = by then ax = ay. In particular, if a ≤ L e with e ∈ E(S), then ae = a.

1.2. Schutzenberger category of a semigroup. In order to study a semigroup S, various authors have introduced categories associated to this semigroup in a canonical way, mainly as subcategories of the category of right/left S-acts. This is the case for instance for K.S.S. Nambooripad in the case of regular semigroups [START_REF] Nambooripad | Theory of Cross-connections[END_REF] (Other kind of categories are also studied, notably in the case of inverse semigroups, see for instance [START_REF] Hollings | The ehresmann-schein-nambooripad theorem and its successors[END_REF] and references therein).

Then, it was remarked by Costa and Steinberg [2, Theorem 3.5] that the subcategory of left S-acts with principal left ideals as objects and inner equivariant maps (inner right translations) as morphisms is equivalent to a category constructed directly from S, they call the Schutzenberger category of the semigroup. We recall its definition below but differ from [START_REF] Costa | The schützenberger category of a semigroup[END_REF] in that we consider the opposite category. In the following, we let once for all S be a given semigroup. The Schutzenberger category was named after Marcel-Paul Schutzenberger who, in a seminal paper [START_REF] Mp | D-reprsentation des demi-groupes[END_REF], associated to each H-class of a semigroup a group (of inner translations of principal right ideals), a property before only known for H-classes containing a idempotent (which form a maximal subgroup of the semigroup).

As observed in [START_REF] Costa | The schützenberger category of a semigroup[END_REF], D(S op ) D(S) op , easing the use of duality. By duality we have only to prove that aRx. First, x ≤ R a and y ≤ R b, so that y = bu for some u ∈ S 1 . Second, as

a a -→ a = a x -→ b y -→ a = a xu -→ a
then a = xu and a ≤ R x, so that finally aRx. Lemma 1.2 gives a diagrammatic proof that R and L commute. Also, we recover directly and in a transparent way the following crucial result about trace products and existence of idempotents, due to Miller and Clifford.

Theorem 1.3 ([10, Theorem 3]). Let a, b ∈ S. Then ab ∈ R a ∩ L b (ab is a trace product) iff R b ∩ L a contains an idempotent.
As ab is a trace product iff a This partial order generalizes the natural partial order on the idempotents of S and the Nambooripad-Hartwig order on regular semigroups. Proof. The first two statements follow directly from Lemma 1.2. For the third one we let a ∈ S, a ≤ H b. Then a = bx = yb for some

x, y ∈ S 1 , so that b a -→ b a -→ b = b a -→ b bx -→ b = b ax -→ b = b yb -→ b a -→ b = b ya -→ b Finally, under these assumptions, b a -→ b is idempotent iff ax = a = ya iff a ≤ M b.

Inverse along an element and (b, c)-inverse

Let a, x ∈ S. One says that x is an inner (resp. outer, resp. reflexive) inverse of a if the equation axa = a (resp. xax = x, resp. both) is satisfied. A reflexive inverse of a that commutes with a is unique if it exists, and called the group inverse of a. It is denoted by a # . In this case, one says that a is group invertible or completely regular. This happens iff a 2 Ha iff the H-class H a is a subgroup of S ([5, Theorem 7] or [START_REF] Miller | Regular D-classes in semigroups[END_REF]Corollary 4]), and a # is the inverse of a in this group.

In [START_REF] Mary | On generalized inverses and Greens relations[END_REF] a special outer inverse, called inverse along an element, was introduced, on the basement of Green's relation H. That is, x is the only outer inverse of a in the H-class of d (hence depends only on the H-class).

In the same time, M. P. Drazin defined [START_REF] Drazin | A class of outer generalized inverses[END_REF] the (b, c)-inverse (extending notably the Bott-Duffin (e, f )-inverse, which is recovered by letting b = e and c = f be idempotents).

Definition 2.3. Let a, b, c, x ∈ S. Then x is a (b, c)-inverse of a if (1) x ∈ (bSx) ∩ (xSc), ( 2 
) xab = b, cax = c.
A (b, c)-inverse, if it exists, is also unique and satisfies xax = x ([4, theorem 2.1]). We will denote it by a -(b,c) in the sequel.

It is proved in [START_REF] Drazin | A class of outer generalized inverses[END_REF] and [START_REF] Mary | On generalized inverses and Greens relations[END_REF] that these two new notions generalize the classical generalized inverses (group inverse, Moore-Penrose inverse, Drazin inverse). It happens that they are actually equivalent notions. This theorem shows that the three notions are essentially the same, and that a -(d,d) = a -d . However, while the using two elements instead of one offers some flexibility (for instance one can choose b, c idempotents), other properties require b = c (for instance the property

a -d = d(ad) # = (da) # d [8, Theorem 7]).
As a consequence of Theorem 2.4 and Lemma 2.2, we see that the requirements in the definition of the (b, c)-inverse can be relaxed.

Corollary 2.5. Let a, b, c, x ∈ S. The following statements are equivalent:

(1) x is the (b, c)-inverse of a; (2) xab = b, cax = c, x ≤ R b and x ≤ L c; (3) xax = x and x ∈ R b ∩ L c . Thus x = a -(b,c) is the only outer inverse of a in the H-class H = R b ∩ L c .
2.2. Interpretation through the variant semigroup. For any a ∈ S we let S a = (S, • a ) be the variant semigroup at a, with multiplication

• a : (s, t) → sat. Theorem 2.6. Let a, b, c, d ∈ S. Then: (1) a is (b, c)-invertible iff c • a b is a trace product in S a , in which case a (b,c) is the unique idempotent in R a b ∩L a c (where K a denotes Green's relation K in S a ).
(2) a is invertible along d iff d is completely regular in S a (H a d is a subgroup of S a ), in which case a -d is the identity of the group H a d . 2.3. Categorical interpretation of the (b, c)-inverse. In this section, we prove that the (b, c)-inverse (hence also the Bott-Duffin (e, f )inverse and the inverse along an element) actually corresponds to a genuine inverse, but in the category D(S). -→ ad, that is (ad) 2 Had by Proposition 1.5, or equivalently iff H ad is a group. To obtain the formula, just invert the previous morphisms and compose, with the inverse of ad

Theorem 2.7. Let a, b, c ∈ S. Then a is (b, c)-invertible iff c cab -→ b is an isomorphism of D(S) (cab ∈ R c ∩ L b ), in which case its inverse morphism is b a -(b,c) -→ c.
(ad) 2 -→ ad being ad (ad) # ad -→ ad. d a -d -→ d = (d dad -→ d) -1 = d d -→ ad (ad) 2 -→ ad ad -→ d -1 = d d -→ ad (ad) # ad -→ ad ad -→ d = d d -→ ad ad(ad) # -→ d = d d(ad) # -→ d

Application to the Reverse Order Law

As an application, we consider a common problem regarding generalized inverses, the so-called Reverse Order Law (ROL), that aims to generalize the well-known property of (genuine) inverses: if a, b are invertible, then so is ab and (ab)

-1 = b -1 a -1 .
The main results about ROLs for (b, c)-inverses can be found in [START_REF] Chen | The reverse order law of the (b, c)-inverse in semigroups[END_REF].

Theorem 3.1 ([1, Theorems 2.3 and 2.7, Corollary 2.4 ]). Let a, w, b, s, t, c ∈ S.

(1) Assume that a -(t,c) and w -(b,s) exist. Then (aw) -(b,c) exists and equals w -(b,s) a -(t,c) iff b = w -(b,s) a -(t,c) awb and c = caww -(b,s) a -(t,c) . (2) In particular if a -(t,c) and w -(b,s) exist and a ≤ L s, w ≤ R t then (aw) -(b,c) exists and equals w -(b,s) a -(t,c) . (3) Assume that a -(t,c) and a -(t,c) aw -(b,s) exist. Then (aw) -(b,c) exists and equals a -(t,c) aw

-(b,s) a -(t,c) iff c = caw a -(t,c) aw -(b,s) a -(t,c) .
We slightly improve these results by using the 2-out-of-3 and 2-outof-6 properties of isomorphisms, and show that they rely on st being a trace product. Theorem 3.2. Let a, w, b, s, t, c ∈ S be such that a -(t,c) and w -(b,s) exist. Then (aw) -(b,c) exists and equals w -(b,s) a -(t,c) iff s st -→ t is invertible (st is a trace product) with inverse t e -→ s, e ∈ E(S) and caewb = cawb.

Proof. Assume that a -(t,c) and w -(b,s) exist. Then b exist. Then (aw) -(b,c) exists and equals a -(t,c) aw -(b,s) a -(t,c) iff s st -→ t is invertible (st is a trace product).

w -(b,s) -→ s st -→ t a -(t,c) -→ c = b w -(b,s) a -(t,c) -→ c is invertible iff s st -→ t is invertible,
Proof. Assume that a -(t,c) and a -(t,c) aw

-(b,s) exist. Then b (a -(t,c) aw) -(b,s) -→ s st -→ t a -(t,c) -→ c = b (a -(t,c) aw) -(b,s) a -(t,c) -→ c is invertible iff s st -→ t is invert- ible. In this case its inverse is c cat -→ t e -→ s sa -(t,c) awb -→ b = b caea -(t,c) awb -→ c (where t e -→ s is the inverse s st -→ t). But then a -(t,c) RtRe and ea -(t,c) = a -(t,c) , so that caea -(t,c) = caa -(t,c) = c. Finally c cat -→ t e -→ s sa -(t,c) awb -→ b = b cawb -→ c in
case st is a trace product, which ends the proof. By letting again s = b and c = t, we obtain the following corollary.

Corollary 3.6. Let a, w, b, c ∈ S be such that a -c and (a -c aw)

-b exist.

Then (aw) -(b,c) exists iff b bc -→ c is invertible (bc is a trace product), in which case (aw) -(b,c) = (aw) -(bc) = a -c aw -b a -c
We deduce the following 2-out-of-4 property for the Bott-Duffin inverse.

Corollary 3.7. Let w ∈ S and e, f ∈ E(S). Consider the following statements:

(1) (f w) -e exists;

(1 ) (we) -f exists;

(2) w -(e,f ) exists;

(3) ef is a trace product. Then any two of the four statements imply the other ones, in which case

w -(e,f ) = w -(ef ) = (f w) -e f = e (wf ) -f = e(wf e) # f.
Proof. Since, after exchanging e and f , (1), ( 1) are dual and (2), (3) are self-dual, we have only to prove that (1), ( 2) ⇒ (3), ( 1), (3) ⇒ (2), ( 2), (3) ⇒ (1) and ( 1), (1 ) ⇒ (2). To prove that (1), ( 2) ⇒ (3) and ( 1), (3) ⇒ (2), we work in S 1 and let a = 1. Then 1 is invertible along f with 1 -f = f . We then use Corollary 3.6. We now prove the other ones.

(2), (3) ⇒ (1) Assume (2), (3). Then R f ∩ L e is a group by (3) and Theorem 1.3 that contains f we by (2) and Theorem 2.7. Thus (f w)eLe and H (f w)e is a group, which is equivalent to (1) by Theorem 2.9. (1), (1 ) ⇒ (2) Assume ( 1), [START_REF] Chen | The reverse order law of the (b, c)-inverse in semigroups[END_REF]. Then by Theorem 2.9 and its dual eLf weRf , so that w is (f, e)-invertible by Theorem 2.7. Under these assumptions, the equality follows from Corollary 3.6.

Example 3.8. Let S = T 3 be the full transformation semigroup, which consists of all functions from the set {1, 2, 3} to itself with multiplication (f, g) → g • f . We write (abc) for the function which sends 1 to a, 2 to b, and 3 to c. The egg-box diagram form T 3 is as follows (R-classes are rows, L-classes columns and H-classes are squares; bold elements are idempotents). We also verify that f we = (212)H( 121) is group invertible with group inverse (212), that (we) -f exists and is equal to (232) and that w -(e,f ) = (233) = e (wf ) -f = (122)(232) = e(wf e) # f = (122)(212)(323).

Also, we observe these simple ROLs that involve triple products.

Theorem 3.9. Let a, w, b, r, c ∈ S. Consider the following statements:

(1) a has a (r, c)-inverse;

(2) w has a (b, r)-inverse;

(3) arw has a (b, c)-inverse.

Then any two of the three properties imply the third. Moreover, in case the inverses exist then:

(1) if b = r, then (arw) -(r,c) = (rw) # a -(r,c) ;

(2) if c = r, then (arw) -(b,r) = w -(b,r) (ar) # ;

(3) if b = c = r, then (arw) -r = (rw) # r(ar) # = r(wr) # (ar) # = (rw) # (ra) # r; (4) if r is idempotent, then (arw) -(b,c) = w -(b,r) a -(r,c) ; (5) if bc is a trace product and r = e is the idempotent in R c ∩ L b then (aew) -bc = w -b a -c .

Proof. We just use the 2-out-of-3 property of isomorphisms on the composition

c car -→ r rwb -→ b = c carwb -→ b.
For the other statements, we pass to the inverse. In the first case, w -(r,r) = w -r = (rw) # r by Theorem 2.9 so that r

w -(r,r) -→ r a -(r,c) -→ c = r (rw) # r -→ r a -(r,c) -→ c = r (rw) # a -(r,c) -→ c.
The second case is dual and the third combines the previous two. For the fourth one, as r is idempotent then b

w -(b,r) -→ r a -(r,c) -→ c = b w -(b,r) a -(r,c)
-→ c. The fifth statement is then straightforward. Finally, by letting s = a and t = w in Theorems 3.2 and 3.5, or r = e be the idempotent in R w ∩ L a in Theorem 3.9, we obtain the following result. (Indubitably, a direct proof based on Theorem 1.3 is also possible).

Example 3.12. Let S be a semigroup with involution. It is known that a ∈ S is Moore-Penrose invertible (MP-invertible) iff aa * , a * a are trace product [START_REF] Mary | On generalized inverses and Greens relations[END_REF]Corollary 12], in which case the MP-inverse a + satisfies a + = a -a * [8, Theorem 11]. It is also known [START_REF] Greville | Note on the generalized inverse of a matrix product[END_REF] One can then check directly that the Moore-Penrose equations are satisfied. On the other hand, Greville's formula does not hold since

A * AW = 1 1 1 1
≤ R W , and indeed (AW ) + = W + A + .

Definition 1 . 1 .

 11 The Schutzenberger category D(S) of the semigroup S has for objects the elements of S, and morphisms are triples f = (a, x, b) with x ∈ S 1 a ∩ bS 1 . The domain of f is a, its codomain is b and we use the notation f = a x -→ b. If x = au = vb and g = (b, y, c) = b y -→ c is a morphism with y = bw = rc, then the composition is g • f = a x

1. 3 .Lemma 1 . 2 .

 312 Categorical interpretation of Green's relations. Let a, b, x ∈ S. By definition, a x -→ b exists iff x ≤ L b and x ≤ R a. Invertibility of such morphisms has been considered in [2, Lemma 3.6]. We propose here a slightly different version, with a direct proof. Let a, b, x ∈ S. Then a x -→ b is invertible iff aRxLb. In this case, its inverse is b b -→ x a -→ a = b y -→ a with aLyRb. Proof. (If part) Assume that aRx and xLb. Then a x -→ x and x a -→ a are well defined, and composition proves that they are inverse of each other. By duality, so are x x -→ b and b b -→ x, and finally a x -→ b = a x -→ x x -→ b is invertible (by the 2-out-of-3 property of isomorphisms). Its inverse is given by the composite of the inverses b b -→ x a -→ a. (Only if part) Assume that a x -→ b is invertible with inverse a y -→ b.

Corollary 1 . 4 .

 14 ab -→ b is invertible and R b ∩ L a contains an idempotent iff there exists e ∈ E(S) b e -→ a is invertible by Lemma 1.2, then the previous theorem subsumes to the following result (in the category D(S)), where the relation between a, b and e is now explicit: b e -→ a is nothing but the inverse of a ab -→ b in the Schutzenberger category D(S). Let a, b ∈ S. Then a ab -→ b is invertible iff there exists e ∈ E(S) b e -→ a is invertible. In this case, the two morphisms are inverse of each other. Proof. (If part) Assume that a ab -→ b is invertible and let b e -→ a be its inverse. As a ab -→ b e -→ a = a ae -→ a = a a -→ a then ae = a. But e ≤ L a and by cancellation ee = e (e is idempotent). (Only if part) Conversely, let e ∈ E(S) be such that b e -→ a is invertible. Then aReLb by Lemma 1.2, and ae = a, eb = b. It follows that b e -→ a is a morphism that satisfies a ab Let b ∈ S. We finally consider the local monoid hom(b, b) (named local divisor by Diekert et. al. [3]). To this end, we recall the definition of Mitsch's partial order ≤ M [11]: for any a, b ∈ S, a ≤ M b ⇐⇒ (∃x, y ∈ S 1 ) a = ax = bx = ya = yb.

Proposition 1 . 5 .

 15 Let a, b ∈ S. Then

( 1 )

 1 hom(b, b) = {b a -→ b|a ≤ H b}; (2) iso(b, b) = {b a -→ b|aHb}; (3) E (hom(b, b)) = {b a -→ b|a ≤ M b};

Definition 2 . 1 .

 21 Let a, d ∈ S. Then a is invertible along d if there exists x ∈ S such that xad = d = dax and x ≤ H d.If such an element exists then it is unique, and we denote it by a -d . An other characterization is the following ([8, Lemma 3] and [9, Theorem 2.2]).

Lemma 2 . 2 .

 22 Let a, d ∈ S. Then a is invertible along d iff there exists x ∈ S such that xax = x and xHd, and in this case a -d = x. This happens iff dadHd.

2. 1 .

 1 Equivalence of the definitions. Theorem 2.4. (1) Let a, b, c, x ∈ S. If a is (b, c)-invertible with inverse x, then bDc and for all d ∈ R b ∩ L c , a is invertible along d with inverse x. (2) Let a, d ∈ S. If a is invertible along d, then for all b ∈ R d and c ∈ L d , a is (b, c)-invertible and a -(b,c) = a -d . (3) In particular, if a, d ∈ S are such that a is invertible along d, then e = a -d a and f = aa -d are idempotents such that e ≤ R d and f ≤ L d. But also ed = d and df = f by definition of the inverse along d, and e ∈ R d , f ∈ L d . Finally a is Bott-Duffin (e, f )-invertible and a -(e,f ) = a -d by (2). Proof. (1) Assume that a is (b, c)-invertible with (b, c)-inverse x = a -(b,c) . Then xab = b, cax = x and b ≤ R x, c ≤ L x. As also x ∈ (bSx) ∩ (xSc), then x ≤ R b and x ≤ L c. Finally bRxLc and bDc. Also, R b ∩ L c = H x . Let d ∈ R b ∩ L c . Then x satisfies xax = x and xHd, and x = a -d by Lemma 2.2. (2) Let a, d ∈ S such that a -d exists, and let b ∈ R d , c ∈ L d . By cancellation properties, as a -d ad = d then a -d ab = b and as daa -d = d then caa -d = c. Also, as a -d RdRb then a -d = bx for some x ∈ S 1 . Then a -d = a -d aa -d = b(xa)a -d and a -d ∈ bSa -d . By symmetry, a -d ∈ a -d Sc and finally, a -d is the (b, c)-inverse of a. (3) Let a, d ∈ S such that a -d exists. Then e = a -d a and f = aa -d are idempotents with e ∈ R d , f ∈ L d , so that a is (e, f )-invertible and a -d = a -(e,f ) by (2).

Corollary 2 . 8 .

 28 Proof. (If part) Assume that c cab -→ b is invertible and let b x -→ c be its inverse. Then bRxLc by Lemma 1.2. Also b b -→ b = b x -→ c cab -→ b = b xab -→ b so that xab = b, and dually cax = c. It follows that x is the (b, c)-inverse of a by Corollary 2.5. (Only if part) Conversely, let x = a -(b,c) be the (b, c)-inverse of a. Then b x -→ c is well-defined and satisfies b x cab -→ b. We deduce from Lemma 1.2 and Theorem 2.7 the following corollary. Let a, b, c ∈ S. Then the following statements are equivalent: (1) a is (b, c)-invertible; (2) c cab -→ b is invertible; (3) c cab -→ cab and cab cab -→ b are invertible; in which case b a -(b,c) -→ c = b b -→ cab c -→ c. Proof. By Theorem 2.7, (1) ⇒ (2), and (3) ⇒ (2) by composition. Finally (2) ⇒ (3) by Lemma 1.2. cRcabLb. Under these conditions, the equality follows from b b -→ cab being the inverse of cab cab -→ b and cab c -→ c being the inverse of c cab -→ cab.To close this section, we give a diagrammatic proof of[START_REF] Mary | On generalized inverses and Greens relations[END_REF] Theorem 7].

Theorem 2 . 9 ([ 8 ,

 298 Theorem 7]). Let a, d ∈ S. Then a is invertible along d iff adLd and H ad is a group. In this case a -d = d(ad) # . Proof. Assume that a is invertible along d. Then dadHd and, in particular, adLd. it follows that d d -→ ad is well-defined and invertible, with inverse ad ad -→ d. But then d dad -→ d = d d

Corollary 3 . 3 .Corollary 3 . 4 .Theorem 3 . 5 .

 333435 and in this case its inverse is c cat -→ t e -→ s swb -→ b = b caewb -→ c (where t e -→ s is the inverse s st -→ t). We conclude by unicity of the inverse.The following corollaries are then straightforward (in the second one, we just let s = b and c = t). Let a, w, b, s, t, c ∈ S be such that a -(t,c) and w -(b,s) exist, st is a trace product (st ∈ R s ∩ L t ) and either a ≤ L s or w ≤ R t. Then aw has a (b, c)-inverse and (aw) -(b,c) = w -(b,s) a -(t,c) . Let a, w, b, c ∈ S be such that a -c and w -b exist. Then (aw) -(b,c) exists and equals w -b a -c iff b bc -→ c is invertible (bc is a trace product) with inverse c e -→ b, e ∈ E(S) and caewb = cawb. Moreover, in this case (aw) -(b,c) = (aw) -(bc) = w -b a -c . Let a, w, b, s, t, c ∈ S be such that a -(t,c) and a -(t,c) aw -(b,s)

  Let w = (213), e = (122) and f = (323). Then ef = (322) ∈ R e ∩ L f and ef is a trace product. Also f w = (313) is invertible along e since ef we = (211)He with inverse (f w) -e = (211). It then follows from Corollary 3.7 that w -(e,f ) = w -(ef ) = (213) -(322) = (f w) -e f = (211)(323) = (233).

Example 3 . 10 .

 310 We consider the setting of Example 3.8. Let a = (231), w = (221), b = r = (232) and c = (211). Then w = (221) is invertible along r = (232) with inverse w -r = (323), and a is (r, c)-invertible (since car = (233) ∈ R c ∩ L r ) with inverse a -(r,c) = (212). It holds that rw = (212) = (rw) # and arw = (122). We deduce from Theorem 3.9 that arw is (r, c)-invertible and (arw) -(r,c) = (rw) # a -(r,c) = (212)(212) = (121). We verify this equality: x = (121) ∈ R r ∩L c , x(arw)r = (121)(122)(232) = (232) = r and c(arw)x = (211)(122)(121) = (211) = c.

Theorem 3 . 11 .

 311 Let a, w, b, c ∈ S. Then the following statements are equivalent:(1) a -(w,c) , w -(b,a) and (aw) -(b,c) exist, and (aw) -(b,c) = w -(b,a) a -(w,c) ;(2) a -(w,c) , w -(b,a) exist;(3) ca, aw and wb are trace product.Proof.

( 1 )

 1 ⇒ (2) Straightforward. (2) ⇒ (3) Assume (2). Then caw ∈ R c ∩ L w and awb ∈ R a ∩ L b by Corollary 2.8 so that aw ∈ R a ∩ L w is a trace product, and a aw -→ w is invertible. Let w e -→ a, e ∈ E(S) be it inverse. Then e ∈ R w ∩ L a hence ae = a and dually ew = w. By Theorem 2.7, c caw -→ w is invertible hence so is c caw -→ w e -→ a = c cae -→ a = c ca -→ a and ca is a trace product. We conclude by duality that wb is also a trace product. (3) ⇒ (1) Assume (3) and consider the following composition: By the 2-out-of-6 property, all morphisms are isomorphisms and a -(w,c) , w -(b,a) (aw) -(b,c) exist. Moreover, by inverting the previous morphisms the following equality is satisfied. b (aw) -(b,c) -→ c = b w -(b,a) -→ a aw -→ w a -(w,c) -→ c = b w -(b,a) a -(w,c) -→ c.

= A and 1 2 W

 2 that (aw) + = w + a + iff a, w are MP-invertible and aww * ≤ L a and a * aw ≤ R w. Let a, w ∈ S be MP-invertible elements. Then a * a and ww * are trace product. By Theorem 3.11 with c = a * , b = w * , aw is a trace product iff a -(w,a * ) and w -(w * ,a) exist (iff aww * ∈ R a ∩ L w * and a * aw ∈ R a * ∩ L w ), and in this case (aw) + = (aw) -(w * ,a * ) = w -(w * ,a) a -(w,a * ) since (aw) * ∈ R w * ∩ L a * .Observe that this formula is very different from Greville's in general.Let S = M 2 (Q), AW = W ). Thus AW is a trace product and (AW )+ = (AW ) -(W * ,A * ) = W -(W * ,A) A -(W,A * )where all terms exist. Pose X = 1 2 A. Then AW X = A and XW W * = W * . As also1 6W * A = X then X ∈ R W * ∩ L A and X = W -(W * ,A) . Pose Y = 1 2 W . Then Y AW = W and A * AY = A * . As also Y A * = Y then Y ∈ R W ∩ L A *and Y = A -(W,A * ) . Finally, the ROL of Theorem 3.11 gives (AW ) + = XY =