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Introduction

In this article, we prove that some apparently very different classes of modules or rings (endoabelian modules, perspective modules, rings whose all regular elements are strongly regular or special clean) can be defined by a single property, indexed by some integer n, hereafter called n/2-perspectivity. Moreover, this property admits an equivalent characterization in terms of the multiplicative structure of the (endomorphism) ring. Thus, we begin our study with n-chained semigroups (Section 2). These semigroups are defined in terms of isomorphic idempotents, and can alternatively be characterized by means of reflexive inverses. In Section 3, we define and study n/2-perspective modules and rings, and relate them with n-chained semigroups. Element-wise notions are also discussed. Section 4 then applies the results to small n = 0, 1, 2, 3. Finally, Section 5 studies n/2perspectivity with respect to standard constructions (notably factor rings). Many examples are given.

In the sequel, we will uniquely consider unital rings R, for they have the important property that R End(R R ). As usual, we will sometimes forget structure and consider rings or monoids as semigroups, or rings as monoids. To emphasis on the structure we consider we will denote, for any ring R = (R, +, ., 1), by MR = (R, ., 1) its underlying multiplicative monoid.

Let S be a semigroup, M a monoid and R a ring. By S 1 we denote the monoid generated by S. The set of idempotents of S is denoted by E(S) and the set of units (invertible elements) of M by U (M). To simplify notations, we will denote as usual by E(R) (instead of E(MR)) the set of idempotents of R and by U (R) (instead of U (MR)) the set of units of R. For any idempotent e ∈ E(R), its complementary idempotent will be denoted by ē = 1 -e. By J(R) we denote the Jacobson radical of the ring R.

Unless otherwise stated, modules will be right modules on a fixed base ring k, and we will simply write M , End(M ) instead of M k , End k (M k ) (the notable exceptions are the left module R R and the right module R R .). Two direct summands A, A ⊆ ⊕ M are perspective (denoted by A ∼ ⊕ A ) if they have a common complementary summand in M : A ⊕ B = A ⊕ B = M for some B ⊆ ⊕ M (for left modules, we write A ⊕ ∼ B).

We shall use [START_REF] Howie | Fundamental of semigroup theory[END_REF] as a general reference for semigroups, and we refer to [START_REF] Lam | Lectures on modules and rings[END_REF] and [START_REF] Lam | A first course in noncommutative rings[END_REF] for modules and rings.

2 n-chained semigroups 2.1 Associate idempotents and n-chained semigroups Let S be a semigroup and a ∈ S. Then a is regular (resp. completely regular ) if it admits an inner inverse b ∈ S such that aba = a (resp. aba = a and ab = ba). A reflexive inverse is an inner inverse that additionally satisfies bab = b. The set of inner (resp. reflexive) inverses of a will be denoted by I(A) (resp. V (a)). A commuting reflexive inverse of a, if it exists, is unique and denoted by a # . The set of regular (resp. completely regular) elements will be denoted by reg(S) (resp. S # ).

Let S be a semigroup, and e, f ∈ E(S). Then e, f are left (resp right) associates if ef = e and f e = f (resp. ef = f, f e = e) and we write e ∼ l f (resp. e ∼ r f ). This notion appears in the early fifties [START_REF] Clifford | A class of d-simple semigroups[END_REF], and the preorders induced by left/right association of idempotents are notably a primitive notion regarding biordered sets ( [START_REF] Easdown | Biordered sets come from semigroups[END_REF], [START_REF] Nambooripad | Structure of regular semigroups, i fundamental regular semigroups[END_REF], [START_REF] Nambooripad | The natural partial order on a regular semigroup[END_REF], [START_REF] Pastijn | The biorder on the partial groupoid of idempotents of a semigroup[END_REF]). Left (resp. right) association ∼ l (resp. ∼ r ) was for instance denoted by l ≈ (resp. r ≈) in [START_REF] Nambooripad | Structure of regular semigroups, i fundamental regular semigroups[END_REF] and by / / o o (resp. ↔) in [START_REF] Easdown | Biordered sets come from semigroups[END_REF].

Association and other relations regarding idempotents are better understood in terms of Green's relations L, R, H and D ( [START_REF] Green | On the structure of semigroups[END_REF], [START_REF] Miller | Regular d-classes in semigroups[END_REF]) whose definition is recalled below. For any two elements a, b of a semigroup S:

(1) aLb ⇔ S 1 a = S 1 b ⇔ ∃x, y ∈ S 1 , a = xb, b = ya; (2) aRb ⇔ aS 1 = bS 1 ⇔ ∃x, y ∈ S 1 , a = bx, b = ay. Then H = L ∩ R is their meet and D = L • R = R • L
is both their join and their product since the two relations L and R commute. For any two idempotents e, f ∈ E(S), it holds that eLf ⇔ e ∼ l f , eRf ⇔ e ∼ r f , eHf ⇔ e = f and eDf ⇔ eS 1 f S 1 (as S 1 -acts, and we say that e, f are isomorphic, denoted by e f ). Alternatively, e f iff e = ab and f = ba for some a, b ∈ S (and we can always choose a, b to be reflexive inverses).

Recall that any two relations and (on the same set X) compose as follows: for any two elements x, y ∈ X, x

• y iff x z y for some z ∈ X. Thus, we define ∼ rl

∆ =∼ r • ∼ l (a ∼ rl b iff a ∼ r c ∼ l b
for some c ∈ S) and ∼ lr ∆ =∼ l • ∼ r . Contrary to Green's relations R and L that commute, their restriction to idempotents do not commute in general, that is ∼ lr =∼ rl . Second we also define for any relation and any n ≥ 1 the relation n as the n-th power of with respect to composition, that is x n y iff there exists a sequence x 0 , . . . , x n ∈ X such that x = x 0 , y = x n and x i

x i+1 for all 0 ≤ i ≤ n -1. As usual 0 is the equality relation.

In the sequel, we will be interested in semigroups such that any two isomorphic idempotents e, f ∈ E(S) satisfy e ∼ p rl f , e ∼ l • ∼ p rl f or e ∼ p rl • ∼ r f for some fixed p ≥ 0 (independent of e and f ). Interestingly, we were informed at the end of the redaction of the present article that the alternate composition of relations ∼ r and ∼ l had also been introduced and studied simultaneously and independently by Nielsen and Khurana [START_REF] Khurana | Perspectivity and von neumann regularity[END_REF] (private communication) in the context of rings. They call a sequence of idempotents e 0 , . . . , e n ∈ R such that e 2i ∼ r e 2i+1 and e 2i+1 ∼ l e 2i+2 , 0 ≤ i ≤ n-1 2 a right n-chain. Thus, a right n-chain is a sequence of idempotents related alternatively by ∼ r and ∼ l and starting with ∼ r . A left n-chain is defined dually. We were prompted to use their terminology which simplifies several statements: for instance, two idempotents e, f ∈ E(S) satisfy e ∼ p rl • ∼ r f (p ∈ N) iff e, f are connected by a right 2p + 1-chain (alternatively, e, f are right 2p + 1-chained).

We define the following classes of semigroups. Definition 2.1. Let n ∈ N. A semigroup S is left (resp. right) n-chained if any two isomorphic idempotents are connected by a left (resp. right) n-chain. It is n-chained if its both left and right n-chained. S is π-chained if any two isomorphic idempotents are connected by a left (equiv. right) p-chain for some p ∈ N (that may depend on e and f ).

Alternatively, as if a, b ∈ S are such that b ∈ V (a), then ab and ba are isomorphic idempotents, and conversely any two isomorphic idempotents are of this form, then left (resp. right) n-chained semigroups admits the following characterization in terms of regular elements. Proposition 2.2. Let n ∈ N. A semigroup S is left (resp. right) n-chained iff for any regular element a ∈ S and all b ∈ V (a), ab and ba are left (resp. right) n-chained.

We will say that a ∈ R is n-chained regular if it is regular and for all b ∈ V (a), ab and ba are right n-chained. It is n-anti-chained regular if it is regular and for all b ∈ V (a) , ab and ba are left n-chained.

We observe the following equivalence, that notably shows that one can replace reflexive inverses by inner inverses in the definition of chained and anti-chained regular elements. Example 2.4. Let S be a left zero semigroup (∀a, b ∈ S, ab = a) with at least two distinct elements e, f . Then any two elements are idempotents and left associates and S is left 1-chained. But e, f are isomorphic (ef = e, f e = f ) and not right associates (otherwise they would be equal), and S is not right 1-chained. Also, e is 1-anti-chained regular but not 1-chained regular.

However, we make the following observation in the case of rings. If e, f ∈ E(R) are right n-chained, then their complementary idempotents ē, f are left n-chained. Thus there is no distinction between right and left n-chained rings.

The following general semigroup result, that relates different kind of iterated associations regarding idempotents generated by reflexive (equiv. inner) inverses, will be a cornerstone of the forthcoming theorems.

Theorem 2.5. Let S be a semigroup, a ∈ reg(S) and p ∈ N. Then the following statement are equivalent:

(1) ab ∼ p rl • ∼ r ba for some b ∈ V (a) (equiv. b ∈ I(a));
(2) ab ∼ p lr ba for some b ∈ V (a) (equiv. b ∈ I(a));

(3) ab ∼ p+1 rl ba for all b ∈ V (a) (equiv. b ∈ I(a)) (a is 2p + 2-chained regular); (4) ab ∼ p+1 rl ba for some b ∈ V (a) (equiv. b ∈ I(a)); (5) ab ∼ l • ∼ p rl ba for some b ∈ V (a) (equiv. b ∈ I(a));
Proof. Let a ∈ reg(S) and p ∈ N. (2) ⇒ (5) Straightforward. In the lemma, (2), ( 3) and ( 4) are self-dual propositions, whereas ( 5) is dual to [START_REF] Abrams | Regularity conditions for arbitrary Leavitt path algebras[END_REF].

Regarding 2p-anti-chained regular elements, we deduce the following corollary.

Corollary 2.6. Let S be a semigroup, a ∈ reg(S) and p ≥ 1. Then the following statements are equivalent:

(1) a is 2p-anti-chained regular;

(2) Any b ∈ V (a) is 2p-chained regular.

(The implication (2) ⇒ (1) remains true for p = 0.)

Proof. Let a ∈ reg(S) and p ≥ 1.

(1) ⇒ (2) Assume that a is 2p-anti-chained regular and let b ∈ V (a). Then ba ∼ p rl ab for some a ∈ V (b) and by Theorem 2.5 (4) ⇒ (3), b is 2p-chained regular.

(2) ⇒ (1) Assume ( 2) and let b ∈ V (a). Then, for all a ∈ V (b), ba ∼ p rl a b. In particular, ba ∼ p rl ab. Finally, a is 2p-anti-chained regular.

Completely regular elements and n-chains

Let S be a semigroup and p ∈ N. We define inductively, for any set Λ ⊆ S, V 0 (Λ) = Λ and

V p+1 (Λ) = V (V p (Λ)) = b∈V p (Λ) V (b).
By induction, the following equality also holds:

V p+1 (Λ) = V p (V (Λ)) = b∈V (Λ) V p (b).
We now characterize 2p + 2-chained regular elements in terms of V p (S # ).

Proposition 2.7. Let S be a semigroup and a ∈ S. For any p ∈ N, the following statements are equivalent:

(1) a is 2p + 2-chained regular (for all b ∈ V (a), ab ∼ p+1 rl ba); (2) V p (a) ∩ S # = ∅; (3) a ∈ V p (S # ). In particular, S is 2p + 2-chained iff reg(S) = V p (S # ).
Proof. Let any a ∈ S. We make the proof by induction. We first prove the property for p = 0, in which case (2) and (3) reduce to a ∈ S # . Assume that a is regular and ab ∼ rl ba for all b ∈ V (a). Then by (3) ⇒ (2) in Theorem 2.5, a admits a commuting reflexive inverse b , and a is completely regular. Conversely, assume that a is completely regular. Then aa # = a # a and by (2) ⇒ (3) in Theorem 2.5, ab ∼ rl ba for all b ∈ V (a). Second, we let p ≥ 0 and assume the statements are equivalent at rank p. We consider the equivalences at rank p + 1. (2) ⇒ (3) Assume that V p+1 (a) ∩ S # = ∅. Then there exists b ∈ V (a) such that V p (b) ∩ S # = ∅. Thus by assumption b ∈ V p (S # ) and as a ∈ V (b) and V (V p (S # )) = V p+1 (S # ) then a ∈ V p+1 (S # ). 

By Corollary 2.6, a is 2p + 2-anti-chained regular iff any b ∈ V (a) is in V p (S # ).
Corollary 2.8. Let S be a semigroup, a ∈ S be a regular element and p ∈ N. The following statements are equivalent:

(1) for all b ∈ V (a), ab ∼ p+1 rl • ∼ r ba (resp. ab ∼ l • ∼ p+1 rl ba); (2) for all b ∈ V (a), there exists b ∈ V (a) ∩ V p (S # ) such that ba = b a (resp. ab = ab ).
Proof. We prove only the case for right chains. The other case is dual. 

n/2-perspective modules and rings

Let M be a module and R = End(M ). In the sequel, we will use the well-known fact that any direct summand A (resp. any decomposition A ⊕ B = M ) has the form A = eM (resp. A = eM, B = ēM ) for some (resp. unique) e ∈ E(R).

We will also frequently invoke the following lemma. Let e, f ∈ E(R), with R = End(M ). Then

(1) eM = f M ⇔ eR = f R ⇔ Rē = R f ; (2) eM ⊕ f M = M ⇔ eR ⊕ f R = R ⇔ Rē ⊕ R f = R; (3) eM ∼ ⊕ f M ⇔ eR ∼ ⊕ f R.
In particular, two direct summands A = eM and A = e M are isomorphic iff e and e are isomorphic (D-related). The link between perspectivity and associative idempotents is then given in the next proposition. Proposition 3.2. Let e, f ∈ E(R), with R = End(M ). Then eM and f M are perspective iff e ∼ rl • ∼ r f . Proof. Assume that eM and f M are perspective, with common complementary summand B. Then eM = gM, B = ḡM ) for some g ∈ E(R) and f M = kM, B = kM ) for some k ∈ E(R). Finally e ∼ r g ∼ l k ∼ r f by Lemma 3.1.

Finally, we recall that a ∈ R is strongly regular if a ∈ a 2 R ∩ Ra 2 , iff a is completely regular in MR ( [START_REF] Azumaya | Strongly π-regular rings[END_REF], [START_REF] Green | On the structure of semigroups[END_REF], [START_REF] Miller | Regular d-classes in semigroups[END_REF]) iff im(a) ⊕ ker(a) = M ( [START_REF] Efraim P Armendariz | On injective and surjective endomorphisms of finitely generated modules[END_REF], [START_REF] Tuganbaev | Rings close to regular[END_REF]Proposition 7.6]).

The definitions

Let M be a module and a ∈ End(M ). We introduce the following definitions:

(1) Two direct summands A, A ⊆ ⊕ M are 0-perspective if A = A , and we also write A ∼ 0 ⊕ A . Then, for any p ∈ N, A, A are p + 1-perspective and we write

A ∼ p+1 ⊕ A if A ∼ p ⊕ B ∼ ⊕ A
for some B ⊆ ⊕ M (iff A and A are related by a sequence of p + 1 perspectivity symbols). They are π-perspective (power perspective), denoted by A ∼ π ⊕ A , if they are n-perspective for some n ∈ N. The relation of π-perspectivity is nothing but the transitive closure of perspectivity. It is called projectivity in [START_REF] Handelman | Perspectivity and cancellation in regular rings[END_REF].

(2) The module M is p-perspective, p ∈ N (resp. π-perspective) if any two isomorphic direct summands are p-perspective (resp. π-perspective);

(3) The module We will also write (2p + 1)/2-perspective instead of p + 1/2-perspective, so that we have a notion of n/2perspective endomorphisms or modules, for any n ∈ N.

M is p + 1/2-perspective, p ∈ N if whenever M = A ⊕ B and A A (A, A , B ⊆ ⊕ M ), then M = A ⊕ B for some B ⊆ ⊕ M such that B ∼ p ⊕ B ; (4 
A ring R is n/2-perspective, n ∈ N if the right module R R is n/2-perspective.
We observe that n/2-perspectivity is a hierarchical property. Indeed, a straightforward induction proves that M is p-perspective iff whenever

M = A ⊕ B = A ⊕ B (A, A , B, B ⊆ ⊕ M ), then A A implies B ∼ p ⊕ B .
In particular, we may consider the (resp. left, right) perspectivity index of a module M as the smallest n/2, n ∈ N such that M is n/2-perspective. In case M is π-perspective but not n/2-perspective for any n ∈ N, we say that the perspectivity index is π.

Recall that a module M is IC (satisfies internal cancellation [START_REF] Khurana | Rings with internal cancellation[END_REF]) if isomorphic direct summands have isomorphic complementary summands, iff R = End(M ) is unit-regular [START_REF] Ehrlich | Units and one-sided units in regular rings[END_REF]. As perspectivity implies isomorphy and isomorphy is transitive, then n/2-perspectivity implies IC. The same arguments prove that ker(a) M/im(a) (a is morphic [START_REF] Nicholson | Morphic modules[END_REF]) for any kernel (equiv. image) n/2-perspective endomorphism. By [START_REF] Ehrlich | Units and one-sided units in regular rings[END_REF], being also regular a is unit-regular.

3.2

The "uniform ER global and elementwise characterization theorem" for n/2perspective modules

We start with a well-known lemma that relates images, kernels, their complementary summands and reflexive inverses.

Lemma 3.3. Let M be a module and R = End(M ). Let also a be a regular endomorphism of M . Then (1) If n = 2p is even then a is image (resp. kernel) p-perspective iff ab and ba are right (resp. left) n + 1-chained for any b ∈ V (a) iff a is 2p + 1-chained regular (resp. 2p + 1-anti-chained regular);

(2) If n = 2p + 1 is odd then a is image (equiv. kernel) p + 1/2-perspective iff ab and ba are right n + 1-chained for any b ∈ V (a) iff a is 2p + 2-chained regular;

(3) M is n/2-perspective iff all its regular endomorphims are image (alternatively kernel) n/2-perspective.

Combining the previous results we deduce our main theorem which proves that not only n/2-perspectivity is an "endomorphism ring property" (ER-property [START_REF] Lam | A crash course on stable range, cancellation, substitution and exchange[END_REF]), in that it depend only of the endomorphism ring of the module, but also that it actually only depends on the monoid part of this ring. Theorem 3.5. Let M be a module, R = End(M ) and n ∈ N. Then the following statements are equivalent:

(1) M is n/2-perspective;

(2) the right module R R (equiv. the left module R R) is n/2-perspective;

(3) regular endomorphisms of M are image (equiv. kernel) n/2-perspective;

(4) regular elements of MR are n + 1-chained regular (equiv. n + 1-anti-chained regular);

(5) The monoid MR is right (equiv. left) n + 1-chained.

Proof. The equivalences (1) ⇔ (3) and ( 3) ⇔ (4) are the content of Theorem 3.4, and the equivalence (4) ⇔ (5) follows from Proposition 2.2. Finally (2) ⇔ ( 5) is a special case of (1) ⇔ (5) applied to the right module R R , since R End(R R ).

Example 3.6 (Commutative rings are 0-perspective). Let R be a commutative ring. Then any two isomorphic idempotents e = ab and f = ba are equal hence 0-chained. MR being 0-chained is also 1-chained and by Theorem 3.5, R is 0-perspective. For instance the ring Z (equiv. the right Z-module Z Z ) is 0-perspective.

Example 3.7 (Z 2 has perspectivity index π (from [START_REF] Diesl | Idempotent lifting and ring extensions[END_REF])). Consider the right Z-module M = Z 2 Z . Then R = End(M ) M 2 (Z). It is proved (see [START_REF] Diesl | Idempotent lifting and ring extensions[END_REF]Proposition 6.9] and the proof therein) that any two isomorphic idempotents of M 2 (Z) are p-chained for some p, but that one can find isomorphic idempotents related by no chain of size smaller than n for any integer n. Thus, Z 2 Z is not n/2 perspective (for any n ∈ N), but it is π-perspective. Its perspectivity index is π.

Example 3.8 (IC ring not π-perspective (from [START_REF] Diesl | Idempotent lifting and ring extensions[END_REF])). In [START_REF] Diesl | Idempotent lifting and ring extensions[END_REF], the authors also proved (using the above example) that the ring R = Π ∞ i=1 M 2 (Z) is IC, but that there exists two isomorphic idempotents not p-perspective for any p ∈ N. This shows that IC rings may not be π-perspective.

4 n/2-perspective endomorphisms, modules and rings, and n + 1chained semigroups, for small n ≤ 3 (1) a is 1-anti-chained regular (resp. 1-chained regular);

(2) a is regular and a = a 2 b, b = b 2 a (resp. a = ba 2 , b = ab 2 ) for all b ∈ V (a);

(3) a is completely regular and ab = aa # (resp. ba = aa # ) for all b ∈ V (a).

Proof. By duality we can consider only the anti-chained case. (3) ⇒ (1) Assume (3) and let b ∈ V (a). Then abba = aa # ba = a # aba = a # a = aa # = ab and baab = baaa # = baa # a = ba, that is ab ∼ l ba.

Corollary 4.2. A semigroup S is left (resp. right, resp. both) 1-chained iff isomorphic idempotents are ∼ lrelated (resp. ∼ r -related, resp. equal) iff reg(S) = S # and for all a ∈ reg(S) and all b ∈ V (a), ab = aa # (resp. ba = a # a, resp. b = a # ).

In particular, left and right 1-chained semigroups and 0-chained semigroups coincide.

In case of a regular semigroup, we deduce directly that a semigroup S is regular and left and right 1-chained iff it is completely regular and inverse iff it is regular semigroup with central idempotents (a Clifford semigroup) iff it is a semilattice of groups. A even more general result holds if we replace regularity by π-regularity. In [START_REF] Bogdanović | Uniformly π-regular rings and semigroups: a survey[END_REF], the authors study uniformly-π-inverse semigroups, that are π-regular semigroups (such that each element of S has a power which is regular) with the additional assumption that axa = a implies ax = xa, and prove that they admit a fine structure theorem [START_REF] Bogdanović | Uniformly π-regular rings and semigroups: a survey[END_REF]Theorem 5.10]. By Corollary 4.2, these are precisely the π-regular left and right 1-chained semigroups.

However, without regularity, a (left and right) 1-chained semigroup needs not have central idempotents. The conclusion is much more stronger for modules and rings. Indeed, by Theorem 3.5, a ring R is 0perspective iff the monoid MR is left (equiv. right) 1-chained, iff isomorphic idempotents are equal. This actually relates to abelian rings, as observed by Lam [32, Exercice 2.2.3]: a ring R is abelian (idempotents are central) iff E(R) is a commutative set iff any two isomorphic idempotents commute. But commuting isomorphic idempotents are equal and we deduce directly the following equivalences. Theorem 4.4. Let M be a module and R a ring. Then M (resp. R) is 0-perspective iff End(M ) (resp. R) is an abelian ring.

Example 4.5. Let G be a group. It is known [START_REF] Passman | Infinite group rings[END_REF] that the integral group ring ZG has only trivial idempotents (hence is abelian). Thus ZG ZG is a 0-perspective module.

We are left to interpret kernel (resp. image) 0-perspectivity. This is the content of Theorem 4.7. We recall some definitions and results. Let S be a semigroup and M a module. An element a ∈ S is right (resp. left) subcommutative if Sa ⊆ aS (resp. aS ⊆ Sa). And a submodule A of M is fully invariant if for any b ∈ End(M ), bA ⊆ A. Right (resp. left) subcommutative elements of a ring are also called right (resp. left) duo-elements, and a right (resp. left) subcommutative idempotent e ∈ R is also called left (resp. right) semicentral (for Re ⊆ eR ⇔ Re = eRe). The following result relates fully invariant direct summand and direct summand with a unique complementary summand. (1) a is kernel 0-perspective;

(2) a is strongly regular and im(a) has a unique complementary summand;

(3) a is strongly regular and aR ⊆ Rab for any b ∈ V (a);

(4) a is strongly regular and ker(b) is fully invariant for any b ∈ V (a);

(5) im(a) ⊕ ker(a) = M and ker(a) is fully invariant;

(6) a is strongly regular and left subcommutative;

(7) a is strongly regular and aa # is right semicentral; Proof. Let M be a module and a ∈ End(M ) = R. Among these equivalences, (1) ⇔ (9) is Theorem 3.4 (with n = 0) and ( 8) ⇔ (9) ⇔ (10) is Proposition 4.1. We prove the other ones. Dual characterizations of image 0-perspective endomorphisms hold. It follows from Theorem 4.7 and its dual that an endomorphism is both image and kernel 0-perspective (equiv. 1-chained and 1-anti-chained) iff a is strongly regular with aa # central, and we recover that a module is 0-perspective iff End(M ) is abelian. Modules whose endomorphism ring is abelian have been studied on their own in [START_REF] Cȃlugȃreanu | Modules with abelian endomorphism rings[END_REF]. Corollary 4.8 recovers [9, Theorem 4.4], together with new characterizations.

Corollary 4.8. Let M be a module and R = End(M ). The following statements are equivalent:

(1) M is 0-perspective (isomorphic direct summands are equal);

(2) R is abelian;

(3) isomorphic idempotents of MR are right associates (resp. left associates, resp. equal);

(4) regular elements of MR are completely regular and right subcommutative (resp. left subcommutative, resp. subcommutative);

(5) direct summands of M are uniquely complemented;

(6) direct summands of M are fully invariant.

In relation with the previous results, Diesl et al. also recently obtained the following result.

Proposition 4.9 ([14, Propositions 6.5]). Let R be a ring. Then any two π-chained idempotents are equal iff R is abelian.

4.2 1/2-perspective endomorphisms, modules and rings, and 2-chained semigroups From Proposition 3.4, Theorem 3.5 and Proposition 2.7 we deduce the following corollary.

Corollary 4.10. Let M be a module (resp. S a semigroup, resp. R a ring).

(1) a ∈ S is 2-chained regular iff it is completely regular;

(2) a ∈ End(M ) is kernel 1/2-perspective iff it is image 1/2-perspective iff im(a) ⊕ ker(a) = M ;

(3) S is 2-chained iff reg(S) = S # ;

(4) M (resp. R) is 1/2-perspective iff regular endomorphisms are strongly regular (resp. reg(R) = R # ).

To the best of my knowledge, very few results are known about rings whose regular elements are all strongly regular in full generality, and none involved module arguments until the very recent work of Nielsen and Khuruna [START_REF] Khurana | Perspectivity and von neumann regularity[END_REF]Theorem 3.18]. A fine characterization involving square stable range 1 is given in [START_REF] Khurana | Rings of square stable range one[END_REF]Theorem 5.4]. An element a of a ring R is said to have (right) square stable range 1 (ssr(1)) if aR + bR = R implies that a 2 + bx is a unit for some x ∈ R. A ring R has square stable range 1 if all its elements have. The authors prove that for a ring R, having all they regular elements strongly regular or with square stable range 1 are equivalent properties, and call such rings strongly IC (for they are always IC). Thus we deduce from Corollary 4.10 and [28, Theorem 5.4] that R is 1/2-perspective iff R is strongly IC (reg(R) = R # ) iff regular elements of R have ssr [START_REF] Abrams | Regularity conditions for arbitrary Leavitt path algebras[END_REF]. An other characterization ([29, Theorem 3.13]) will be discussed in at the end of the section.

On the other hand, as for 1-chained semigroups much can be said under the additional assumption that the ring R is also π-regular. Indeed, [START_REF] Bogdanović | Uniformly π-regular rings and semigroups: a survey[END_REF] is precisely a survey article (with many references therein) on uniformly π-regular rings, which are explicitly defined as π-regular rings in which every regular element is strongly regular (and as such they are in particular strongly π-regular rings). From [START_REF] Bogdanović | Uniformly π-regular rings and semigroups: a survey[END_REF]Theorem 5.11], we deduce the following result (N il(R) denotes the set of nilpotent elements of a ring R, a general ring T is nil if N il(T ) = T and we then say that T is a nil-ring). Recall that a module M is a Fitting module if every endomorphism a of M satisfies Fitting's lemma (i.e. there exists an integer n ≥ 1 such that M = ker(a n ) ⊕ im(a n )), iff End(M ) is strongly-π-regular [START_REF] Facchini | Module theory: endomorphism rings and direct sum decompositions in some classes of modules[END_REF]Proposition 3.18]. Corollary 4.11 (From [8,Theorem 5.11]). Let R a ring. Then the following statements are equivalent:

(1) R R is 1/2-perspective and a Fitting module;

(2) MR is π-regular and 2-chained;

(3) R is uniformly π-regular;

(4) R is π-regular and N il(R) is an ideal of R.

(5) MR is a semilattice of completely Archimedean semigroups.

Example 4.12. Let F 2 be the finite field of order 2 and S = {< s, t > |st = s = s 2 , ts = t = t 2 } be the left zero semigroup with two elements. As M = S 1 is a finite monoid with three elements then the semigroup algebra R = F 2 [M] is a (noncommutative) finite ring with 2 3 = 8 elements: It follows that all elements but s+t are strongly regular as either idempotents or units. Consider the last element s + t. Then (s + t)b is either 0 or s + t for any b ∈ R hence (s + t)b(s + t) = 0 for any b ∈ R and s + t is not regular. Consequently, R is a 1/2-perspective ring which is not strongly regular. Also, as st = ts it is not abelian (0-perspective). We also observe that N il(R) = {0, s + t}, which is an ideal of R as shows the Cayley table. As R = N il(R) ∪ E(R) ∪ U (R) then R is π-regular. We recover that R is 1/2-perspective by Corollary 4.11.

F 2 [M] = {0,
Without π-regularity, it may happen that N il(R) is not an ideal. Following [START_REF] Marks | On 2-primal ore extensions[END_REF] and [START_REF] Šter | Rings in which nilpotents form a subring[END_REF], let us call a ring N R if N il(R) is a subring and N I if N il(R) is a (two-sided) ideal of R. Equivalently, a ring is N I if N il(R) coincide with the upper nilradical N il * (R) of R, in wich case N il(R) = N * (R) ⊆ J(R) the Jacobson radical. Obviously, a N I ring is N R, but the converse needs not be true. ). Then it is proved in [START_REF] Antoine | Nilpotent elements and armendariz rings[END_REF] that R is N R, and in [START_REF] Lee | When nilpotents are contained in jacobson radicals[END_REF] that R is abelian but N il(R) is not a subset of J(R). Therefore, R is 0-perspective without being N I. Specializing the construction to F = F 2 , we obtain [13, Example 2.5] (itself taken from [START_REF] Bergman | Modules over coproducts of rings[END_REF]).

Lemma 2 . 3 .( 1 )( 2 )

 2312 Let S be a semigroup, a ∈ reg(S) and n ∈ N. Then the following statement are equivalent: ab and ba are left (resp. right) n-chained for all b ∈ V (a); ab and b a are left (resp. right) n-chained for all b, b ∈ I(a). Proof. Let a ∈ reg(S) and n ∈ N. We have only to prove the implication (1) ⇒ (2). So assume (1) and let b, b ∈ I(a). Then b ab ∈ V (a) hence ab = a(b ab) and b a = (b ab)a are left (resp. right) n-chained.

( 1 )

 1 ⇒ (2) Assume that ab ∼ p rl • ∼ r ba for some b ∈ V (a). Then ab ∼ r e ∼ p lr ba for some e ∈ E(S). As abe = e, eab = ab and aba = a then b = be ∈ V (a) with ab = abe = e and b a = bea = beaba = baba = ba. It follows that ab ∼ p lr ba = b a.

( 5 )

 5 ⇒ (3) Assume that ab ∼ p lr e ∼ l ba for some b ∈ V (a) and e ∈ E(S), and let b ∈ V (a). Then ab = abab and ab = ab ab so that ab ∼ r ab. Dually b a ∼ l ba. Finally, we it holds that ab ∼ r ab ∼ p lr ∼ l ba ∼ l b a, and by transitivity of ∼ l , ab ∼ p+1 rl b a.

( 3 )

 3 ⇒ (4) Straightforward.

( 4 )

 4 ⇒ (1) Assume that ab ∼ p+1 rl ba for some b ∈ V (a). Then ab ∼ r e ∼ p lr f ∼ l ba for some e, f ∈ E(R). Then f ba = ba, baf = ba and aba = a. It follows that b = f b ∈ V (a) with b a = f ba = f and ab = af b = abaf b = abab = ab and ab = ab ∼ r e ∼ p lr b a, or equivalently ab ∼ p rl • ∼ r b a.

( 1 )

 1 ⇒ (2) Assume that ab ∼ p+2 rl ba for all b ∈ V (a). Then ab ∼ p+1 lr b a for some b ∈ V (a) by Theorem 2.5. Thus b a ∼ p+1 rl ab for some a ∈ V (b ) hence by Theorem 2.5 b a ∼ p+1 rl a b for all a ∈ V (b ). By assumption at rank p, V p (b ) ∩ S # contains an element c, and c ∈ V p+1 (a) ∩ S # .

( 3 )

 3 ⇒ (1) Assume that a ∈ V p+1 (S # ) and let b ∈ V (a). Then a is the reflexive inverse of some b ∈ V p (S # ). By assumption this b satisfies that b a ∼ p+1 rl a b for all a ∈ V (a). In particular, b a ∼ p+1 rl ab . As bab a = ba and b aba = b a, then ba ∼ l b a and dually ab ∼ r ab . Finally, ab ∼ r ab ∼ p+1 lr b a ∼ l ba and ab ∼ p+2 rl ba.

  Let a ∈ reg(S) and b ∈ V (a) and assume (1). Then ba ∼ p+1 rl e ∼ r ab for some e ∈ E(S). As e ∼ r ab then eab = ab, abe = e hence ea = a and b = be satisfies ab = abe = e, b ab = beabe = be, ab a = abea = ea = a. It follows that b ∈ V (a), b a = bea = ba and e = ab . As b a ∼ p+1 rl ab then (4) ⇒ (3) in Theorem 2.5 applied to the regular element b , b a ∼ p+1 rl a b for all a ∈ V (b ) and b ∈ V (a) ∩ V p (S # ) by Proposition 2.7. Conversely, let a ∈ reg(S) and b ∈ V (a) and assume (2). By assumption there exists b ∈ V (a) ∩ V p (S # ) such that ba = b a. As b ∈ V (a) ∩ V p (S # ) then b a ∼ p+1 rl a b for all a ∈ V (b ). In particular, by Proposition 2.7, ba ∼ p+1 rl ab ∼ r ab since ab ab = ab and abab = ab .

Lemma 3 . 1 (

 31 [START_REF] Garg | Perspective rings[END_REF] Lemma 5.1 and Corollary 5.2]).

  ) The endomorphism a is kernel (resp. image) p-perspective, p ∈ N if im(a), ker(a) are direct summands and B ∼ p ⊕ ker(a) for any complementary summand B of im(a) (resp. B ∼ p ⊕ im(a) for any complementary summand B of ker(a)); (5) The endomorphism a is kernel (resp. image) p+1/2-perspective (p ∈ N) if im(a), ker(a) are direct summands and B ∼ p ⊕ ker(a) for some complementary summand B of im(a) (resp. B ∼ p ⊕ im(a) for some complementary summand B of ker(a)).

( 1 )Theorem 3 . 4 .

 134 im(a) = abM and ker(a) = (1 -ba)M for all b ∈ V (a); (2) any complementary summand of ker(a) is of the form baM = im(b) for some b ∈ V (a); (3) any complementary summand of im(a) is of the form (1 -ab)M = ker(b) for some b ∈ V (a).Consequently, we deduce directly from Lemma 3.3, Theorem 2.5 and Proposition 3.2 the following result. Let M be a module and R = End(M ). Let also a ∈ R and n ∈ N.

4. 1

 1 0-perspective endomorphisms, modules and rings, and 1-chained semigroupsWe first consider semigroup results. Proposition 4.1. Let S be a semigroup and a ∈ S. Then the following statements are equivalent:

( 1 )

 1 ⇔ (2) For any b ∈ V (a), b 2 a = b, a 2 b = a ⇔ (ab)(ba) = ba, (ba)(ab) = ab ⇔ ab ∼ l ba.

( 2 )

 2 ⇒ (3) Assume[START_REF] Akalan | Classes of almost clean rings[END_REF] and let b ∈ V (a). As a = a 2 b then aRa 2 and as b = b 2 a then a = aba = ab 2 a 2 and aLa 2 . Thus aHa 2 is completely regular. Also ab = ab 2 a = ab 2 aa # a = abaa # a = aa # .

Example 4 . 3 .

 43 Let S = e, a|e 2 = e , quotient of the free semigroup with two generators e, a by the relation e 2 = e. Then e is the only idempotent hence S is 1-chained. But ea = ae.

Lemma 4 . 6 ([ 9 ,

 469 Lemma 4.3]). Let M be a module and A, B ⊆ ⊕ M be complementary summands (A ⊕ B = M ). Then B is fully invariant iff A has a unique complementary summand.Moreover, let e ∈ E(End(M )) be the idempotent projection on A parallel to B (such that A = eM , B = ēM ). Then by [9, Proposition 2.8] (and Lemma 3.1), this happens iff e is left subcommutative (right semicentral).Theorem 4.7. Let M be a module and a ∈ End(M ) = R. The following statements are equivalent:

( 8 )

 8 a is regular and b 2 a = b, a 2 b = a for any b ∈ V (a); (9) a is 1-anti-chained regular (regular and ab ∼ l ba for any b ∈ V (a)); (10) a ∈ R is strongly regular and for all b ∈ V (a), ab = aa # .

( 1 )

 1 ⇒ (2) Assume that a is kernel 0-perspective. Then im(a), ker(a) are direct summands and B = ker(a) for any complementary summand B of im(a). Thus im(a) ⊕ ker(a) = M and a is strongly regular, and im(a) has a unique complementary summand.

( 2 )

 2 ⇒ (3) Let b be any reflexive inverse of a and pose e = ab ∈ E(R). Then eM = im(a). By Lemma 3.1 and [9, Proposition 2.8], as eM has a unique complementary summand then eR = abR = aR has a unique complementary summand hence eR ⊆ Re, that is aR = abR ⊆ Rab.

( 3 )

 3 ⇒ (4) Let b ∈ V (a) and pose e = ab. As aR ⊆ Rab then eR ⊆ Re and e is left subcommutative. Thus eM has a unique complementary summand by Lemma 3.1 and [9, Proposition 2.8], and by Lemma 4.6 ēM = (1 -ab)M = ker(b) is fully invariant.(4) ⇒ (5) Assume that a is strongly regular and ker(b) is fully invariant for any b ∈ V (a). Then im(a) ⊕ ker(a) = M and ker(a # ) is fully invariant. But ker(a # ) = ker(a) for strongly regular elements (by commutation).

( 5 )

 5 ⇒ (6) Assume that im(a) ⊕ ker(a) = M and ker(a) is a fully invariant direct summand. Then a is strongly regular and im(a) = im(aa # ) has a unique complementary summand by Lemma 4.6. Thus aa # is left subcommutative, and aR = aa # R ⊆ Raa # = Ra whence a is left subcommutative. (6) ⇔ (7) Pose e = aa # = a # a.Then eR = aa # R = aR ⊆ Ra = Ra # a = Re and e is left subcommutative (hence right semicentral) iff a is left subcommutative. (7) ⇒ (1) Let B be a direct summand of im(a). Then B = ker(b) for some b ∈ V (a). As a is strongly regular with aa # semicentral then ab = aa # ab = aa # abaa # = aa # and ker(b) = im(1 -ab) = im(1 -aa # ) = ker(a), so that a is kernel 0-perspective.

Example 4 .

 4 13 ([4, Example 4.8], [33, Example 1.4.2] and [13, Example 2.5]). Let M =< a, b > be the free monoid over two generators a, b and F be a field. Let A = F [M] = F < a, b > be the associated semigroup algebra. Let I be the ideal of A generated by b 2 and set R = A/I = F < a, b > /(b 2

  1, s, t, 1 + s, 1 + t, s + t, 1 + s + t}. We deduce from the Cayley table of F 2[M] that E(F 2 [M]) = {0, 1, s, t, 1+s, 1+t} and U (F 2 [M]) = {1, 1+s+t}.

		s	t	1+s 1+t s+t 1+s+t
	s	s	s	0	0	0	s
	t	t	t	0	0	0	t
	1+s	0	s+t 1+s 1+t s+t	1+t
	1+t	s+t	0	1+s 1+t s+t	1+s
	s+t	s+t s+t	0	0	0	s+t
	1+s+t	t	s	1+s 1+t s+t	1

Figure 1: Cayley table of F 2 [M]

We will see (Proposition 5.11) that in the general (not π-regular) case a partial converse is true: if N il(R) is an ideal or more generally a (non-unital) subring of R then R is 1/2-perspective. This raises the question: if R is a 1/2-perspective ring, is it N R ? [START_REF] Chu | A concept unifying the Armendariz and NI conditions[END_REF]Example 1.5] answers in the negative. Example 4.14 ([11,Example 1.5]). Let M be the free monoid over four generators a 0 , a 1 , a 2 , a 3 and F be a field. Let A = F [M] be the associated semigroup algebra. Let also I be the ideal of A generated by a 0 a 1 , a 2 a 3 and set R = A/I. Then R has no non-trivial idempotents and is therefore abelian, but a 1 a 0 and a 3 a 2 are nilpotent, whereas a 1 a 0 + a 3 a 2 / ∈ N (R), so that R is not N R.

If R is not only π-regular but regular and 1/2-perspective then R is strongly regular, hence abelian (0perspective).

Also, [START_REF] Bogdanović | Uniformly π-regular rings and semigroups: a survey[END_REF]Theorem 5.7] claims that the equivalence (3) ⇔ (5) in Corollary 4.11 is not specific to multiplicative monoids of rings, but holds in full generality: a semigroup is 2-chained and π-regular iff it is a semilattice of completely Archimedean semigroups (iff it is completely π-regular and a semilattice of Archimedean semigroups). Obviously, a semigroup is 2-chained and regular iff it is completely regular iff it is a semilattice of completely simple semigroups.

Left aside from the above results are 2-anti-chained regular elements. Whereas, n-anti-chained regularity is the dual notion of n-chained regularity when n is odd, this is not the case for n even (where the two notions are self-dual). First, we give an example of a 2-chained regular not 2-anti-chained regular element of a ring.

Example 4.15. Let

As A is idempotent it is completely regular hence 2-chained regular by Proposition 2.7. Let B = 0 0 1 0 . Then B ∈ V (A) but B 2 = 0 hence B cannot be strongly regular.

Thus A is not 2-anti-chained regular by Corollary 2.6 and Proposition 2.7.

Second, we prove that in a ring, 2-anti-chained regular elements are necessarily 2-chained regular, and characterize them by means of the Jacobson radical. Proposition 4.16. Let a ∈ R. The following statements are equivalent:

(1) a 2-anti-chained regular;

(2) a is regular and, for all b ∈ V (a), ab -ba ∈ J(R);

(3) a is 2-chained regular (strongly regular) and 2-anti-chained regular.

Proof. Let a ∈ R. 

x is a unit, and ab(1 -ba) ∈ J(R). By dual arguments, (1 -ab)ba ∈ J(R), and their difference ab -ba belongs to the Jacobson radical.

(2) ⇒ (3) Let b ∈ V (a). By (2), ab -ba ∈ J(R). It follows that ab + J and ba + J are equal hence both left and right associate in R/J(R) and, by [10, Proposition 2.4] (see Proposition 5.5) and its dual, ab ∼ r g ∼ l ba for some g ∈ E(R) and ab ∼ l k ∼ r ba for some k ∈ E(R).

(4) ⇒ (1) Straightforward.

This element-wise result has the following global consequence.

Corollary 4.17. R is 1/2-perspective iff isomorphic idempotents of R are equal modulo the Jacobson radical.

It happens that, concomitantly and independently to the redaction of the present article, D. Khurana and P.P. Nielsen actually proved a more precise result. Theorem 4.18 ([29, Theorem 3.13]). For a ring R, the following are equivalent:

(1) Any two isomorphic idempotents are both left 2-chained and right 2-chained;

(2) reg(R) = sreg(R);

(3) ureg(R) = sreg(R); We first consider 1-perspectivity. A specific study of image (resp. kernel) 1-perspective elements is done in [START_REF] Mary | On special clean and perspective elements and rings[END_REF], where such elements are termed right (resp. left) perspective elements. In [START_REF] Mary | On special clean and perspective elements and rings[END_REF]Theorem 3.3], it is proved that a ∈ R is right perspective iff a is regular and for all f ∈ E(R) such that Ra = Rf there exists a clean decomposition a = ē + u with u ∈ U (R), e ∈ E(R) and eR = f R. We deduce directly from the previous results the following proposition. Proposition 4.19. Let M be a module, and a ∈ R = End(M ). Then the following statements are equivalent:

(1) a is image (resp. kernel) 1-perspective;

(2) a is regular and for all b ∈ V (a), there exists a completely regular endomorphism z ∈ V (a) such that im(b) = im(z) (resp. ker(b) = ker(z));

(2') a is regular and for all b ∈ V (a), there exists z ∈ V (a) ∩ R # such that ba = za (resp. ab = az).

(3) a is 3-chained regular (resp. 3-anti-chained regular);

(4) a is regular and for all

Second, a similar result holds for special clean elements and 3/2-perspective rings. Recall that a ∈ R is special clean ([1], [START_REF] Akalan | Classes of almost clean rings[END_REF]) if a decomposes as the sum of a unit u ∈ U (R) and an idempotent ē ∈ E(R) such that aR ∩ ēR = 0, or, equivalently ([27, Theorem 2.3 and Theorem 2.13], [37, Theorem 6.1], [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF]Theorem 4.1], [35, Lemma 2.2]), iff a = ē + u = au -1 a for some e ∈ E(R) and u ∈ R, iff a has a strongly regular reflexive inverse. We thus deduce from the previous results the following equivalences. Proposition 4.20. Let M be a module, and a ∈ R = End(M ). Then the following statements are equivalent:

(1) a is image (equiv. kernel) 3/2-perspective;

(2) a is 4-chained regular;

(3) a has a completely regular reflexive inverse (as an element of MR);

(4) a is special clean (as an element of the ring R).

Perspective modules have been thoroughly studied in [START_REF] Garg | Perspective rings[END_REF], that includes many examples and fine charaterizations. In particular, while it was proved by Warfield [START_REF] Warfield | Cancellation of modules and groups and stable range of endomorphism rings[END_REF] that rings with stable range 1 are perspective, Garg et. al proved that R has stable range 1 iff M 2 (R) is perspective [START_REF] Garg | Perspective rings[END_REF]Theorem 5.12]. Collecting various results, we see that among IC rings, most are perspective rings. (1) if R is exchange (in particular regular or π-regular or semi-regular) and IC then M n (R) is perspective for all n ∈ N;

(2) if R is SSP (has the summand sum property [START_REF] Garcia | Properties of direct summands of modules[END_REF]) and IC then it is perspective.

If we consider the examples of the paper, we observe that the following cases can occur as perspectivity index of (IC) modules: 0 (M=Z Z Example 3.6), 1/2 (Example 4.12), 1

Question : Does there exists a module with finite perspectivity index n/2 > 1 ? In particular, does there exists an non-perspective ring such that all its regular elements are special clean ? Next example proves that there exist elements which are finitely chained regular but not 4-chained regular. 

is idempotent and AU -1 A = A. It follows that A is special clean hence has a strongly regular reflexive inverse (for instance

) and B is 6-chained regular by Proposition 2.7 (in particular, it is unit-regular). However, it was proved in [START_REF] Khurana | Clean matrices and unit-regular matrices[END_REF] that B is not clean. We conclude that:

• B is 6-chained regular but not 4-chained regular (special clean);

• A is 4-chained regular but not 4-anti-chained regular (otherwise all its reflexive inverses, including B, would be 4-chained-regular by Corollary 2.6).

5 n/2-perspectivity, standard constructions and lifting hypothesis

It is known [START_REF] Garg | Perspective rings[END_REF] (resp. [START_REF] Khurana | Rings with internal cancellation[END_REF], [START_REF] Lam | A crash course on stable range, cancellation, substitution and exchange[END_REF]) that a subring, a factor ring or a matrix ring over a perspective (resp. IC) ring may not be perspective, but that direct summands of perspective (resp. IC) modules are perspective (resp. IC) and corner rings of perspective (resp. IC) rings are perspective (resp. IC). Also, factoring by an ideal in the Jacobson radical preserves perspectivity (resp. IC). We consider these statements for n/2 perspectivity, n ∈ N.

Direct summands and corner rings

The following lemma generalizes [19, Proposition 5.4] (case n = 2, M is perspective) to smaller values of n.

Lemma 5.1. Let M be a 0-perspective (resp. 1/2-perspective, resp. perspective module) and N be a direct summand of M . Then N is 0-perspective (resp. 1/2-perspective, resp. perspective).

The proof is similar to that of [START_REF] Garg | Perspective rings[END_REF]Proposition 5.4]. It relies on the use of the modular law and therefore are only valid when one summand belongs to N . When we consider a larger n than 2, the chain of perspectivity may however involve two summands outside N and the method becomes non-conclusive. For the moment, the question whether the property remains true for n ≥ 3 is open.

As for perspective rings ([19, Corollary 5.5]), the isomorphism End(eR R ) eRe enables to consider corner rings.

Corollary 5.2. Let R be a ring and e ∈ E(R). If R is 0-perspective (resp. 1/2-perspective, resp. perspective) then eRe is 0-perspective (resp. 1/2-perspective, resp. perspective).

Lifting idempotents

As association is purely multiplicative, we can pass to the quotient by an ideal. Lemma 5.3. Let R be a ring, J an ideal and n ∈ N. If e, f are connected by a left (resp. right) n-chain in R then their J-classes e + J and f + J are connected by a left (resp. right) n-chain in R/J.

As noted in [START_REF] Khurana | An ensemble of idempotent lifting hypotheses[END_REF], left (right) associates of liftable idempotents lift as left (right) associates. And a more precise statement [START_REF] Mazurek | Commuting idempotents, square-free modules, and the exchange property[END_REF]Lemma 1.4] ensures that this remains true if only one of the two idempotents is assumed liftable. By induction, we obtain the following result. Lemma 5.4. Let R be a ring, J an ideal and e ∈ E(R), x ∈ R. Let also n ∈ N and assume that x + J, e + J are right (resp. left) n-chained idempotents in R/J. Then x + J lifts to an idempotent f ∈ E(R) right (resp. left) n-chained to e.

To go further, we need a refinement of [START_REF] Mazurek | Commuting idempotents, square-free modules, and the exchange property[END_REF]Lemma 1.4] in case J ⊆ J(R), namely [10, Proposition 2.4].

Proposition 5.5 ([10, Proposition 2.4]). Let R be a ring and J ⊆ J(R) an ideal. Let also e, f ∈ E(R) such that e + J ∼ r f + J (resp. e + J ∼ l f + J). Then e ∼ r g ∼ l f for some g ∈ E(R) such that g + J = e + J (resp. g + J = f + J).

Corollary 5.6. Let R be a ring, J ⊆ J(R) an ideal and e, f ∈ E(R). Let also n ≥ 2. If e + J and f + J are right (resp. left) n-chained in R/J, then so are e and f in R.

Proof. We prove the case n = 2. The conclusion will then follow by induction. Let e + J ∼ rl f + J. Then e + J ∼ r x + J ∼ l f + J for some x ∈ R. By [START_REF] Mazurek | Commuting idempotents, square-free modules, and the exchange property[END_REF]Lemma 1.4] we may choose x to be idempotent. Then by Proposition 5.5 there exists an idempotent g ∈ E(R) such that e ∼ r g ∼ l x. Then g + J ∼ l x + J ∼ l f + J and by transitivity (of say equality of left ideals), g + J ∼ l f + J. Again by Proposition 5.5 there exists an idempotent h ∈ E(R) such that g ∼ r h ∼ l f . Finally e ∼ r g ∼ r h ∼ l f and by transitivity e ∼ r h ∼ l f . 

Subrings and factor rings

Proposition 5.8. Let n ∈ N and R be a n/2-perspective ring. Let also S a subring and J and ideal such that R = S ⊕ J. Then S is n/2-perspective.

Proof. By Theorem 3.5, a ring T is n/2-perspective iff regular elements of T are n + 1-chained regular. Let a ∈ reg(S). Let b be any reflexive inverse of a in S. Then they are reflexive inverse in R hence ab and ba are right n + 1-chained. By Lemma 5.3 their J-classes ab + J and ba + J are n + 1-chained in R/J and since S R/J, they are n + 1-chained in S and a is n + 1-chained regular.

Proposition 5.9. Let R be a ring, J an ideal and n ∈ N.

(

(2) If either J ⊆ J(R), or J ⊆ reg(R), idempotents of R/J can be lifted to R and R is n/2-perspective, then R/J is n/2-perspective.

Proof. (1) Let n ≥ 1. Assume that J ⊆ J(R) and R/J is p-perspective, and let e, f ∈ E(R) be isomorphic idempotents. Then e = ab, f = ba for some a, b ∈ R and e + J = (a + J)(b + J), f + J = (b + J)(a + J) are isomorphic idempotents in R/J. As R/J is n/2-perspective then e + J, f + J are right n + 1-chained in R/J. By Corollary 5.6 as n + 1 ≥ 2 then e, f are right n + 1-chained in R.

(2) Assume that idempotents of R/J can be lifted to R and that R is p-perspective, and let x + J, y + J be isomorphic idempotents in R/J. Also, assume first that J ⊆ J(R). Then it is known [32, Proposition 2.1.21] that there exist isomorphic idempotents e, f ∈ E(R) such that e + J = x + J and f + J = y + J.

By assumption e, f are right n + 1-chained in R and by Lemma 5.3, e + J, f + J areright n + 1-chained in R/J. Second, assume that J ⊆ reg(R) and let x + J, y + J be reflexive inverse in R/J. Then as in [START_REF] Khurana | Rings with internal cancellation[END_REF], However, since 0-perspective rings are 1/2-perspective, it follows from Proposition 5.9 that such a ring is 1/2-perspective (this also follows from Corollary 4.17, since isomorphic idempotents remain isomorphic in R/J). Again, it happens that this result and its converse (when idempotents lift modulo the Jacobson radical -Proposition 5.9 point (2) in the special case n = 1) has been proved independently by D. Khurana and P.P. Nielsen [START_REF] Khurana | Perspectivity and von neumann regularity[END_REF]Corollary 3.16].

As a consequence of Proposition 5.9, we get that N R rings are 1/2-perspective. This applies notably to N I rings (N il(R) is an ideal) and U U rings (all units are unipotent). Proposition 5.11. Let R be a N R ring. Then R is 1/2-perspective.

Proof. Assume that N il(R) is a subring. Then by [46, Proposition 3.1] R/N il * (R) is Abelian (0-perspective), hence 1-perspective. As also N il * (R) ⊆ J(R) then by Proposition 5.9 R is 1/2-perspective.

We finally prove the following result. Proposition 5.12. Let n ∈ N and R be a ring. (2) If n ≥ 1, then the ring R is n/2-perspective iff the ring U k (R) of upper triangular matrices over R is n/2-perspective (for any fixed k).

(3) The ring R is n/2-perspective iff the power series ring R[[X]] is n/2-perspective.

(4) The ring R is n/2-perspective if the polynomial ring R[X] is n/2-perspective. The converse holds in case n = 0.

Proof. For n ≥ 1, this follows from Proposition 5.9. Thus we consider the remaining case n = 0. As Z is 0-perspective without U 2 (Z) being abelian, (2) fails for n = 0. Also, the converse of (4) fails in general, as shows the following example due to Garg et. al. [START_REF] Garg | Perspective rings[END_REF]: for any field F , M 2 (F ) is perspective (since F has stable range 1) but R = M 2 (F )[X] M 2 (F [X]) is not perspective (since F [X] has not stable range 1).

Question: What is the perspectivity index of R = M 2 (F )[X] ?
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