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An Elastica Geodesic Approach with Convexity Shape Prior

The minimal geodesic models based on the Eikonal equations are capable of finding suitable solutions in various image segmentation scenarios. Existing geodesic-based segmentation approaches usually exploit the image features in conjunction with geometric regularization terms (such as curve length or elastica length) for computing geodesic paths. In this paper, we consider a more complicated problem: finding simple and closed geodesic curves which are imposed a convexity shape prior. The proposed approach relies on an orientation-lifting strategy, by which a planar curve can be mapped to an high-dimensional orientation space. The convexity shape prior serves as a constraint for the construction of local metrics. The geodesic curves in the lifted space then can be efficiently computed through the fast marching method. In addition, we introduce a way to incorporate region-based homogeneity features into the proposed geodesic model so as to solve the region-based segmentation issues with shape prior constraints.

Introduction

Image segmentation is a fundamental and challenging problem posed in the fields of image analysis and computer vision. In the past decades, a large variety of segmentation approaches have been devoted to address the related segmentation problems. Among them, the energy minimization-based models integrating with priors on the target regions have proven to yield satisfactory solutions. Prior-driven segmentation approaches. One widely considered geometric prior is to assume that the target bound-aries appear to be short in terms of Euclidean curve length, by which the image noises can be suppressed in some extent. Such a first-order geometric prior has been commonly utilized in various energy minimization-based segmentation approaches such as active contours [9,10,[START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] and graphbased models [5,21]. Efficient higher order geometric priors may include the curvature-penalized length term [3, [START_REF] El-Zehiry | Contrast driven elastica for image segmentation[END_REF]43] and data-driven weighted length [32,[START_REF] Sagiv | Integrated active contours for texture segmentation[END_REF]. However, utilizing geometric regularity as a single prior is sometimes insufficient to find favorable segmentations, especially when dealing with images with complex intensity distribution. In contrast, the strategy of incorporating shape-driven priors into the objective energies can yield more accurate and efficient constraints for segmentation. These priors are often carried out via a statistical model about the target regions or contours [6,8,22,23,40]. The implementation of the shapedriven priors is capable of encouraging satisfactory segmentations, even in the absence of reliable image appearance features which are used to distinguish disjoint regions.

Recently, the shape constraints associated to the convexity and star convexity were regarded as flexible shape priors. Existing approaches in conjunction with these shape priors can be loosely categorized as either discrete or continuous types. In the discrete setting, the convexity prior [28], the star convexity prior [46], or geodesic star convexity [START_REF] Gulshan | Geodesic star convexity for interactive image segmentation[END_REF] are characterized as a regularization term to construct the discrete energy functionals together with image data-driven terms. The energy minimization can be addressed by the graph cut algorithm [5]. In [START_REF] Gorelick | Multi-object convexity shape prior for segmentation[END_REF][START_REF] Royer | Convexity shape constraints for image segmentation[END_REF], the convexity prior was incorporated into graph-based segmentation framework to solve multi-region segmentation tasks. The hedgehoglike shape prior [31] generalizes the geodesic star convexity constraint [START_REF] Gorelick | Multi-object convexity shape prior for segmentation[END_REF] to enlarge the applicable scope of the orig- inal case. Isack et al.

[30] proposed a flexible k-convexity shape prior model allowing overlaps between different regions. However, these graph-based approaches with convexity constraint did not consider curvature regularization.

In the continuous setting, the convexity prior is usually exploited in the active contours approaches [START_REF] Luo | Convex shape prior for multi-object segmentation using a single level set function[END_REF][START_REF] Yan | Convexity shape prior for level set-based image segmentation method[END_REF]48] based on the level set formulation [39]. To be specific, in [48] the sign of the curvature was used to penalize the concave portion of the evolving contour implicitly represented by a level set function. While in [START_REF] Luo | Convex shape prior for multi-object segmentation using a single level set function[END_REF][START_REF] Yan | Convexity shape prior for level set-based image segmentation method[END_REF], the authors established the relationship between the Laplacian of a level set function and the convexity property of its zerolevel lines, where the shape prior redefines the searching space for optimal curve. Bae et al.

[3] illustrated that minimizing an energy regularized by a L 1 -variant of Euler elastica length, which serves as a regularization term, is able to encourage the final segmentation shape to be convex. However, the convexity prior in this model is regarded as a way of implicit constraint, which heavily depends on the importance to the respective regularization term.

Geodesic models. The geodesic active contour models [7,32,[START_REF] Melonakos | Finsler active contours[END_REF][START_REF] Yezzi | A geometric snake model for segmentation of medical imagery[END_REF] address the edge-based segmentation problems by minimizing a weighted curve length via a gradient descent scheme. However, the local minimization scheme may lead to demanding requirement on the initialization and high sensitivity to spurious edges or noise. Cohen and Kimmel [START_REF] Cohen | Global minimum for active contour models: A minimal path approach[END_REF] proposed a minimal path model to globally minimize a weighted curve length w.r.t. isotropic metrics [7] under the eikonal equation framework. In this paper, we are interested in finding geodesic paths with convexity shape priors. In general, the weighted length of a curve can be measured via a Finsler metric. Many geodesic approaches have contributed to develop various Finsler metrics to generate suitable geodesic paths in different situations [START_REF] Benmansour | Tubular structure segmentation based on minimal path method and anisotropic enhancement[END_REF][START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF]18,[START_REF] Chan | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF]. Chen et al. [12,[START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF] introduced to construct Randers metrics which encode region-based homogeneity features, bridging the gap between the eikonal equations and the region-based active contours. In [11,16,17], asymmetric metrics are exploited for image segmentation using the tool of Voronoi diagram. The curvature-penalized geodesic models [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF]25] considered an idea of orientation lifting to solve the highorder geodesic computation problems. Using suitable relaxation, the geodesic distances and geodesic paths with curvature regularization can be efficiently estimated by the Hamiltonian fast marching (HFM) method [35].

Despite great advances, only the geometric priors are utilized in existing minimal geodesic approaches. In Fig. 1, we show a comparison example for geodesic curves derived from the region-based geodesic curves [12,[START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF], the Euler-Mumford (EM) elastica model [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF] and the proposed geodesic model with convexity shape prior. In order to bridge these gaps, we proposed a new elastica geodesic model by integrating image features and convexity shape prior, which to our best knowledge is original. In summary, the contributions of our work are threefold: Firstly, we introduce a new elastica geodesic approach imposed with the constraint of the convexity shape prior. The convexity restriction of geodesic curves is carried out by the sign of their curvature, which is encoded into a new type of geodesic metrics established in an orientation-lifted space. Secondly, we discuss the solutions for the computation of simple closed and convex geodesic paths. In numerical consideration, we adopt the HFM method [35] as the numerical solver, for which the stencils are adaptively generated by the proposed geodesic metric with a convexity shape constraint. Finally, Both the region-and edge-based features are taken into account in the proposed geodesic model. The proposed model can blend the benefits from the convexity shape prior, curvature regularization and region-based homogeneity features. In addition, we propose an efficient way to incorporate user intervention for the computation of geodesic paths and for interactive image segmentation.

The structure of this paper is organized as follows. Section 2 gives the background on the elastica geodesic model and the Eikonal active contour model. The new elastica geodesic models with convexity shape prior are presented in Sections 3 and 4. The experimental results and the conclusion are respectively presented in Sections 5 and 6.

Background

Notations. Let M := Ω × S1 be an orientation-lifted space, where Ω ⊂ R 2 is a bounded domain, and S 1 := R/2πZ can be identified with [0, 2π[ equipped with a periodic boundary condition. A point x = (x, θ) is a pair comprised of a physical component x and an angular coordinate θ. For each x ∈ M, we denote by ẋ = ( ẋ, θ) ∈ R 2 × R a tangent vector at x. In the following, we use the notation E := R 2 × R to represent the tangent space to M at any base point x. In addition, we denote by a + := max{0, a} the positive part of a real number a ∈ R, and let by convention a 2 + := (a + ) 2 .

EM Geodesic Model

Orientation lifting for curvature representation. The proposed model with convexity shape prior is established partially upon the curvature-penalized geodesic models [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF]25,35]. The foundation of these models is to evaluate curvature using an orientation lifting. Consider a smooth curve γ : [0, 1] → Ω, with non-vanishing velocity 1 . Then there exists a unique η : [0, 1] → S 1 obeying for all ∈ [0, 1]

γ ( ) = (cos η( ), sin η( )) T γ ( ) . (1) 
In other words, η( ) encodes the tangent direction at γ( ). By Eq. ( 1), we define the orientation-lifted curve

Γ = (γ, η) : ∈ [0, 1] → Γ( ) ∈ M, (2) 
whose first-order derivative is defined as

Γ ( ) = (γ ( ), η ( )) ∈ E. In addition, the curvature κ : [0, 1] → R of the smooth curve γ is obtained as κ( ) = η ( )/ γ ( ) . (3) 
We refer to γ as the physical projection of Γ. Euler-Mumford elastica approach. In [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF], the authors introduced a weighted curve length with curvature penalty, defined as follows for a smooth curve γ L EM (γ) :=

1 0 ψ(γ( ), η( )) (1 + β 2 κ( ) 2 ) γ ( ) d .
The parameter β ∈ R + has the dimension of a radius of curvature, and modulates the strength of the curvature penalty.

For simplicity, and up to a rescaling argument, we assume β = 1 in the rest of this description. The cost function ψ : M → R + is orientation-dependent and derived from image gradients [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF]. A defect of L EM is that it features second-order derivatives of γ, implicitly through the curvature κ, and is thus not directly amenable to global optimization via optimal control methods. Accordingly, an equivalent energy L EM is defined using the orientation lifting (2)

L EM (Γ) = 1 0 ψ(Γ( )) F EM (Γ( ), Γ ( )) d , (4) 
where

F EM : M × E → [0, ∞]
is a Finsler metric defined for any point x = (x, θ) ∈ M and any non-zero vector ẋ = ( ẋ, θ) ∈ E as follows

F EM (x, ẋ) = ẋ + θ2 ẋ , if ẋ ∝ ϑ θ , ∞, otherwise, (5) 
D p (x) = inf Γ {L EM (Γ); s.t. Γ(0) = p, Γ(1) = x}.
In the following, we omit the dependence of the distance map D := D p on the source point p. This map is the viscosity solution to an eikonal equation based on the Hamiltonian H EM of the model [35, 44]

H EM x (dD(x)) = 1 2 ψ(x) 2 , ∀x ∈ M\{p}, (6) 
with D(p) = 0 and outflow boundary condition on ∂M, where dD is the differential of D. The Hamiltonian H EM is defined from the metric F EM by Legendre-Fenchel duality

H EM x (x) = 1 8 x, ϑ θ + x, ϑ θ 2 + θ2 2 , (7) 
for any base point x = (x, θ) ∈ M and any co-tangent vector x = (x, θ) ∈ R 2 × R. An equivalent integral expression of H EM can be derived

H EM x (x) = 3 8 π/2 -π/2
x, ϑ θ cos ϕ + θ sin ϕ 2 + cos ϕdϕ.

(8) Using the Fejer quadrature rule for integrals, and techniques from discrete geometry, one obtains the approximation [35]

H EM x (x) = 1 2 1≤i≤I ρ θ i x, ėθ i 2 + + x 2 O(ε 2 ), ( 9 
)
where I is a positive integer, ρ θ i ≥ 0 is a non-negative weight associated to θ, and ėθ i ∈ Z 3 is an offset with integer components, for all 1 ≤ i ≤ I. The construction [35] involves a relaxation parameter ε > 0, chosen in practice as ε = 0.1 with I = 30 offsets. A finite differences discretization of the eikonal equation (6), is obtained as a result

1≤i≤I ρ θ i D(x)-D(x-h ėθ i ) h 2 + = ψ(x) 2 , (10) 
with consistency error O(h + ε 2 ), where h > 0 is the grid scale. The numerical solution to (10) can be accurately estimated by the HFM method [35, 37], see Section 4.

Once the map D is estimated, a geodesic G from the source point p to any target x ∈ M, can be backtracked, by solving a simple ODE backwards in time. Namely one sets G(T ) = x, where T = D(x) is the arrival time, and G ( ) = V(G( )) for all ∈ [0, T ], where the geodesic flow V is obtained symbolically and numerically

V(x) = dH EM x dx (dD(x)), (11) 
= 1≤i≤I ρ θ i D(x)-D(x-h ėθ i ) h + ėθ i + O(h). ( 12 
)
Then one can re-parameterize G to generate a new geodesic path G p,x defined over the range [0, 1].

Region-based Eikonal Active Contour Model

We briefly review the region-based Eikonal active contour (EAC) model [START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF][START_REF] Chen | Eikonal region-based active contours for image segmentation[END_REF], which is used in this paper to build the cost function ψ in Eq. (5). We start from a typical active contour energy comprising of a region-based homogeneity term E r and a regularization term

E e E(C) := µE r (C) + E e (C), (13) 
where µ ∈ R + is a weight parameter and C : [0, 1] → Ω is a closed contour with counter-clockwise order. The component E e is a weighted curve length associated to a Riemannian metric, of the form E e (C) =

1 0 C ( ) M(C) d .
The metric tensor M is here derived from the image gradients, and such that ẋ, M(x) ẋ = ẋ M(x) is low [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF] if an edge passes through the point x ∈ Ω with tangent ẋ ∈ R 2 .

The region-based functional E r measures the homogeneity of image features in each region. In this section, we take the region competition model [50] with the Gaussian mixture model (GMM) as an example to formulate the term

E r E r (C) = R1 ξ 1 (x)dx + R2 ξ 2 (x)dx,
where R 1 and R 2 are the regions inside and outside C, respectively. The functions ξ i : Ω → R measure the image homogeneity within each region R i . In this paper, we compute each ξ i using a Gaussian mixture model, for which the probability distribution function (PDF) P i (z; Θ i ) are taken as a weighted sum of N Gaussian PDFs. In this case, one has ξ i (x) = -log P i (f (x); Θ i ) , ∀x ∈ Ω, where Θ i are the parameters of the GMM and f : Ω → R d is a gray level image for d = 1 or a color image for d = 3.

In the EAC model [12, [START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF][START_REF] Chen | Eikonal region-based active contours for image segmentation[END_REF], a key ingredient is to express, using Stokes theorem, the energy (13) as a weighted curve length. In other words, E(C) ≈ L EAC (C) + c, where c is a constant and where

L EAC (C) = 1 0 C M(C) + µ ω(C), C d . (14) 
The vector field ω : U → R 2 is defined over an open and bounded subregion U ⊂ Ω. As in [12,[START_REF] Chen | Eikonal region-based active contours for image segmentation[END_REF], it is obtained as the solution of the following linear PDE problem

min U ω 2 dx, s.t. curl ω = ξ 1 -ξ 2 on U.
The weighted curve length ( 14) is an instance of Randers geometry, defined by the non-symmetric metric

R(x, ẋ) = ẋ M(x) + µ ω(x), ẋ . (15) 
As discussed in [START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF][START_REF] Chen | Eikonal region-based active contours for image segmentation[END_REF], the positivity of R can be ensured by using a sufficiently small subregion U , or invoking a new vector field induced from ω. Computing minimizers of ( 14) can be achieved by numerically solving an eikonal equation with Randers anisotropy, leading to a robust minimization procedure for the active contour energy [START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF] [12, [START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF][START_REF] Chen | Eikonal region-based active contours for image segmentation[END_REF].

Elastica Curves with Convexity Prior

Definition 1 A simple closed planar curve γ, smooth and parametrized in counter-clockwise order, is said convex iff its curvature κ in Eq. (3) is non-negative.

Elastica Metric with Convexity Shape Prior

We introduced in Section 2.1 the EM elastica path length L EM , which we reformulated using orientation lifting (2) and a suitable metric F EM in Eq. ( 5). Globally optimal geodesics can be computed numerically, by solving a generalized Eikonal PDE (6), involving a suitable Hamiltonian (7), using a finite differences scheme (10).

We take here the opposite route, starting from a modified finite differences scheme -which ensures that our approach is practical -all the way back to a variant of the elastica metric embedding the constraint that curvature is non-negative, consistently with Definition 1. The modified scheme reads

1≤i≤I ρθ i D(x)-D(x-h ėθ i ) h 2 + = ψ(x) 2 , ( 16 
)
where ρθ i = ρ θ i if ėθ i , (0, 0, 1) T ≥ 0, and ρθ i = 0 otherwise, for all 1 ≤ i ≤ I. Excluding finite differences offsets ėθ i whose third component is negative, as we do here and in contrast with the original scheme (10), ensures that the angle θ which is the third component of x = (x, θ) ∈ M is non-decreasing as the front propagates.

Let us emphasize that the modified finite differences scheme is sufficient to fully implement the numerical method, both the Eikonal solver and the backtracking ODE, by a straightforward adaptation of the geodesic flow (11) (featuring H C and ρθ i ). The computations below are thus only intended to provide insight on the nature of the PDE that is solved and of the geodesic model that is globally optimized by the method. By construction, comparing with equations ( 9) and (10), the modified scheme corresponds to the Hamiltonian representation

H C x (x) = 1 2 1≤i≤I ρθ i x, ėθ i 2 + + x 2 O(ε 2 ), (17) 
where

x = (x, θ) ∈ R 2 × S 1 and x = (x, θ) ∈ R 2 × R.
An exact integral expression is obtained as I → ∞ and ε → 0

H C x (x) := 3 8 π 2 0 x, ϑ θ cos ϕ+ θ sin ϕ 2 + cos ϕ dϕ. ( 18 
)
Note that the proposed integral in Eq. (18) starts at 0, instead of -π 2 in H EM . By introducing polar coordinates, one has

H C x (x) = r 2 C (φ), with ( x, ϑ θ , θ) = r(cos φ, sin φ),
where r > 0 and φ ∈ [-π, π], and where C reads as 10) and ( 16) with dashed arrows when ėθ i , (0, 0, 1) T < 0. Right: Unit vectors in tangent space for EM elastica model, and the variant with convexity prior. Set of all ( ṡ, θ) such that F C (x, ( ṡϑ θ , θ)) = 1 (solid line), and likewise for F EM (dashed line)

C (φ) := 3 8 π/2 0 (cos(ϕ -φ)) 2 + cos ϕ dϕ.
Distinguishing cases, we obtain a closed form expression of C , hence also of the modified Hamiltonian H C , as follows

C (φ) = 1 8          0 if φ ∈ [-π, -π 2 ], 2 cos φ + 2 cos φ sin φ if φ ∈ [-π 2 , 0], 1 + cos 2 φ + 2 cos φ sin φ if φ ∈ [0, π 2 ], 1 + cos 2 φ + 2 cos φ if φ ∈ [ π 2 , π],
The metric F C of the proposed geodesic model can be expressed in terms of the Hamiltonian H C using Legendre-Fenchel duality:

1 2 F C (x, ẋ) 2 = max x{ x, ẋ - H C (x, x)}.
Considering a non-zero vector ẋ = ( ẋ, θ) ∈ E and denoting ṡ := ẋ one has

F C (x, ẋ) 2 =          +∞, if θ < 0 or ẋ ∝ ϑ θ , ( ṡ + θ2 / ṡ) 2 , if 0 ≤ ṡ ≤ θ, 4( ṡ2 -2 ṡ θ + 2 θ2 ), if 0 ≤ θ ≤ ṡ ≤ 2 θ, 8 27 θ (9 ṡ θ2 + ṡ3 + ( ṡ2 -3 θ2 ) 3 2 ), if 0 ≤ 2 θ ≤ ṡ.
As expected, the metric F C assigns an infinite cost to vectors whose angular velocity component θ is negative. The path length L C associated to F C , similarly to Eq. ( 4), is thus infinite for curves whose curvature κ takes negative values. Note that F C and F EM coincide in the regime 0 ≤ ṡ ≤ θ which corresponds of a curvature κ = θ/ ṡ ≥ 1. The set of all ( ṡ, θ) such that F C (x, ( ṡϑ θ , θ)) = 1, and likewise for F EM , are illustrated on Fig. 2.

Searching Space for Convex Geodesics

The goal is to detect simple closed and convex curves C to describe target boundaries, whose orientation-lifting G = (C, η) defined by (2) is a minimizer of L C . For that purpose, we introduce a way of integrating the circular geodesic (CG) model [2] and the total curvature into the computation of geodesic distances associated to F C . Specifically, the CG model ensures that a closed geodesic G is obtained, while the bound on the total curvature eliminates curves whose physical projection C has self-intersections. The CG Model. At the initialization stage, we exploit two points p = (p, θ p ) ∈ Ω × S 1 and z ∈ Ω to set up the CG method [2], where p is placed on the boundary of the target region, with tangent orientation θ p , and z is a point inside the target region. This initialization allows the user to guide the image segmentation in a simple and reliable manner. The ray (half line) originating from z and passing through p is denoted by -- zp ⊂ Ω. See Fig. 3a, where the angular component θ p of p is indicated by the arrow (cos θ p , sin θ p ) T . We consider the following set

Φ 1 ( -- zp), of curves γ : [0, 1] → Ω with C 2 -regularity Φ 1 ( -- zp) := γ; Ind γ (z) = 0, γ(0) = γ(1) ∈ -- zp, γ( ) / ∈ -- zp, ∀ ∈]0, 1[ , (19) 
where Ind γ (z) is the winding number of γ about the point z. Any curve γ ∈ Φ 1 ( -- zp) is by construction closed and encloses the point z, as illustrated on Fig. 3a, where γ is shown as the red solid line. As in [2], the ray line -- zp is taken as a cut to disconnect the two sides of -- zp in the domain Ω, allowing to efficiently track closed geodesic paths. Total Curvature. The total curvature K(γ) of a smooth curve γ ∈ C 2 ([0, 1], Ω) is obtained as

K(γ) = 1 0 κ( ) γ ( ) d = 1 0 η ( ) d , ( 20 
)
where κ is the curvature (3) and η is the orientation lifting [START_REF] Alpert | Image segmentation by probabilistic bottom-up aggregation and cue integration[END_REF]. If the curvature κ is non-negative, a property ensured by our geodesic metric F C (see Section 3.1), then K(γ) coincides with the absolute curvature of γ. We let

Φ 2 := γ ∈ C 2 ([0, 1], Ω); K(γ) = 2π . ( 21 
)
Note that K(γ) ∈ 2πZ when γ : [0, 1] → Ω is a smooth closed curve such that γ (0) ∝ γ (1).

Search Space for Geodesic Paths. The search space for geodesic paths, for which the physical projections are simple closed and convex curves, is obtained by combining the constraints of the CG model, of prescribed total curvature, and of non-negative curvature. Update K(x m ) using the equation [START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF]. The search space for geodesic paths is defined as

Φ p := {Γ = (γ, η); γ ∈ Φ 1 ( -- zp)∩Φ 2 , Γ(0) = Γ(1) = p}.
Our numerical method is designed to extract the geodesic path G p which is the global optimum of the problem

G p = arg min Γ∈Φp { 1 0 ψ(Γ(ρ)) F C (Γ( ), Γ ( )) d }. (22)
The orientation-lifted curves Γ ∈ Φ p with finite energy obey F C (Γ( ), Γ ( )) < ∞, ∀ ∈ [0, 1], which by construction of F C implies both the lifting property (1) and the non-negativity of the curvature of γ.

Remark. The proposed model allows user to provide scribbles inside and outside the target region. One can randomly choose a point x from an interior scribble, yielding a segment [z, x]. The segment [z, x] and the scribble serve as an obstacle such that no curve is allowed to passed by it. Moreover, we can sample a point y from each individual exterior scribble, leading to a segment [y, q], where q ∈ ∂Ω is a boundary point being such that the vector z -y proportional to y -q. Then, this exterior scribble and the segment [y, q] form a new obstacle. We illustrate these obstacles in Fig. 3b by red dash lines.

Hamiltonian Fast Marching Solver

The HFM method [35-37] is a state-of-the-art numerical solver of generalized eikonal equations. It expects a domain discretized on a Cartesian grid, M h := (Ω ∩ hZ2 ) × (hZ\2πZ) a subset of M, where h = 2π/N θ with N θ as the number of discrete orientations.

Adaptive stencil construction. The HFM method takes its name from a specific representation or approximation of the Hamiltonian of the eikonal equation, as a sum of squares of positive parts, similar to Eq. ( 9) or sometimes slightly more general [37]. Crucially, this representation must only feature non-negative weights, and offsets with integer coordinates, as in Eq. ( 9). Its design constitutes the main originality of the HFM method, but is outside the scope of this paper. Depending on the original form of the Hamiltonian, intermediate reformulations may be employed e.g. from (7) to (8), as well as variety of tools from discrete geometry such as Voronoi's first reduction of quadratic forms [START_REF] Mirebeau | Riemannian fast-marching on Cartesian grids, using Voronoi's first reduction of quadratic forms[END_REF]. This paper differs from previous works [35][START_REF] Mirebeau | Riemannian fast-marching on Cartesian grids, using Voronoi's first reduction of quadratic forms[END_REF][37] in the sense that we start from the numerical scheme (16), and derive from it a closed form expression of the Hamiltonian H C and metric F C , see Section 3.1.

The HFM method computes the numerical solution D : M h → R + 0 to the numerical scheme ( 16) (or likewise (10)). For that purpose, when adequate, the value D(x) at a point x ∈ M h is updated by solving locally the upwind discretization of the eikonal equation. In other words, with the notations of ( 16), we set D(x) ← λ, where λ obeys i∈I(x)

ρθ i h -2 (λ-D(y i )) 2 + = ψ(x) 2 , with y i := x-h ėθ i , (23) 
and where I(x) ⊂ {1, • • • , I} is a set of valid indices. Solving for λ in Eq. ( 23) is a straightforward operation. Note that y i is a point of the Cartesian grid hZ 3 since the offset ėθ i has integer coordinates, for any 1 ≤ i ≤ I. However i is removed from I(x) under two conditions: (i) if y i lies outside the domain M h , which implements outflow boundary conditions, and (ii) if the segment [x, y i ] intersects 2 the wall -- zp ×S 1 , which enforces the closedness condition [START_REF] Chan | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF]. Notice that Point (ii) was developed specifically for the CG model.

We let N(x) := {y i ; i ∈ I(x)} denote the stencil at x, and Ñ(x) := {y ∈ M h ; x ∈ N(y)} the reversed stencil. Single-pass HFM algorithm. At the initialization stage, the HFM method tags each grid point x ∈ M h as Trial. We set the geodesic distances D(x) = ∞ for all the grid points x ∈ M h \{p} and set D(p) = 0 for the source point. During the front propagation, the HFM method finds a point x m with the smallest distance value among all Trial points. This point x m is immediately tagged as Accepted. Then for each point y ∈ Ñ(x m ) of the reversed neighborhood, the distance D(y) is updated by solving the upwind discretization of the eikonal equation ( 23), taking only into account the values of D corresponding to previously Accepted points. Computation of the total curvature. In [START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF], the authors introduced an efficient method which can simultaneously compute the geodesic distances and the Euclidean distances between the source point p and any target point x in an accumulation manner. As a result, the Euclidean length of each geodesic path can be estimated without backtracking these paths, which reduces computation time. In this paper, we adapt the method of [START_REF] Deschamps | Fast extraction of minimal paths in 3D images and applications to virtual endoscopy[END_REF] to compute simultaneously the length D(x) = L C (G p,x ) of the geodesic G p,x = (γ, η) reaching the point x, and its total curvature K(x)

K(x) := K(γ) = 1 0 η ( )d .
For that purpose, we note that the total curvature map K obeys a linear PDE, involving the geodesic flow vector field V : M → R 2 × R used in geodesic backtracking (11)

∇ K, V = V 3 ,
where V 3 := 0, 1) T , V .

In addition, the numerical method yields a simple and intrinsic approximation of the geodesic flow (11), of the form V(x) = i∈I(x) τ i ėθ i + O(h) with the notations of (23). Thus one has, using an upwind finite differences scheme i∈I(x)

τ i K(x) = i∈I(x) τ i K(y i ) + hV 3 (x) + O(h 2 ). (24) 
We solve for K(x) when the point x is Accepted, using this linear equation and omitting the O(h 2 ) term. For all i ∈ I(x) such that τ i > 0, one has D(x) > D(y i ), since y i was previously Accepted. If the value of K(x) > 2π, then we set D(x) = ∞ to avoid the self-crossing problem.

In Algorithm 1, we summarize this variant of the HFM for computing the geodesic distance map u. The front propagation is terminated when any end point x e ∈ S end is tagged as Accepted, where the set S end ⊂ M h collects all the immediate neighbors of p = (p, θ p ) ∈ M h on the correct side of -- zp ×S 1 . The desired geodesic path, defined in Eq. ( 22), is then backtracked by Eq. (11). Computation of the cost function. The length L EAC in Eq. ( 14) can be interpreted in the framework of Section 2.1, by choosing the cost ψ(x, θ) = R(x, ϑ θ ), and β = 0. This leads to the possibility of integrating the regional homogeneity features and curvature regularization for tracking geodesic paths. However, such an interpretation is not what we do in this paper, opting instead for an exponential cost

ψ(x, θ) = exp(α R(x, ϑ θ )), ∀x ∈ U, ∞, otherwise and β > 0, where R(x, θ) is defined as R(x, θ) = ϑ θ M(x) max (x, θ)∈M ϑ θ M(x) + µ ϑ θ , ω(x) max y∈U ω(y) .
This construction of the cost function proves to be very efficient in practice. Note that the subdomain U ⊂ Ω should be understood as a search space for geodesic paths such that any geodesic curve G p = (C p , η p ) obeys C p ( ) ∈ U, ∀ ∈ [0, 1]. Up to curve evolution scheme, the goal is to produce sequences (C j ) j≥0 of geodesic curves which solve the problem (22), and the subregion U at the j-th iteration is defined as a tubular neighbourhood of C j-1 . The initial curve C 0 is required to be simple, closed and convex. Since the edge-based features are independent to the evolving curves C j , such an initial curve C 0 can be produced using edge-based features only, implemented by using ψ(x, θ) = exp(α ϑ θ M(x) / max (x, θ)∈M ϑ θ M(x) ), ∀x ∈ Ω. Computation time. For a given metric F C and a given grid M h , the computation complexity is bounded by the anisotropy ratio [35] which is determined by the relaxation parameter ε. We report the running time of Fig. 1 with ε = 0.1, where the size of the grid is 346 × 599 × 60.

The CPU-implemented HFM method requires around 38 seconds under a suitable stopping criterion, while a GPUimplemented numerical solver requires around 2.5 seconds.

Experimental Results

In this section, we illustrate the advantages of using the convexity shape constraint and curvature regularization for interactive image segmentation. In the following experiments, we provide scribbles within the target regions and source positions p with tangents (cos θ p , sin θ p ) T to set up the proposed model. Accordingly, the original point z is obtained as the barycentre point of the convex hull of the union of the scribbles and the source position.

In Fig. 4, we illustrate the qualitative comparison results with the graph-based model [28] which also features convexity shape prior. In column 1, we show the original images [START_REF] Alpert | Image segmentation by probabilistic bottom-up aggregation and cue integration[END_REF] with scribbles (blue and red curvilinear regions), and source positions with given tangents, where cyan dots represents source positions p. The cyan arrows are positively collinear to (cos θ p , sin θ p ) T . Each red line represents the small neighbourhood of the segment between the point z and the boundary ∂Ω. These scribbles are taken as input for model [28]. In Fig. 4, we can see that the segmentations from the proposed model can accurately capture the desired boundaries. In contrast, the segmentation regions from [28] appear to be convex, but fail to depict the targets.

In Fig. 5, we compare the proposed model to stateof-the-art geodesic models. Specifically, the segmentation results from the EAC model [START_REF] Chen | Finsler geodesics evolution model for region based active contours[END_REF][START_REF] Chen | Eikonal region-based active contours for image segmentation[END_REF], the EM elastica model [START_REF] Chen | Global minimum for a Finsler elastica minimal path approach[END_REF] and the proposed model are respectively depicted in columns 1 to 3. The cyan dots and the corresponding arrows indicate the source positions and the tangents. The blue curvilinear regions indicate the scribbles inside the target regions. For the EM elastica model, only the edge-based features are used for segmentation. From this experiment, one can point out that only the proposed model are capable of finding suitable segmentation results.

We also evaluate quantitative comparisons on 43 CT images [45], where the target regions of the test images are approximately convex. In order to illustrate the advantages of the proposed model which encodes convexity shape prior and curvature regularization, we add Gaussian noise to each test image. Two examples of these CT images are shown at the bottom of Fig. 6. The quantitative evaluation for the EAC model, the EM elastica model and the proposed model is carried out by the Jaccard Index. Here we exploit only the edge-based cost function for the EM elastica model. The boxplots of the Jaccard Index values from the considered models are exhibited at the top of Fig. 6. Again, we observe that the proposed model achieves the best performance among the compared approaches. In this experiment, we only exploit the points z and p = (p, θ p ) as initialization to set up the EAC and EM elastica models. The point z for each test image is taken as the barycentre point of the target region. Each source point p is randomly chosen from the ground truth boundary, while the angular coordinate θ p is set as the counter-clockwise tangent of the boundary at p.

Conclusion

In this paper, we show the possibility of integrating the convexity shape prior, the EM elastica term and the region- based homogeneity features into the computation of simple closed and convex curves. One main contribution lies at the introduction of a variant of the original EM elastica Hamiltonian in order to induce new asymmetric geodesic metrics which encode the convexity shape constraint. As a second contribution, we introduce efficient numerical solutions for computing orientation-lifted geodesic curves based on the HFM method, whose physical projection curves are simple closed and convex. Experiments show that the proposed model indeed obtains promising segmentation results.

Figure 1 .

 1 Figure 1. Image segmentation results respectively derived from the region-based region-based geodesic model, the EM Elastica geodesic model and the proposed elastica geodesic model with convexity shape prior.

Figure 2 .

 2 Figure 2. Left: Finite difference stencil of (10) and (16) with dashed arrows when ėθ i , (0, 0, 1) T < 0. Right: Unit vectors in tangent space for EM elastica model, and the variant with convexity prior. Set of all ( ṡ, θ) such that F C (x, ( ṡϑ θ , θ)) = 1 (solid line), and likewise for F EM (dashed line)

Figure 3 .

 3 Figure 3. a and b: The black dash lines and the arrows indicate the ray line -- zp and the direction of (cos θp, sin θp) T , respectively. The red and blue curvilinear regions in figure (b) are the scribbles.

Proposition 1 Algorithm 1 :

 11 Consider a smooth curve γ : [0, 1] → Ω with curvature κ : [0, 1] → R. Then the curve γ is simple, Geodesic Distances Estimation Input: A source point p and the set S end . Output: Geodesic distance map D. 1 • Set D(p) = 0 and D(x) = ∞, ∀x ∈ M h \{p}. 2 • Set Ξ(x) ← Trial and K(x) = 0, ∀x ∈ M h . 3 • Construct the neighbourhood N and set x m ← p. 4 while x m / ∈ S end do 5 Find x m minimizing u among all Trial points. 6 Set Ξ(x) ← Accepted.

  7

8

  if K(x m ) ≤ 2π then 9 foreach y ∈ Ñ(x m ) s.t. Ξ(y) = Trial do 10 Update D(y) by solving the upwind discretization of the equation (23).

  m ) ← ∞. closed and convex, and encloses the point z, if γ ∈ Φ 1 ( -- zp) ∩ Φ 2 and κ( ) ≥ 0 for any ∈ [0, 1].

Figure 4 .

 4 Figure 4. Qualitative comparison with the model[28]. The original images are shown in column 1. The segmentations in columns 2 and 3 are derived from[28] and the proposed model, respectively.

Figure 5 .

 5 Figure 5. Qualitative comparison with the EAC model (column 1) and the original elastica model (column 2). The results in column 3 are derived from the proposed model.

Figure 6 .

 6 Figure 6. Top: Box plots of the Jaccard index values on 43 CT images with Gaussian noise for the EAC model, EM elastica model and the proposed model. Bottom: Segmentations on two examples of CT images, where columns 1 to 3 show the results respectively from the EAC model, EM elastica model and the proposed one.

The non-vanishing velocity assumption is implicit in the sequel.where ϑ θ = (cos θ, sin θ) T is the unit vector related to θ ∈ S 1 , and "∝" indicates positive collinearity. The equivalence of L EM with L EM follows from the expression (3) of the curvature κ. In order to compute the minimal geodesic curve from a source point p ∈ M to a target point x ∈ M, we first estimate a geodesic distance map D p : M → [0, ∞)

We allow the intersection between [x, y i ] and -- zp ×S 1 for the case x ∈ -- zp ×S 1 and the vector y i -x points to the left side of -- zp ×S 1 .
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