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Abstract

The minimal geodesic models based on the Eikonal equa-
tions are capable of finding suitable solutions in var-
ious image segmentation scenarios. Currently, exist-
ing geodesic-based segmentation approaches usually ex-
ploit the image features in conjunction with regulariza-
tion terms, such as curve length, for computing geodesic
paths. In this paper, we consider a more complicated
problem: finding simple closed geodesic curves which are

imposed a convexity shape prior. The proposed approach
relies on an orientation-lifting strategy, by which a planar
curve can be mapped to an high-dimensional orientation
space. The convexity shape priors serve as a constraint
for the construction of local metrics in the lifted space.
The geodesic curves then can be efficiently computed
through the single-pass Fast Marching method (FMM). In
addition, we introduce a way to incorporate region-based
homogeneity features into the proposed geodesic model
so as to solve the region-based segmentation issues with
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shape prior constraints.

1 Introduction
Image segmentation is a fundamental and challenging
problem posed in the fields of image analysis and com-
puter vision. In the past decades, a large variety of seg-
mentation approaches have been devoted to address such
a problem. Among them, the energy minimization-based
models integrating with priors on the target regions have
proven to yield satisfactory solutions in many segmenta-
tion scenarios.
Prior-driven segmentation approaches. One widely
considered geometric prior is to assume that the tar-
get boundaries appear to be short in terms of Euclidean
curve length, by which the image noises can be sup-
pressed in some extent. Such a geometric prior has been
commonly exploited for segmentation in various energy
minimization-based segmentation approaches such as ac-
tive contours [9, 10, 36] and graph-based models [5, 26].
Efficient variants of the Euclidean length-based geomet-
ric prior might include curvature-penalized length term [3,
23, 41] and edge-based weighted length [30, 40]. How-
ever, utilizing geometric regularity as a single prior is
sometimes insufficient to find favorable segmentation re-
sults, especially when dealing with images with com-
plex gray level distribution. In contrast, the strategy of
incorporating shape-driven priors into the objective en-
ergies is able to yield more accurate and efficient con-
straints for segmentation. These priors are often carried
out via a statistical model about the target regions or con-
tours [6, 8, 19, 20, 38]. The implementation of the shape-
driven priors is capable of encouraging satisfactory seg-
mentations, even in the absence of reliable image appear-
ance features which are used to distinguish disjoint re-
gions.

Recently, the constraints of convexity and star convex-
ity were introduced as flexible shape priors. Basically, ex-
isting approaches in conjunction with these shape priors
can be loosely categorized as either discrete or continu-
ous types. In the discrete setting, the convexity prior [25],
the star convexity prior [44], or geodesic star convex-
ity [27] are characterized as a regularization term to con-
struct the discrete energy functionals together with image
data-driven terms. The energy minimization can be ad-

dressed by the graph cut algorithm [5]. In [24, 39], the
convexity prior was incorporated into graph-based seg-
mentation framework to solve multi-region segmentation
tasks. The hedgehog-like shape prior [29] generalizes the
geodesic star convexity constraint [24] to enlarge the ap-
plicable scope of the original case. Isack et al. [28] pro-
posed a flexible k-convexity prior-based model which al-
lows overlaps between different regions. However, these
graph-based approaches with convexity constraint did not
consider curvature regularization.

In the continuous setting, the convexity prior is usually
exploited in the active contours approaches [31, 45, 46]
based on the level set formulation [37]. To be specific,
in [46] the sign of the curvature was used to penalize the
concave portion of the evolving contour implicitly rep-
resented by a level set function. While in [31, 45], the
authors established the relationship between the Lapla-
cian of a level set function and the convexity property
of its zero-level lines, where the shape prior redefines
the searching space for optimal curve. Bae et al. [3] il-
lustrated that minimizing an energy regularized by a L1-
variant of Euler elastica length, which serves as a regular-
ization term, is able to encourage the final segmentation
shape to be convex. However, the convexity prior in this
model is regarded as a way of implicit constraint, which
heavily depends on the importance to the respective regu-
larization term.
Geodesic active contour models. The geodesic active
contour models [7, 30, 32, 47] address the edge-based
segmentation problems by minimizing a weighted curve
length via a gradient descent scheme. However, the lo-
cal minimization scheme may lead to demanding require-
ment on the initialization and high sensitivity to spurious
edges or noise. Cohen and Kimmel [18] proposed a min-
imal geodesic path model which can globally minimize
a weighted curve length of isotropic metrics [7] by solv-
ing an Eikonal PDE under a given boundary condition. In
this paper, we are interested in finding geodesic curves
with convexity priors based on the Eikonal PDEs and
Fast Marching algorithm [34]. In general, the weighted
curve length along a curve with Lipschitz continuity can
be measured via a local Finsler metric. Many minimal
geodesic approaches have contributed to develop vari-
ous Finsler metrics in order to generate suitable geodesic
curves in different situations [4, 13, 17]. Chen et al. [12,
13] introduced an elegant way to construct Randers met-
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Figure 1: Image segmentation results respectively derived from the region-based region-based geodesic model, the
Euler-Mumford Elastica geodesic model and the proposed elastica geodesic model with convexity constratin

rics via region-based homogeneity features, bridging the
gap between the Eikonal PDEs and the region-based ac-
tive contours. In [11, 16], Due to the asymmetric prop-
erty, the authors exploited the asymmetric metrics for
image segmentation based on the tool of Voronoi dia-
grams. The curvature-penalized geodesic models intro-
duced in [14,22] took into account an idea of orientation-
lifting to address the high-order geodesic computation
problems. Using suitable relaxation, geodesic distances
and the geodesic paths with curvature regularization can
be efficiently estimated by fast marching method [34].

Despite great advances, only the geometric priors, i.e.
curve length or curvature-based length, are utilized in ex-
isting minimal geodesic approaches. In Fig. 1, we show a
comparison example for geodesic curves derived from the
Euler-Mumford elastica model and the proposed geodesic
model [14] with convexity shape prior. In order to remove
the gaps, we proposed new Eikonal PDE-based geodesic
path models by integrating with curvature regularization,
region-based homogeneity and convexity or star convex-
ity priors for active contour problem, which to our best
knowledge is original.

In summary, the contributions of our work are three-
fold:
Firstly, we introduce a new curvature-penalized mini-
mal geodesic approach with convexity prior enhancement.
The convexity restriction of geodesic curves is carried out
by the signature of curvature, which is encoded into a new
type of geodesic metrics established in an orientation-
lifted space.

Secondly, we discuss the solutions for the computation of
simple, closed and convex geodesic curves. In numerical
consideration, we adopt the Hamiltonian fast marching
method [34] as the numerical solver, for which the stencils

are adaptively generated by the proposed geodesic metric
with a convexity shape constraint.

Finally, we incorporate both region- and edge-based fea-
tures into the proposed geodesic model. Accordingly,
the image segmentation by the proposed model can blend
the benefits from convexity prior, curvature regularization
and region-based homogeneity features. Thus our model
also overcomes the shortcoming of the existing curvature-
penalized geodesic models [14, 22], for which only the
edge-based features were used for image segmentation.

The structure of this paper is organized as follows.
Section 2 gives the background on the elastica geodesic
model and the Eikonal active contour model. The new
elastica geodesic models with convexity shape prior are
presented in Sections 3 and 4. The experimental re-
sults and the conclusion are respectively presented in Sec-
tions 5 and 6.

2 Background

Notations. Let M := Ω × S1 be an orientation-lifted
space, where Ω ⊂ R2 is a bounded domain, and S1 :=
R/2πZ can be identified with [0, 2π[ equipped with a
periodic boundary condition. A point x = (x, θ) is a
pair comprised of a physical component x and an an-
gular coordinate θ. For each x ∈ M, we denote by
ẋ = (ẋ, θ̇) ∈ R2 × R a tangent vector at x. In the fol-
lowing, we use the notation E := R2 × R to represent
the tangent space to M at any base point x. In addition,
we denote by a+ := max{0, a} the positive part of a real
number a ∈ R, and let by convention a2+ := (a+)2.
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2.1 Euler-Mumford Geodesic Model

Orientation lifting for curvature representation. The
proposed approach with convexity prior is established
partially upon the curvature-penalized geodesic mod-
els [14, 22, 34]. The foundation of these models is to
evaluate curvature using an orientation lifting. Consider
a smooth curve γ : [0, 1]→ Ω, with non-vanishing veloc-
ity1. Then there exists a unique η : [0, 1] → S1 obeying
for all % ∈ [0, 1]

γ′(%) = (cos η(%), sin η(%))T ‖γ′(%)‖. (1)

In other words, η(%) encodes the tangent direction at γ(%).
By Eq. (1), we define the orientation-lifted curve

Γ = (γ, η) : % ∈ [0, 1] 7→ Γ(%) ∈M, (2)

whose first-order derivative is defined as Γ′(%) =
(γ′(%), η′(%)) ∈ E. In addition, the curvature κ : [0, 1]→
R of the smooth curve γ is obtained as

κ(%) = η′(%)/‖γ′(%)‖. (3)

Euler-Mumford Elastica geodesic approach. In [14],
the authors introduced a weighted curve length with cur-
vature penality, defined as follows for a smooth curve γ

LEM(γ) :=

∫ 1

0

ψ(γ(%), η(%)) (1 + β2κ(%)2)‖γ′(%)‖d%.

The parameter β ∈ R+ has the dimension of a radius
of curvature, and modulates the strength of the curvature
penalty. For simplicity, and up to a rescaling argument,
we assume β = 1 in the rest of this description. The
cost function ψ : M → R+ is orientation-dependent and
derived from image gradients [14]. A defect of LEM is
that it features second-order derivatives of γ, implicitly
through the curvature κ, and is thus not directly amenable
to global optimization via optimal control methods. Ac-
cordingly, an equivalent energy LEM is defined using the
orientation lifting (2)

LEM(Γ) =

∫ 1

0

ψ(Γ(ρ))FEM(Γ(%),Γ′(%)) d%, (4)

1The non-vanishing velocity assumption is implicit in the sequel.

where FEM : M×E→ [0,∞] is a Finsler metric defined
for any point x = (x, θ) ∈ M and any non-zero vector
ẋ = (ẋ, θ̇) ∈ E as follows

FEM(x, ẋ) =

{
‖ẋ‖+ θ̇2

‖ẋ‖ , if ẋ ∝ ϑθ,
∞, otherwise,

(5)

where ϑθ = (cos θ, sin θ)T is the unit vector related to
θ ∈ S1, and “∝” indicates positive collinearity. The
equivalence of LEM with LEM follows from the expres-
sion (3) of the curvature κ. In order to compute the mini-
mal geodesic curve from a source point p ∈M to a target
point x ∈ M, we first estimate a geodesic distance map
Dp : M→ [0,∞)

Dp(x) = inf
Γ

{
LEM(Γ); s.t. Γ(0) = p, Γ(1) = x

}
.

This map is the viscosity solution to an Eikonal equation
based on the HamiltonianHEM of the model [34, 42]

HEM
x (∇Dp(x)) = 1

2ψ(x)2, ∀x ∈M\{p}, (6)

with Dp(p) = 0 and outflow boundary condition on ∂M,
where dDp is the differential of the geodesic distance map
Dp. The Hamiltonian HEM is defined from the metric
FEM by Legendre-Fenchel duality, and has here a closed
form

HEM
x (x̂) = sup

ẋ∈E
(〈x̂, ẋ〉 − 1

2F
EM(x, ẋ)2)

= 1
8

(
〈x̂, ϑθ〉+

√
〈x̂, ϑθ〉2 + θ̂2

)2
, (7)

for any base point x = (x, θ) ∈ M and co-tangent vector
x̂ = (x̂, θ̂) ∈ R2 × R. An equivalent integral expression
ofHEM can be derived

HEM
x (x̂) = 3

8

∫ π
2

−π
2

(
〈x̂, ϑθ〉 cosϕ+ θ̂ sinϕ

)2
+

cosϕdϕ.

(8)
Using the Fejer quadrature rule for integrals, and tech-
niques from discrete geometry, one obtains the approxi-
mation [34]

HEM(x, x̂) = 1
2

∑
1≤i≤I

ρθi 〈x̂, ėθi 〉2+ + ‖x̂‖2O(ε2), (9)

where I is a positive integer, ρθi ≥ 0 is a non-negative
weight associated to θ, and eθi ∈ Z3 is an offset with inte-
ger components, for all 1 ≤ i ≤ I . The construction [34]
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involves a relaxation parameter ε > 0, chosen in prac-
tice as ε = 0.1 with I = 30 offsets. A finite differences
discretization of the eikonal equation (6), is obtained as a
result∑

1≤i≤I

ρθi

(u(x)− u(x− hėθi )

h

)2
+

= ψ(x)2, (10)

with consistency error O(h + ε2), where h > 0 is the
grid scale. The solution u ≈ Dp is numerically computed
using a variant of the FMM [33, 34], see Section 4.1.

Once the geodesic distance map u ≈ Dp is estimated,
the geodesic curve G from the source point p to an arbi-
trary target point x ∈ M, can be backtracked, by solv-
ing a simple ODE backwards in time. Namely one sets
G(T ) = x, where T = u(x) is the from arrival time, and
G′(%) = V(G(%)) for all % ∈ [0, T ] where the geodesic
flow V is obtained symbolically and numerically as fol-
lows

V(x) =
dHEM

x

dx̂
(∇Dp(x)), (11)

=
∑

1≤i≤I

ρθi

(u(x)− u(x− hėθi )

h

)
+

eθi +O(h).

2.2 Region-based Eikonal Active Contour
Model

We briefly review the region-based Eikonal active con-
tour (EAC) model [13, 15], which is used in this paper to
build the cost function ψ in Eq. (5). We start from a typ-
ical active contour energy comprising of a region-based
homogeneity term Er and a regularization term Ee

E(C) := µEr(C) + Ee(C), (12)

where µ ∈ R+ is a weight parameter and C : [0, 1] →
Ω is a closed contour. The component Ee is a weighted
curve length associated to a Riemannian metric, of the
form Ee(C) =

∫ 1

0
‖C′(%)‖M(C)d%. The metric tensor M

is here derived from the image gradients, and such that√
〈ẋ,M(x)ẋ〉 = ‖ẋ‖M(x) is low [14] if an edge passes

through the point x ∈ Ω with tangent ẋ ∈ R2.
The region-based functional Er measures the homo-

geneity of image features in each region. In this section,

we take the region competition model [48] with the Gaus-
sian mixture model (GMM) as an example to formulate
the term Er

Er(C) =
∫
R1
ξ1(x)dx+

∫
R2
ξ2(x)dx, (13)

where R1 and R2 are the regions inside and outside C
respectively, so that R1 ∪ R2 = Ω. The functions
ξi : Ω → R measure the image homogeneity within
each region Ri. In this paper, we compute each ξi us-
ing a Gaussian mixture model, for which the probabil-
ity distribution function (PDF) Pi(z; Θi) are taken as a
weighted sum of N Gaussian PDFs. In this case, one has
ξi(x) = − log

(
Pi(f(x); Θi)

)
, ∀x ∈ Ω, where Θi are the

parameters of the GMM and f : Ω → Rd is a gray level
image for d = 1 or a color image for d = 3.

For the EAC model [12,13,15], the image segmentation
is solved by minimizing the energy (12). A key ingredient
for the EAC model is to express, using Stokes theorem,
the active contour energy (12) as a weighted curve length.
I.e. E(C) = LEAC(C)+c, where c is a constant and where

LEAC(C) =
∫ 1

0

(
‖C′‖M(C) + µ〈ω(C), C′〉

)
d%. (14)

The vector field ω : U → R2 is defined over an open
bounded subregion U ⊂ Ω. As in [12, 15], it is obtained
as the solution of the following linear PDE problem

min

∫
U

‖ω‖2dx, s.t. curlω(x) = ξ2(x)−ξ1(x), ∀x ∈ Ω.

The weighted curve length (14) is an instance of Randers
geometry, defined by the non-symmetric metric

R(x, ẋ) = ‖ẋ‖M(x) + µ〈ω(x), ẋ〉. (15)

Computing globally optimal minimizers of (14) can be
achieved by numerically solving an eikonal equation with
Randers anisotropy, leading to a robust minimization pro-
cedure for the active contour energy (12) [12, 13, 15].

3 Elastica Curves with Convexity
Prior

We present the core contribution: a new elastica geodesic
model which can simultaneously take into account the
convexity shape prior and curvature regularization, for
tracking simple closed and convex geodesic curves.
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Definition 1 A simple closed planar curve γ, smooth and
parametrized in counter-clockwise order, is said convex
iff its curvature κ in Eq. (3) is non-negative.

3.1 Elastica Metric with Convexity Shape
Prior

We introduced in Section 2.1 the Euler-Mumford elastica
path length LEM, which we reformulated using orienta-
tion lifting (4) and a suitable metricFEM in Eq. (5). Glob-
ally optimal geodesics can be computed numerically, by
solving a generalized Eikonal PDE (6), involving a suit-
able Hamiltonian (7), using a finite differences scheme
(10).

We take here the opposite route, starting from a mod-
ified finite differences scheme - which ensures that our
approach is practical - all the way back to a variant of the
elastica metric embedding the constraint that curvature is
non-negative, consistently with Definition 1. The modi-
fied scheme reads∑

1≤i≤I

ρ̃θi

(u(x)− u(x− hėθi )

h

)2
+

= ψ(x)2 (16)

where ρ̃θi = ρθi if 〈ėθi , (0, 0, 1)〉 ≥ 0, and ρ̃θi = 0 oth-
erwise, for all 1 ≤ i ≤ I . Excluding finite differences
offsets ėθi whose third component is negative, as we do
here and in contrast with the original scheme (10), en-
sures that the angle θ which is the third component of
x = (x, θ) ∈ R2 × S1 is non-decreasing as the front
propagates.

Let us emphasize that the modified finite differences
scheme is sufficient to fully implement the numerical
method, both the Eikonal solver and the backtracking
ODE, by a straightforward adaptation of the geodesic
flow (11) (featuringHC and ρ̃θi ). The computations below
are thus only intended to provide insight on the nature of
the PDE that is solved and of the geodesic model that is
globally optimized by the method. By construction, com-
paring with equations (9) and (10), the modified scheme
corresponds to the Hamiltonian representation

HC
x (x̂) = 1

2

∑
1≤i≤I

ρ̃θi 〈x̂, ėθi 〉2+ + ‖x̂‖2O(ε2), (17)

where x = (x, θ) ∈ R2 × S1 and x̂ = (x̂, θ̂) ∈ R2 × R.
An exact integral expression is obtained as I → ∞ and

ε→ 0

HC
x (x̂) := 3

8

∫ π
2

0

(
〈x̂, ϑθ〉 cosϕ+ θ̂ sinϕ

)2
+

cosϕdϕ.
(18)

Note that the proposed integral in Eq. (18) starts at 0, in-
stead of −π2 in HEM. By introducing polar coordinates,
one has

HC
x (x̂) = r2~C(φ), with (〈x̂, ϑθ〉, θ̂) = r(cosφ, sinφ),

where r > 0 and φ ∈ [−π, π], and where ~C reads as

~C(φ) :=
3

8

∫ π/2

0

(cos(ϕ− φ))2+ cosϕdϕ.

Distinguishing cases, we obtain a closed form expression
of ~C, hence also of the modified Hamiltonian HC, as
follows

~C(φ) =
1

8


0 if φ ∈ [−π,−π2 ],

2 cosφ+ 2 cosφ sinφ if φ ∈ [−π2 , 0],

1 + cos2 φ+ 2 cosφ sinφ if φ ∈ [0, π2 ],

1 + cos2 φ+ 2 cosφ if φ ∈ [π2 , π],

The metricFC of the proposed geodesic model can be ex-
pressed in terms of the Hamiltonian HC using Legendre-
Fenchel duality: 1

2F
C(x, ẋ)2 = maxx̂(〈x̂, ẋ〉 −

HC(x, x̂)). Considering a non-zero vector ẋ = (ẋ, θ̇) ∈
R2 × R and denoting ṡ := ‖ẋ‖ one has

FC(x, ẋ)2 =
+∞, if θ̇ < 0 or ẋ 6∝ ϑθ,
(ṡ+ θ̇2/ṡ)2, if 0 ≤ ṡ ≤ θ̇,
4(ṡ2 − 2ṡθ̇ + 2θ̇2), if 0 ≤ θ̇ ≤ ṡ ≤ 2θ̇,
8

27θ̇
(9ṡθ̇2 + ṡ3 + (ṡ2 − 3θ̇2)

3
2 ), if 0 ≤ 2θ̇ ≤ ṡ.

As expected, the metricFC assigns an infinite cost to vec-
tors whose angular velocity component θ̇ is negative. The
path length LC associated to FC, similarly to Eq. (4), is
thus infinite for curves whose curvature κ takes negative
values. Note that FC and FEM coincide in the regime
0 ≤ ṡ ≤ θ̇ which corresponds to a curvature κ = θ̇/ṡ ≥
1. The set of all (ṡ, θ̇) such that FC(x, (ṡϑθ, θ̇)) = 1, and
likewise for FEM, are illustrated on Fig. 2.
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Figure 2: Left: Finite difference stencil of (10) and (16),
with dashed arrows when 〈ėθi , (0, 0, 1)T 〉 < 0. Right:
Unit vectors in tangent space for the Euler-Mumford elas-
tica model, and the variant with convexity prior constraint.
Set of all (ṡ, θ̇) such thatFC(x, (ṡϑθ, θ̇)) = 1 (thick solid
line), and likewise for FEM (dashed line)

3.2 Searching Space for Convex Geodesic
Curves

The goal is to detect simple and closed convex curves
C to describe target boundaries, whose orientation-lifting
G = (C, η) defined by (2) is a minimizer of the length
LC. For that purpose, we introduce a way of integrating
the circular geodesic (CG) model [2] and the total abso-
lute curvature into the computation of geodesic distances
associated to the proposed metric FC. Specifically, the
CG method ensures that a closed geodesic G is obtained,
while the bound on total absolute curvature eliminates
curves whose physical projection C has self-intersections.
The CG Model. At the initialization stage, we exploit
two points p = (p, θp) ∈ Ω× S1 and z ∈ Ω to set up the
CG method [2], where p is placed on the boundary of the
target region, with tangent orientation θp, and z is a point
inside the target region. This initialization allows the user
to guide the image segmentation in a simple and reliable
manner. The ray (half line) originating from z and passing
through p is denoted by 7−−zp ⊂ Ω. See Fig. 3a, where the
angular component θp of p is indicated by the red arrow
(cos θs, sin θs)

T . We consider the following set Φ1( 7−−zp),
of curves γ : [0, 1]→ Ω with C2-regularity

Φ1( 7−−zp) :=
{
γ; γ(0) = γ(1)∈ 7−−zp, γ(%) /∈ 7−−zp,∀ρ ∈]0, 1[

}
.

(19)
Any curve γ ∈ Φ1( 7−−zp) is by construction closed and en-

(a) (b)

Figure 3: a and b: The blue dash line and the red
arrows indicate the ray line 7−−zp and the direction of
(cos θp, sin θp)

T , respectively. The red and blue lines in
figure (b) are the scribbles

closes the point z, as illustrated on Fig. 3a, where γ is
shown as a black solid line. As discussed in [2], the ray
line 7−−zp is taken as a cut to disconnect the two sides of
7−−zp in the domain Ω, allowing to efficiently track closed
geodesic paths.
Total Curvature. The total curvature K(γ) of a smooth
curve γ ∈ C2([0, 1],Ω) is obtained as

K(γ) =
∫ 1

0
κ(%) ‖γ′(%)‖ d% =

∫ 1

0
η′(%) d%, (20)

where κ is the curvature (3) and η is the orientation lift-
ing (1). If the curvature κ is non-negative, a property en-
sured by our geodesic metric FC (see Section 3.1), then
K(γ) coincides with the absolute curvature of γ. We let

Φ2 :=
{
γ ∈ C2([0, 1],Ω); K(γ) = 2π

}
. (21)

Note that K(γ) ∈ 2πZ when γ : [0, 1] → Ω is a smooth
closed curve such that γ′(0) ∝ γ′(1).
Search Space for Geodesic Curves. The search space for
geodesic paths, namely simple closed and convex curves,
is obtained by combining the constraints of the CG model,
of prescribed total absolute curvature, and of non-negative
curvature.

Proposition 1 Consider a smooth curve γ : [0, 1] → Ω
with curvature κ : [0, 1]→ R. Then the curve γ is simple,
closed and convex, and encloses the point z, if γ ∈ Φ1( 7−−zp
) ∩ Φ2 and κ(%) ≥ 0 for any % ∈ [0, 1].

The orientation-lifted search space for geodesic paths is
defined as

Φp := {Γ = (γ, η); γ ∈ Φ1(zp)∩Φ2, Γ(0) = Γ(1) = p}.
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Algorithm 1: Geodesic Distances Estimation
Input: A source point p and the set Send.
Output: Geodesic distance map u.

1 • Set u(p) = 0 and u(x) =∞, ∀x ∈Mh\{p}.
2 • Set Ξ(x)← Trial and ϕ̂(x) = 0, ∀x ∈Mh.
3 • Construct the neighbourhood N and set xm ← p.
4 while xm /∈ Send do
5 Find xm minimizing u among all Trial points.
6 Set Ξ(x)← Accepted.
7 Update K̃(xm) using the equation (24).
8 if K̃(xm) ≤ 2π then
9 foreach y ∈ Ñ(xm) s.t. Ξ(y) = Trial do

10 Update u(y) by solving the upwind
discretization of Eikonal equation
(23).

11 else
12 u(xm)←∞.

Our numerical method is designed to extract the geodesic
curve Gp which is the global optimum of the problem

Gp = arg min
Γ∈Φp

{∫ 1

0
ψ(Γ(ρ))FC(Γ(%),Γ′(%)) d%

}
.

(22)
The orientation-lifted curves Γ ∈ Φp with finite energy
obey FC(Γ(%),Γ′(%)) < ∞, ∀% ∈ [0, 1], which by con-
struction of FC implies both the lifting property (1) and
the non-negativity of the curvature of γ. The numerical
computation of the geodesic path Gp is presented in Sec-
tion 4.

Remark. The proposed model allows user to provide
scribbles inside and outside the target region. One can
randomly choose a point x from an interior scribble,
yielding a segment between z and x, which serves as an
obstacle together with the scribble such that no curve is
allowed to passed through this obstacle. Moreover, each
individual exterior scribble and a segment also can yield
an obstacle. We can generate a segment linking a point x
at this scribble and a point at ∂Ω, where such a segment
is supposed to be proportional to the ray line 7−−zx. As an
example, we illustrate these obstacles in Fig. 3b.

4 Numerical Implementation
The Hamilton Fast Marching method (HFM) [33–35] is
a state-of-the-art numerical solver of generalized eikonal
PDEs. It expects a domain discretized on a Cartesian grid,
here Mh := (Ω ∩ hZ2) × (hZ\2πZ) a subset of M =
Ω × S1, where h = 2π/Nθ with Nθ being the number of
discrete orientations.

4.1 Hamiltonian Fast Marching Solver

Adaptive Stencil Construction. The HFM method takes
its name from a specific representation or approximation
of the Hamiltonian of the eikonal equation, as a sum of
squares of positive parts, similar to Eq. (9) or sometimes
slightly more general [33]. Crucially, this representation
must only feature non-negative weights, and offsets with
integer coordinates, as in Eq. (9). Its design is non-trivial
and constitutes the main originality of the method, but is
outside the scope of this paper. Depending on the origi-
nal form of the Hamiltonian, intermediate reformulations
may be employed e.g. from (7) to (8), as well as variety
of tools from discrete geometry such as Voronoi’s first re-
duction of quadratic forms [35]. This paper differs from
previous works [33–35] in the sense that we start from the
numerical scheme (16), and derive from it a closed form
expression of the Hamiltonian HC and metric FC, see
Section 3.1.

The HFM method computes the numerical solution u :
Mh → R to the numerical scheme (16) (or likewise (10)),
also denoted u = Dp. For that purpose, when adequate,
the value u(x) at a point x ∈ Mh is updated by solving
locally the upwind discretization of the Eikonal equation.
In other words, with the notations of (16), we set u(x)←
λ where∑
i∈I(x)

ρ̃θi (λ− u(yi))
2
+ = ψ(x)2, with yi := x− heθi ,

(23)
and where I(x) ⊂ {1, · · · , I} is a set of valid indices.
Solving for λ in (23) is a straightforward operation also
encountered in standard isotropic fast marching. Note that
yi is a point of the Cartesian grid hZ3 since the offset eθi
has integer coordinates, for any 1 ≤ i ≤ I . However
i is removed from I(x) under two conditions: (i) if yi
lies outside the domain Mh, which implements outflow
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boundary conditions, and (ii) if the segment [x,yi] inter-
sects2 the wall 7−−zp ×S1, which enforces the closedness
condition (19). Point (ii) was developed specifically for
the CG model and is one of the contibution of this paper.

We let N(x) := {yi; i ∈ I(x)} denote the stencil at x,
and Ñ(x) := {y ∈Mh; x ∈ N(y)} the reversed stencil.
Single-pass Distance Estimation Algorithm. At the ini-
tialization stage, the HFM tags each grid point x ∈ Mh

as Trial. We set the geodesic distances u(x) = ∞ for
all the grid points x ∈ Mh\{p} and set u(p) = 0 for the
source point. During the front propagation, the HFM finds
a point xm which has the smallest distance value among
all Trial points. This point xm is immediately tagged as
Accepted. Then for each point y ∈ Ñ(xm) of the reversed
neighborhood, the geodesic distance u(y) is updated by
solving the upwind discretization of the Eikonal equation
(23), taking only into account the values of geodesic dis-
tance map u corresponding to previously Accepted points.
Computation of the total absolute curvature. In [21],
the authors introduced an efficient method which can si-
multaneously compute the geodesic distances and the Eu-
clidean distances between the source point p and any
target point x in an accumulation manner. As a result,
the Euclidean length of the geodesic paths can be esti-
mated without backtracking these paths, which reduces
computation time. In this paper, we adapt the method
of [21] to compute simultaneously the curvature penalized
path length Dp(x) = LC(Γx) of the minimal geodesic
Gp,x = (γ, η) reaching the point x, and its total curvature
K̃(x)

K̃(x) := K(γ) =
∫ 1

0
η′(%)d%.

For that purpose, we note that the total curvature map K̃
obeys a linear PDE, involving the geodesic flow vector
field V : M → R2 × R used in geodesic backtracking
(11)

〈∇K̃,V〉 = V3, where V3 := 〈(0, 0, 1)T ,V〉.

In addition, the numerical method yields a simple and in-
trinsic approximation of the geodesic flow (11), of the
form V(x) =

∑
i∈I(x) τiė

θ
i + O(h) with the notations

of (23). Thus one has, using an upwind finite differences

2We allow the intersection between [x,yi] and 7−−zp ×S1 in case
x ∈ 7−−zp ×S1 and the vector yi − x points to the left side of 7−−zp ×S1.

Figure 4: Qualitative comparison with the graph-based
model [25]. The original images are shown in column 1.
The segmentation results in columns 2 and 3 are derived
from [25] and the proposed model, respectively

scheme( ∑
i∈I(x)

τi

)
K̃(x) =

∑
i∈I(x)

τiK̃(yi) + hV3(x) +O(h2).

(24)
We solve for K̃(x) when the point x is Accepted, using
this linear equation and omitting the O(h2) term. For all
i ∈ I(x) such that τi > 0 one has Dp(x) > Dp(yi),
hence yi was previously Accepted. If the value of K̃(x) >
2π, then we set Dp(x) = ∞ to avoid the self-crossing
problem.

In Algorithm 1, we summarize this variant of the HFM
for computing the geodesic distance map u = Dp. In
order to reduce computation time, the front propagation
is terminated when an end point xe ∈ Send is tagged as
Accepted, where the set Send ⊂ Mh collects all the im-
mediate grid neighbors of p = (p, θp) on the correct side
of the wall 7−−zp ×S1. The desired geodesic path, defined in
Eq. (22), is then backtracked following Eq. (11).
Applications to Active Contours. The weighted curve
length LEAC in Eq. (14) can be interpreted in the frame-
work of Section 2.1, by choosing the cost ψ(x, θ) =
R(x, ϑθ), and β = 0. This leads to the possibility of inte-
grating the region-based homogeneity features and curva-
ture regularization for tracking geodesic paths. However,
such an interpretation is not what we do in this paper, opt-
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Figure 5: Qualitative comparison with the EAC model
(column 1) and the Euler-Mumford elastica model (col-
umn 2). The results in column 3 are derived from the
proposed model

ing instead for an exponential cost

ψ(x, θ) =

{
exp

(
αR(x, ϑθ)

)
, ∀x ∈ U

∞, otherwise,
(25)

as well as a positive curvature penalty β > 0. As a re-
sult, Stokes theorem does not apply and the equation (4)
differs from (12). Nevertheless, this construction of the
cost function proves to be very efficient in practice. Note
that the subdomain U ⊂ Ω should be understood as a
search space for geodesic paths such that any geodesic
curve Gp = (Cp, ηp) obeys Cp(%) ∈ U,∀% ∈ [0, 1]. Up to
curve evolution scheme, the goal is to produce sequences
(Cj)j≥0 of geodesic curves which solve the problem (22),
and the subregion U at the j-th iteration is defined as a
tubular neighbourhood of Cj−1. The initial curve C0 is
required to be simple, closed and convex. Since the edge-
based features are independent to the evolving curves
Cj . Accordingly, such an admissible initial curve C0 can
be produced using edge-based features only. This can
be implemented by simplifying the data-driven velocity
ψ(x, θ) = exp(α‖ϑθ‖M(x)),∀x ∈ Ω.

5 Experimental Results
We show the advantages of using convexity shape con-
straint and curvature regularization in image segmenta-
tion, providing that some user interventions are given. In
order to configure the proposed geodesic model with con-
vexity shape prior, we need to give the values of α, µ

for the data-driven function ψ and of β for controlling
the relative importance of the curvature regularization.
In the following we set α ∈ {4, 5}, µ ∈ {0.1, 1} and
β ∈ {10, 20}.

In Fig. 4, we illustrate the qualitative comparison re-
sults with the graph-based model [25] which features con-
vexity shape prior. The original images sampled from
the Weizmann dataset [1] with user-provided points are
shown in column 1, where the red and blue dots repre-
sent the point z and source point p, respectively. The
cyan arrow is positively collinear to (cos θp, sin θp)

T . The
cyan dots are interior points. The foreground seed points
for [25] is generated by (i) the segment [z, s], and (ii) the
segments between each interior point and z. In addition,
the segment linking s and ∂Ω is taken as the background
seed points for [25]. From Fig. 4, we can see that the
segmentation results from the proposed model can well
capture the desired boundaries of convexity. The segmen-
tation regions from [25] appear to be convex, but fail to
depict the targets.

In Fig. 5, we compare the proposed elastica geodesic
model to state-of-the-art geodesic models. Specifically,
the segmentation results from the EAC model [13,15] and
the Euler-Mumford elastica model [14] are respectively
depicted in columns 1 and 2. The segmentations from
the proposed model are shown in column 3 with initial-
izations, where the cyan star indicates an exterior point.
From this figure, one can point out that only the proposed
geodesic model integrating convexity shape prior, cur-
vature regularization and region-based homogeneity fea-
tures are capable of finding suitable segmentation results.
In this experiment, all the models are constrained using
the identical user input.

We also evaluate quantitative comparisons on 43 CT
images sampled from a dataset [43], where the target re-
gion of each test image is approximately convex. In order
to show the advantages of the proposed model, we add
to each CT image Gaussian noise with large standard de-
viation. We illustrate two examples of these CT images
at the bottom of Fig. 6. The quantitative evaluation for
the EAC model, the Euler-Mumford elastica model and
the proposed model is carried out by the Jaccard Index
and the corresponding boxplots are exhibited at the top
of Fig. 6. Again, we observe that the proposed model
achieves the best performance among the compared ap-
proaches. In this experiment, we only exploit the points z
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and p = (p, θp) as initialization. The point z for each test
image is taken as the barycentre point of the ground truth
region. Each source point p is randomly chosen from the
ground truth boundary, while the angular coordinate θp is
set as the counter-clockwise tangent of the boundary at p.

Figure 6: Top: Box plots of the Jaccard index values on
43 CT images with Gaussian noises with respect to the
EAC model, the Euler-Mumford elastica model and the
proposed one. Bottom: Image segmentations on two typi-
cal examples of the used CT images. Columns 1 to 3 cor-
respond to the segmentation results from the EAC model,
the Euler-Mumford elastica model and the proposed one,
respectively

6 Conclusion
In this paper, we show the possibility of integrating the
convexity shape prior, the Euler-Mumford elastica term
and the region-based homogeneity image features into the
computation of simple and closed geodesic curves. One
main contribution lies at the introduction of a variant of
the original Euler-Mumford elastica Hamiltonian in order
to induce new asymmetric geodesic metrics which encode
the convexity shape constraint. As a second contribution,
we also introduce efficient numerical solutions for com-
puting convex elastica geodesic curves based on the HFM.
Experiments show that the proposed model indeed obtains
promising segmentation results.
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