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ABSTRACT

Context. Observed young stellar objects (YSOs) are used to study star formation and characterize star-forming regions. For this pur-
pose, YSO candidate catalogs are compiled from various surveys, especially in the infrared (IR), and simple selection schemes in
color-magnitude diagrams (CMDs) are often used to identify and classify YSOs.
Aims. We propose a methodology for YSO classification through machine learning (ML) using Spitzer IR data. We detail our approach
in order to ensure reproducibility and provide an in-depth example on how to efficiently apply ML to an astrophysical classification.
Methods. We used feedforward artificial neural networks (ANNs) that use the four IRAC bands (3.6, 4.5, 5.8, and 8 µm) and the
24 µm MIPS band from Spitzer to classify point source objects into CI and CII YSO candidates or as contaminants. We focused on
nearby (.1 kpc) star-forming regions including Orion and NGC 2264, and assessed the generalization capacity of our network from
one region to another.
Results. We found that ANNs can be efficiently applied to YSO classification with a contained number of neurons (∼25). Knowledge
gathered on one star-forming region has shown to be partly efficient for prediction in new regions. The best generalization capacity
was achieved using a combination of several star-forming regions to train the network. Carefully rebalancing the training proportions
was necessary to achieve good results. We observed that the predicted YSOs are mainly contaminated by under-constrained rare
subclasses like Shocks and polycyclic aromatic hydrocarbons (PAHs), or by the vastly dominant other kinds of stars (mostly on the
main sequence). We achieved above 90% and 97% recovery rate for CI and CII YSOs, respectively, with a precision above 80% and
90% for our most general results. We took advantage of the great flexibility of ANNs to define, for each object, an effective member-
ship probability to each output class. Using a threshold in this probability was found to efficiently improve the classification results
at a reasonable cost of object exclusion. With this additional selection, we reached 90% and 97% precision on CI and CII YSOs,
respectively, for more than half of them. Our catalog of YSO candidates in Orion (365 CI, 2381 CII) and NGC 2264 (101 CI, 469 CII)
predicted by our final ANN, along with the class membership probability for each object, is publicly available at the CDS.
Conclusions. Compared to usual CMD selection schemes, ANNs provide a possibility to quantitatively study the properties and qual-
ity of the classification. Although some further improvement may be achieved by using more powerful ML methods, we established
that the result quality depends mostly on the training set construction. Improvements in YSO identification with IR surveys using
ML would require larger and more reliable training catalogs, either by taking advantage of current and future surveys from various
facilities like VLA, ALMA, or Chandra, or by synthesizing such catalogs from simulations.
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1. Introduction

Observing young stellar objects (YSOs) in stellar clusters is
a common strategy to characterize star-forming regions. Their
presence attests star formation activity, their spatial distribution
within a molecular complex provides clues about its star for-
mation history (Gutermuth et al. 2011), and their surface den-
sity can be used as a measure of the local star formation rate
(Heiderman et al. 2010). They have recently been combined with
astrometric surveys like Gaia to recover the 3D structure and
motion of star-forming clouds (Grossschedl et al. 2018). Their
identification is often summarized as a classification problem.
Such a classification relies mainly on their spectral energy dis-

? The full catalog of young stellar objects and contaminants is only
available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/
cat/J/A+A/647/A116

tribution (SED) in the infrared (IR), and makes it possible to
distinguish evolutionary steps that range from the star-forming
phase to the main sequence (class 0 to III, Lada 1987; Allen et al.
2004). This subclassification provides additional information on
the structure and evolution of star-forming regions.

Modern observation missions produce highly challenging
datasets with an unprecedented number of objects character-
ized by many parameters. The most common example is Gaia
DR2 (Brown et al. 2018) with almost 1.7 billion observed stars.
To handle such a large amount of data, modern industrial-grade
solutions were adopted, like Hadoop (Chansler et al. 2010), that
are mainly used by the “Big Tech” companies (e.g., Amazon,
Google, Microsoft) to manage and maintain their databases.

Regardless of their capacity to produce the data, these
large observed catalogs become almost impossible to analyze
with the usual algorithm schemes because they often scale
poorly with the data size and do not allow easy integration or
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visualization in many dimensions. In this context astronomers
are increasingly getting involved in powerful and auto-
mated statistical approaches like machine learning (ML; e.g.,
Huertas-Company et al. 2011, used to analyze the Galaxy Zoo
survey). This family of methods takes advantage of large dataset
sizes to construct a generalization of the problem to solve, in
any number of dimensions. They can be supervised to take
advantage of a priori knowledge, or unsupervised to combine
information in a new way. They need a training phase that
relies on a large number of objects to learn the generaliza-
tion, but they scale nicely with the number of dimensions and
objects. Once trained, they are able to provide answers more
quickly than most common analysis tool. They are therefore
sometimes proposed as accelerators for various physical prob-
lems (for example to replace a numerical solver for three-body
problems in Breen et al. 2020). In addition to those proper-
ties, they are able to solve a large variety of problems like
classification, regression, clustering, time series prediction, com-
pression, image recognition. The most emblematic ML meth-
ods are certainly artificial neural networks (ANNs), which stand
out because of their unique flexibility. Among their numer-
ous advantages, they scale well with the number of dimen-
sions, and are able to solve a large variety of problems with
only slight adjustments. They are intuitive to construct and use,
and even if it can take a long time to train them, once trained
they are very computationally efficient when making predic-
tions in comparison to other ML methods. ANNs have been
successfully applied in astronomy for a large variety of predic-
tions, including galaxy type classification (e.g., Dieleman et al.
2015; Huertas-Company et al. 2015), computation acceleration
(Grassi et al. 2011; De Mijolla et al. 2019), and ISM turbulent
regime classification (Peek & Burkhart 2019). However, these
powerful methods require special care as they are strongly sen-
sitive to the construction of the training sample and to the tun-
ing of their parameters. Estimating the quality of the results is a
somewhat subtle task, and the proper tools must be used for their
representation and interpretation.

In this context it should be possible to design a classifica-
tion method for YSOs that relies on current and future large sur-
veys and that take advantage of ML tools. This has notably been
attempted by Marton et al. (2016, 2019) and Miettinen (2018).
The study by Marton et al. (2016) uses supervised ML algo-
rithms called support-vector machines (SVMs) applied to the
mid-IR (3−22 µm) all-sky data of the Wide-field Infrared Survey
Explorer (WISE; Wright et al. 2010). Overall, the SVM method
offers great performance on linearly separablde data. However,
it is not able to separate more than two classes at the same time,
and does not scale as well with the number of dimensions as
other methods do. The full-sky approach in the Marton study
produces large YSO candidate catalogs, but suffers from the
uncertainty and artifacts in star-forming regions of the WISE
survey (Lang 2014). Additionally, the YSO objects used for the
training were identified using SIMBAD, resulting in a strong het-
erogeneity in the reliability of the training sample. In their sub-
sequent study, Marton et al. (2019) added Gaia magnitudes and
parallaxes to the study. Gaia is expected to add a large statisti-
cal sample and to complete the spectral energy distribution cov-
erage, but the necessary cross-match between Gaia and WISE
excludes most of the youngest and embedded stars. The authors
also compared the performance of several ML algorithms (e.g.,
SVMs, neural networks, random forest), and reported the ran-
dom forest to be the most efficient with their training sample.
This is a better solution as it overcomes the limitations of the
SVM. However, as in their previous study, the training sample

compiles objects from different identification methods including
SIMBAD. This adds more heterogeneity and is likely to increase
the lack of reliability of the training sample, despite the use of a
larger training sample.

Miettinen (2018) adopts a different approach by compiling
a large number of ML methods applied on reliably identified
YSOs using ten photometric bands ranging from 3.6 to 870 µm.
For this he used the Herschel Orion Protostar Survey (Stutz et al.
2013), resulting in just less than 300 objects. Such a large num-
ber of input dimensions combined with a small learning sample
is often highly problematic for most ML methods. Moreover,
this study focuses on the subclass distinction of YSOs and does
not attempt to extract them from a larger catalog that contains
other types of objects. In consequence, it cannot be generalized
to currently available large surveys, and relies on a prior YSO
candidate selection.

In the present study we propose a YSO identification and
classification method based on ML, and capable of taking advan-
tage of present and future large surveys. We selected ANNs
for their qualities, as stated above, and because they can iden-
tify several classes at the same time. To build our training
sample, we used a simplified version of the popular method
by Gutermuth et al. (2009), a multistep classification scheme
that combines data in the J, H, and Ks bands from the Two
Micron All Sky Survey (2MASS; Skrutskie et al. 2006) and
data between 3 and 24 µm from the Spitzer space telescope
(Werner et al. 2004). By using Spitzer data we expect to cover
only specific regions on the sky, but with a better sensitivity
(≈1.6 to 27 µJ for the IRAC instrument) and spatial resolu-
tion (1.2′′) than WISE (≈80 to 6000 µJ and 6.1′′ to 12′′). In
this paper we show results based on three different datasets,
namely, Orion (Megeath et al. 2012), NGC 2264 (Rapson et al.
2014), and a sample of clouds closer than 1 kpc provided by
Gutermuth et al. (2009) that excludes the first two regions. We
took advantage of ANNs to go beyond the capabilities of sim-
ple selection schemes in color-magnitude diagrams, like that
by Gutermuth et al. (2009), by quantitatively studying the clas-
sification characteristics and quality. We adopted a bottom-up
approach to slowly increase the complexity and diversity toward
a more general classification.

A secondary goal of the paper is to provide a guided exam-
ple of how to efficiently apply ANNs to a classification prob-
lem, with an effort to make our results reproducible. Therefore,
we present how we constructed our ANN in Sect. 2, where we
also present the various difficulties that are inherent to express-
ing the problem in a form that is solvable by an ANN. In Sect. 3
we detail the data preparation phase and our choice of repre-
sentations for the results along with their analysis, presenting
the encountered limitations. We discuss the results in detail in
Sect. 4, using different star-forming regions, and the observed
specific behavior for each of them. Our best results are publicly
available at the CDS. Finally, in Sect. 5 we discuss the caveats
and potential improvements of our methodology, and propose a
probabilistic characterization of our results, which is included in
our public catalog.

2. Deep learning method

Deep learning methods are based on ANNs, a supervised ML
approach. As mentioned before, it is able to iteratively learn a
statistical generalization from a previously labeled dataset. At
the end of the training phase it should be able to retrieve the
expected outputs from unseen data in most cases, allowing us to
estimate the quality of the learned generalization. An extensive
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introduction can be found in Bishop (2006) or Marsland (2014)
that relies on several reference papers, including Rosenblatt
(1958), Rumelhart et al. (1986a,b), and Widrow & Lehr (1990).
We summarize in this section the elements on which the present
study is based.

2.1. Deep artificial neural networks: Multilayer perceptron

We adopted the widely used ANN architecture and training pro-
cedure of the multilayer perceptron (MLP). It consists of mul-
tiple layers of neurons, each of which is connected to all the
neurons of the previous layers up to an input layer that contains
the input features of the problem (Rumelhart et al. 1986b). Each
neuron performs a weighted sum of the previous layer values
and computes an activation function from it, defining the value
of the neuron. In the present work we use the common sigmoid
activation function (Rumelhart et al. 1986b)

g(h) =
1

1 + exp(−βh)
, (1)

where h is the weighted sum of the previous layer values and β is
a positive hyperparameter that defines the steepness of the curve.
This S -shaped function, with results between 0 and 1, emulates
the overall binary behavior of neurons but with a continuous acti-
vation.

The multilayer architecture allows the network to combine
sigmoid functions in a non-linear way, each layer increasing the
complexity of the achievable generalization. The combination of
sigmoid functions can be used to represent any function, which
means that such a network is a universal function approximator,
as demonstrated by Cybenko (1989). They also showed that a
single hidden layer with enough neurons is able to approximate
any function as accurately as an arbitrarily deep network (uni-
versal approximation theorem).

Training the neurons consists in finding a suitable set of
weight values. This is achieved in an iterative fashion by com-
paring the output layer activation with the expected output
regarding the current input object. This is done using an error
function at the output layer that is used to correct the output layer
weights. Since there is no direct comparison possible for the hid-
den layers, the output error must be propagated through the net-
work using the “backpropagation” algorithm (Rumelhart et al.
1986b), which computes an error gradient descent through the
entire network. For the output we used the sum of square differ-
ence. The weight corrections for a given layer l are then com-
puted as

ωi j ← ωi j − η
∂E
∂ωi j

, (2)

where ωi j is the weight matrix of the present layer and η is a
learning rate that scales the updates, and where the gradient ∂E

∂ωi j

can be expanded as

∂E
∂ωi j

= δl( j)
∂h j

∂ωi j
with δl( j) ≡

∂E
∂h j

=
∂E
∂a j

∂a j

∂h j
· (3)

In these equations the indices i and j run through the number of
input dimensions of the current layer and its number of neurons,
respectively. These equations are the same for each layer. The
quantity δl defines a local error for each layer of neurons so that,
for the hidden layer l, the error E in Eqs. (2) and (3) is replaced
by δl+1. It also depends on the activation function a = g(h) at
each layer through the derivative ∂a j/∂h j. Thus, this kind of gra-
dient can be evaluated for an arbitrary number of layers.

2.2. Adopted ANN

In the present paper our aim is to classify young stellar objects.
We detail here the choices we adopted to solve this problem for
the general architecture of the network and for the activation
functions.

Because of the universal approximation theorem (Sect. 2.1),
we chose to use only one hidden layer. For the output layer we
adopted as many output neurons as the number o of classes to
distinguish, so that each class is encoded by the dominant activa-
tion of one output neuron. In other words, if the activation values
of the output layer are (a1, . . . , ao) and ai > ak for all k , i, then
the class predicted by the network is the ith class.

For the hidden layer we adopted the sigmoid activation func-
tion (see previous section). For the output layer, we preferred
the softmax activation function, also known as the normalized
exponential activation,

ak = g(hk) =
exp(hk)∑o

k′=1 exp(hk′ )
, (4)

where k is the neuron index in the output layer. Thanks to the
normalization over all the output neurons, the kth output neu-
ron provides a real value between zero and one, which acts as a
proxy for the membership probability of the input object in the
kth class. This gives the network some attributes of a probabilis-
tic neural network (PNN; Specht 1990; Stinchcombe & White
1989), although it often fails to represent a genuine physical
probability. We discuss in Sect. 5.3 how these outputs can be
used to estimate the reliability of the predicted class of each
object and to point out the degree of confusion between multiple
classes for the algorithm.

Our final network is composed of an input layer constrained
by the input dimensions m of our problem; a hidden layer with a
tunable number of neurons n; and an output layer with o neurons,
one for each output class, with a softmax activation. Figure 1
presents a general illustration of this common architecture. The
gradient descent is computed from the backpropagation equa-
tions (Eqs. (2) and (3)) as follows. The local error δo(k) of the kth
output neuron, with the softmax activation, is computed using

δo(k) = (ak − tk)ak(1 − ak). (5)

The obtained values are used to derive the local error for neurons
in the hidden layer, with the sigmoid activation

δh( j) = βa j(1 − a j)
o∑

k=1

δo(k)ω jk, (6)

where j is the index of a hidden neuron. Once the local errors
are computed, the weights of both layers are updated using

ω jk ← ω jk − ηδo(k)a j, (7)
vi j ← vi j − ηδh( j)xi. (8)

Here ω jk and vi j denote the weights between the hidden and out-
put layers, and between the input and hidden layers, respectively;
a j is the activation value of the jth hidden neuron; and xi is the
ith input value.

Equations (5)–(8) also show that the particular vectors xi = 0
or ai = 0 for all i are pathological points; in this case the
weighted sum h is independent of the weights, and the weight
correction is always null, regardless of the error function or its
propagated value in the present layer. To circumvent this pecu-
liarity, one approach consists in adding an extra value to the input
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Fig. 1. Schematic view of a simple neural network with only one hidden layer. The light dots are input dimensions. The black dots are neurons
with the linking weights represented as continuous lines. Learning with this network relies on Eqs. (1)–(8). X[1,...,i] are the dimensions for one input
vector, a[1,..., j] are the activations of the hidden neurons, a[1,...,k] are the activations of the output neurons, while Vi j and W jk represent the weight
matrices between the input and hidden layers, and between the hidden and output layers, respectively.

vector, fixed to Xm+1 = −1, and connected to the neuron by a
free weight ωm+1, which behaves as any other weight. Because
the input values Xi are often called input nodes, this additional
input dimension is generally referred to as the “bias node.” The
additional degree of freedom provided by the bias node enables
the neuron to behave normally when Xi = 0 for 1 ≤ i ≤ m.
Because all layers work the same way, they are all extended with
an individual bias node.

2.3. Additional network properties and hyperparameters

2.3.1. Properties of the learning rate

Lower values of the learning rate η increase the stability of the
learning process, at the cost of lower speed and a higher chance
for the system to get stuck in a local minimum. Conversely,
higher values increase the speed of the learning process and its
ability to roam from one minimum to another, but values that
are too large might prevent it from converging to a good but
narrow minimum. In this study we adopt values in the range
η = 3−8 × 10−5, but in our formalism the correction depends
on the number of elements shown before applying the correction
(see also Sect. 3.4). The correction also scales with the input
value xi and ai in Eqs. (7) and (8), respectively, correcting more
the weights of the inputs that are more responsible for the neuron
activation.

2.3.2. Weight initialization

The initial state of the weights impacts the convergence speed.
Rumelhart et al. (1986b) proposed to set them at small random
values. We used random initializations in the range −1/

√
N <

ω < 1/
√

N, where N is the number of nodes in the input layer.
This breaks the symmetries that would occur if weights were
initialized to zero, and it guarantees that the weights are large
enough to learn, and small enough to avoid divergence of the
weights when the error of the neuron is large. Details on the ini-
tialization and on recent and efficient alternatives (e.g., the

He-et-al or Xavier methods) are discussed by Glorot & Bengio
(2010) and He et al. (2015).

2.3.3. Additional optimizations

In order to get the best results from our network we added var-
ious optimizations. To help avoid local minima, we added a
weight momentum. This is a classical speeding up method for
various iterative problems (Polyak 1964; Qian 1999). It consists
in adding a fraction of the previous weight update to the next one,
during the training phase. This memory of the previous steps
helps keep a global direction during the training especially in
the first steps. It allows a faster training even when using a lower
learning rate. It also helps reduce the spread between repeated
trainings. It is controlled by an hyperparameter 0 < α < 1, the
usual values being between 0.6 and 0.9.

2.3.4. Training strategy and performance

An important aspect of ML is how the data are presented to
the network (Wilson & Martinez 2003). Since the training set
must be shown numerous times, the order of the objects and
the frequency of the weight updates are two important param-
eters. The simplest way is to show the objects one by one and
to update the weights for each object, shuffling the dataset after
each epoch. Another classical way to train is the batch method,
where the complete dataset is shown at once, and the weights
are updated after each batch. This method is easy to implement
within a matrix formalism, but since the updates are summed
over the whole dataset, the dilution of rare inputs tends be a
more salient issue than with other training methods. A popu-
lar alternative is the stochastic gradient descent, where input
objects are randomly drawn with replacement from the learning
dataset. This is a powerful way to avoid local minima and to con-
verge more quickly with fewer objects. However, most imple-
mentations of neural networks choose the Combined method,
called mini-batch, where the dataset is split into equal parts,
and the weights are updated after each part. In this scheme the
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training set is shuffled and the batches are redefined between
each epoch.

We implemented these methods so that our code can
work in the following modes: basic single-thread CPU, mul-
tithread OpenMP (Dagum & Menon 1998), multithread matrix
OpenBLAS (Xianyi et al. 2012), and GPU CUDA accelerated
(Nickolls et al. 2008). Interestingly, although in principle the
batch method is the least efficient in terms of the number of times
each object is seen, in practice it led to better performance than
others when run on GPU, using a GTX 780. For example, with a
training set of around 3× 104 objects with ten input dimensions,
25 hidden neurons, and three outputs, the training took less than
15 min for more than one million epochs. The results obtained
by all methods were compared at various steps of this study, but
none has significantly outperformed the others. For less heavy
training, all the methods are effective enough to converge in a
matter of seconds. The forward on millions of objects after the
training is always a matter of seconds even for large datasets.

3. Data preparation and network settings

In this section we detail how we connected the general network
presented in the previous sections with the YSO classification
problem. We show how we arranged the data in a usable form for
the network and describe the needed precautions for this process.
We also explain how we defined the various datasets used to train
our network.

3.1. Definition of the classes and the labeled sample

We summarize here the construction of the training sample based
on a simplified version of the method by Gutermuth et al. (2009,
hereafter G09), where only Spitzer data are used. In their orig-
inal method they performed the classification in several steps.
In addition to Spitzer they used 2MASS data, but mainly in
additional steps to refine the classification of some objects.
Therefore, restricting our analysis to Spitzer data still allowed a
reasonable classification, with the advantage of using a simple
and homogeneous dataset. In our adapted method, we started
with the four IRAC bands, at 3.6, 4.5, 5.8, and 8 µm, applying
a pre-selection that kept only the sources with a detection in the
four bands and with uncertainties σ < 0.2 mag, as in the original
classification. Similarly to G09, we used the YSO classes defined
by Allen et al. (2004). Class 0 objects (C0) are starless dense
cores or deeply embedded protostars, mainly visible as black-
body spectra in the far-IR, and are quiet in the mid-IR. Class I
objects (CI) are protostars that emit as blackbodies in the mid-IR
and are dominated by the emission of an infalling envelope that
induces a strong excess in the far-IR. Class II objects (CII) are
pre-main sequence stars with a thick disk that flattens the emis-
sion in the far-IR. Class III objects (CIII) are pre-main sequence
stars with or without a faint disk that are devoid of far-IR
emission.

Using solely IRAC data prevented us from identifying class
0 objects since they do not emit in the IRAC wavelength range.
Similarly, because of Spitzer uncertainties, the class III objects
are too similar to main sequence stars to be distinguished. For
these reasons we limited our objectives to the identification of CI
and CII YSOs. We then proceeded to “phase 1” from G09 (their
Appendix A) to successively extract different contaminants
using specified straight cuts into color-color and color-
magnitude diagrams (CMDs) along with their respective uncer-
tainties. This step enabled us to exclude star-forming galaxies,
active galactic nuclei (AGNs), shock emission, and resolved

polycyclic aromatic hydrocarbon (PAH) emission. It ends by
extracting the class I YSO candidates from the leftovers, and
then again extracting the remaining class II YSO candidates
from more evolved stars. The cuts used on these steps are shown
in Fig. 2, with the final CI and CII YSO candidates from the
Orion region (Sect. 3.2).

For the sake of simplicity, we adopted only three categories:
CI YSOs, CII YSOs, and contaminants, which we also refer to as
“Others” in our tables, which forced the network to focus on the
separation of the contaminant class from the YSOs, rather than
between different contamination classes. Therefore, we defined
the output layer of our network with three neurons using a soft-
max activation function, corresponding to one neuron per class
that returned a membership probability (see Sect. 2.2).

Because we chose not to use 2MASS, we skipped “phase 2”
of the G09 classification scheme. However, G09 also proposed
a “phase 3”, which uses the MIPS 24 µm band and which might
be useful for our classification. In this last phase some objects
that were misclassified in the previous two phases are rebranded.
Although this can raise difficulties, as discussed in Sect. 5.2, we
use it in our analysis because it relies only on Spitzer data. Since
MIPS 24 µm data are only used to refine the classification, we
did not exclude objects without detection in this band. We only
used it in phase 3 when it had an uncertainty σ24 < 0.2 mag.
This additional phase ensured that the features identified in the
SED with the four IRAC bands are consistent with longer wave-
length data. It allowed us to investigate the following: (i) to test
the presence of a transition disk emission in objects classified as
field stars, rebranding them as class II; (ii) to test the presence
of a strong excess in this longer wavelength that is characteris-
tic of deeply embedded class I objects, potentially misclassified
as AGNs or Shocks; and (iii) to refine the distinction between
class I and II by testing whether the SED still rises at wave-
lengths longer than 8 µm for class I, otherwise rebranding them
as reddened class II. These refinements explain the presence of
objects beyond the boundaries in almost all frames in Fig. 2. For
example in frame B, some class II objects, shown in green, are
located behind the boundary at the bottom left part in a region
dominated by more evolved field stars. In this figure all the steps
of this refinement are not shown, only the criteria on reddened
class II identification is illustrated in frame E. Our adapted clas-
sification scheme was therefore composed of five bands (four
IRAC, one MIPS), complemented by their five respective uncer-
tainties, which gives a total of ten different input dimensions (or
features).

In summary, our labeled dataset was structured as a list of
(input, target) pairs, one per point source, where the input was
a vector with ten values ([3.6], [σ3.6], [4.5], [σ4.5], [5.8], [σ5.8],
[8], [σ8], [24], [σ24]), and the target was a vector of three values
(P(CI), P(CII), P(Contaminant)). Here P() denotes the member-
ship probability normalized over the three neurons of the output
layer.

3.2. Labeled datasets in Orion, NGC 2264, 1 kpc and
combinations

As introduced in Sect. 1 we chose to use well-known and well-
constrained star-forming regions, where YSO classification was
already performed using Spitzer data. The main idea was to test
the learning process on individual regions, and then compare it
with various combinations of these regions. It is expected that,
due to the increased diversity in the training set, the combina-
tion of regions should improve the generalization by the trained
network and make it usable on other observed regions with
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Fig. 2. Selection of color-color and color-magnitude diagrams from our simplified multistep G09 classification. The data used in this figure
correspond to the Orion labeled dataset in Table 1. The contaminants, CII YSOs, and CI YSOs are shown in blue, green, and red, respectively.
They are plotted in that order and partly screen one another, as revealed by the histograms in the side frames. The area of each histogram is
normalized to one. In frame A, some PAH galaxies are excluded. In frame B, leftover PAH galaxies are excluded based on other criteria. It also
shows the criteria of class II extraction that is in a later step. In frame C, AGNs are excluded. In frame D, Shocks and PAH aperture contaminants
are excluded. It also shows the last criteria of class I extraction. In frame D, one of the criteria from the Multiband Imaging Photometer (MIPS)
24 µm band is shown, which identifies reddened Class II in the previously classified Class I.

good confidence. We selected regions analyzed in three studies,
all using the original G09 method. However, some differences
remain between the parameters adopted by the authors (e.g., the
uncertainty cuts). Using our simplified G09 method, as presented
in Sect. 3.1, allowed us not only to base our study solely on
Spitzer data, but also to built a homogeneous dataset with the
exact same criteria for all regions.

The first region we used was the Orion molecular cloud with
the dataset from Megeath et al. (2012). This work contains all
the elements we needed with the four IRAC bands and the MIPS
24 µm band, and relies on the G09 method. The authors provide
the full point source catalog they used to perform their YSO can-
didate extraction. This is one of the most important elements in
our study since the network needs to see both the YSOs and the
other types of objects to be able to learn the differences between
them.

For the second dataset we used the catalog by Rapson et al.
(2014), who analyzed Spitzer observations of NGC 2264 in the
Mon OB1 region using the same classification scheme. In con-
trast to the Orion dataset they do not provide the full point source
catalog, but a pre-processed object list compiled after perform-
ing band selection and magnitude uncertainty cuts. It should not
affect the selection because we used the exact same uncertainty
cuts as they did.

We then defined a dataset that is the combination of the pre-
vious two catalogs, which we call the “Combined” dataset. We
used it to test the impact of combining different star-forming

regions in the training process because distance, environment,
and star formation history can impact the statistical distribu-
tions of YSOs in CMDs. We pushed this idea further by defin-
ing an additional catalog, the “1 kpc” catalog, directly from
Gutermuth et al. (2009). It contains a census of the brightest star-
forming regions closer than 1 kpc, excluding both Orion and
NGC 2264. However, this catalog only contains the extracted
YSO candidates and not the original point source catalog with
the corresponding contaminants. This is an important drawback
since it cannot be used to add diversity information in this cate-
gory; however, it can be used to increase the number of class I
and II and increase their specific diversity. We refer to the dataset
that combines the three previous datasets Orion, NGC 2264 and
1 kpc, as the “Full 1 kpc” dataset.

This first classification provided various labeled datasets that
were used for the learning process. The detailed distribution of
the resulting classes for all our datasets are presented in Table 1.

We highlight the discrepancies between our results and those
provided in the respective publications. In the case of Orion from
Megeath et al. (2012), we merged their various subclasses and
found 488 class I and 2991 class II; no details were provided
for the distribution of contaminant classes. This is consistent
with our simplified G09 method, considering that the absence
of the 2MASS phase prevented us from recovering objects that
lack detection in some IRAC bands, and that the authors also
applied additional customized YSO identification steps. For the
NGC 2264 region, Rapson et al. (2014) report 308 sources that
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Table 1. Results of our simplified G09 method for our various datasets.

Dataset Pre-selection Detailed contaminants Labeled classes

Total Selected Gal. AGNs Shocks PAHs Stars CI YSOs CII YSOs Others

Orion 298405 19114 407 1141 28 87 14903 324 2224 16566
NGC 2264 10454 7789 114 250 6 1 6893 90 435 7264
Combined 308859 26903 521 1391 34 88 21796 414 2659 23830
1 kpc (∗) 2548 2171 1 57 0 1 3 370 1735 67
Full 1 kpc 311407 29074 522 1448 34 89 21799 784 4396 23897

Notes. The third group of columns gives the labels used in the learning phase. The last column is the sum of the columns in the “Detailed
contaminants” group. (∗)The 1 kpc sample contains only pre-identified YSO candidates. We still classified some of them as contaminants because
of the simplifications in our method.

present an IR excess, merging class 0/I, II, and transition disks.
However, they used more conservative criteria than in the G09
method to further limit the contamination, which partly explains
why our sample of YSOs is larger in this region. The authors do
not provide all the intermediate numbers, but they mention that
they excluded 5952 contaminant stars from the Mon OB1 region,
a number roughly consistent with our own estimate (6893).
Finally, the 1 kpc dataset only contains class I and II objects,
which means that every object that we classified as a contami-
nant is a direct discrepancy between the two classifications. This
is again due to the absence of some refinement steps in our sim-
plified G09 method. Gutermuth et al. (2009) report 472 class I
and 2076 class II extracted, which is also consistent with our
results taking into account the absence of the 2MASS phase.

From these results, the strong imbalance between the three
labeled classes is striking. This is an important characteris-
tic of this problem because it makes it fall in the category of
“imbalanced learning”. This is a situation known to be difficult
(He & Garcia 2009). It requires special attention in the interpre-
tation of the results (see Sect. 4) and in the preparation of the
training and test datasets.

3.3. Building the training, test, and forward sets

The learning process requires a training dataset to update the
weights (Sect. 2), and also a test set and a validation set, which
contain sources that were not shown to the network during the
learning process. The test set is used after the training phase
to assess the quality of the generalization. The validation set
is used regularly during the training phase to compute an error
that enables one to monitor the evolution of the training process.
Generally, the error on the validation set decreases slowly dur-
ing training, and starts increasing when the network begins to
over-fit the training sample. This is a criterion to stop the learn-
ing process. Most objects are usually included in the training set
because having a strong set of statistics is particularly critical
for the training phase; fewer objects are kept for the testing and
validation steps.

The class proportions in these datasets can be kept, as in the
labeled dataset, or can be rebalanced to have an even number of
objects per class. However, our sample suffers from two limi-
tations: its small size and its strong imbalance. To optimize the
quality of our results we needed to carefully define our training
and test datasets. Since one of the classes that we are interested
in, namely CI YSOs, is represented by a relatively small num-
ber of objects, the efficiency of the training strongly depends on
how many of them we kept in the training sample. Therefore, we
adopted a widespread strategy where the same dataset is used for

both validation and test steps (e.g., LeCun et al. 1998; Bishop
2006). It is efficient to track over-fitting, but it increases the risk
of stopping the training in a state that is abnormally favorable
for the test set. As discussed in Sect. 4, discrepancies between
results on the training and test datasets can be used to diag-
nose remaining over-training. Even with this strategy, the labeled
dataset has only a few objects to be shared between the training
and the test set.

In addition to the previous point, to evaluate the quality of
the result it was necessary for the test set to be representative of
the true problem. As before, this was difficult mainly because our
case study is strongly imbalanced. Therefore, we needed to keep
observational proportions for the test set. We defined a fraction θ
of objects from the labeled dataset that was taken to form the test
dataset. This selection was made independently for each of the
seven subclasses provided by the modified G09 classification.
It ensured that the proportions were respected even for highly
diluted classes of objects (e.g., for Shocks). The effect of taking
such proportions is discussed in Sect. 4 for various cases.

In contrast, the training set does not need to have observa-
tional proportions. It needs to have a greater number of objects
from the classes that have a greater intrinsic diversity and occupy
a larger volume in the input parameter (or feature) space. It is
also necessary to have greater accuracy for the most abundant
classes since even a small statistical error induces a large con-
tamination of the diluted classes. As the CI YSOs are the most
diluted class of interest, we used them to scale the number of
objects from each class as follows. We shared all the CI objects
between the training and the test samples as fixed by the fraction
θ (i.e., N train

CI = (1 − θ) × N tot
CI and N test

CI = θ × N tot
CI , respectively,

where N tot
CI is the total number of CI objects). Then, we defined a

new hyperparameter, the factor γi, as the ratio of the number of
selected objects from a given subclass N train

i to the number N train
CI

of CI YSOs in the same dataset:

γi =
N train

i

N train
CI

· (9)

If N train
i is computed directly from this formula, it may

exceed (1 − θ) × N tot
i in some cases, a situation incompatible

with keeping N test
CI = θ × N tot

CI in the test set. Thus, we limited the
values of N train

i as follows:

N train
i = min(γi × (1 − θ) × N tot

CI , (1 − θ) × N tot
i ). (10)

The values of the θ and γi factors were determined manually by
trying to optimize the results on each training set. Appendix A
illustrates this optimization in the case of γStars. We note that
for the most populated classes, this approach implies that only
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Table 2. Composition of the training and test datasets for each labeled dataset.

CI CII Gal. AGNs Shocks PAHs Stars Total

Orion – θ = 0.3
Test: 97 667 122 342 8 26 4470 5732

Train: γi 1.0 3.35 0.6 1.3 0.1 0.3 4.0
Ni 226 757 135 293 19 60 904 2394

NGC 2264 – θ = 0.3
Test: 27 130 34 75 1 0 2067 2334

Train: γi 1.0 2.5 0.3 0.6 0.1 0.3 3.5
Ni 62 155 18 37 4 0 217 493

Combined – θ = 0.2
Test: 82 531 104 278 6 17 4359 5377

Train: γi 1.0 3.45 0.7 1.6 0.1 0.3 3.8
Ni 331 1141 231 529 27 70 1257 3586

Full 1 kpc – θ = 0.2
Test (∗∗): 82 531 104 278 6 17 4359 5377

Train: γi 1.0/1.0 (∗) 3.3/3.0 (∗) 1.0 1.4 0.1 0.3 8.0
Ni 331/331 (∗) 1092/993 (∗) 331 463 27 70 2648 6286

Notes. (∗)The first and second values of γi are for YSOs from the Combined and 1 kpc datasets, respectively. (∗∗)The 1 kpc dataset does not add
contaminants, therefore the Full 1 kpc test set is the same as the Combined test dataset to keep realistic observational proportions.

part of the sample was used to build the training and test sets. As
discussed below, this was a motivation to repeat the training with
various random selections of objects, and thus assess the impact
of this random selection on the results.

The adopted values of θ and γi, and the corresponding num-
ber of objects in the training sample are given in Table 2 for
each dataset. It shows that with larger labeled datasets we can
use smaller values of θ because it corresponds to a large enough
number of objects in the associated test set. For the training set
of NGC 2264, the number of objects is significantly smaller than
in the other datasets, which impacted the results for the associ-
ated training. The fine tuning of the γi values is discussed for
each region in Sect. 4 and a deeper explanation of their impact
on the results is given at the end of Sect. 3.5.

The results presented in Sects. 4 and 5 were obtained using
two types of forward datasets. Our main approach was to use
the test dataset to perform the forward. In the context of this
study, where a label is available for every object and where we
are limited by the size of the samples, this allows us to maximize
the number of objects in the training set. It does not cause any
legitimacy issues because, as explained above, the test set is built
with the purpose of being independent of the training dataset
and is in observational proportions. To complete our analysis, we
also show results obtained by forwarding the complete labeled
dataset, to address the effect of the small size of our samples, and
to search for hints of over-fitting. We detail this strategy further
in Sect. 4.1.

Finally, to ensure that our results are statistically robust, each
training was repeated several times with different random selec-
tions of the testing and training objects based on the θ and γi
factors. This allowed us to estimate the variability of our results,
as discussed in Sect. 4. We checked the variability after each
change in any of the hyperparameters. In the case of subclasses
with many objects, some objects were not included in the train-
ing or in the test set. This ensured that the random selection could
pick up various combinations of them at each training. In con-
trast, in the case of the rare subclasses, since they are entirely
included in either the training or the test set, it is more difficult
to ensure a large diversity in their selection to test the stability

against selection. For each result presented in Sect. 4 we took
care to also dissociate this effect from the one induced by the
random initialization of the network weights by doing several
trainings with the same data selection, which is an indication of
the intrinsic stability of the network for a specific set of hyper-
parameters.

3.4. Tuning the network hyperparameters

We adjusted most of the network hyperparameters manually to
find appropriate values for our problem, in a similar way as illus-
trated in Appendix A. To ease the research of optimal values, we
started with values from general recipes.

To start, we defined the number of neurons in the hidden
layer. The number of neurons can be roughly estimated with the
idea that each neuron corresponds at least to a continuous lin-
ear separation in the input feature space (Sect. 2.1). Based on
Fig. 2 at least n = 10 neurons should be necessary since this
figure does not represent all the possible combinations of inputs.
We then progressively raised the number of neurons and tested
whether the overall quality of the classification was improving
(Sect. 3.5). In most cases it improved continuously and then fluc-
tuated around a maximum value. The corresponding number of
neurons and the maximum value can vary with the other net-
work hyperparameters. The chosen number of neurons is then
the result of a joint optimization of the different parameters. We
observed that, depending on the other parameters, the average
network reached its maximum value for n ≥ 15 hidden neurons
when trained on Orion. However, the network showed better sta-
bility with a slightly larger value. We adopted n = 20 hidden
neurons for almost all the datasets, and increased it to n = 30
for the largest dataset, because it slightly improved the results in
this case (Table 3). Increasing this number too much could lead
to less stability and increases the computation time.

The optimum number of neurons and the maximum quality
of the classification also depends on the number of objects in
the training dataset. A widely used empirical rule prescribes that
the number of objects for each class in the training sample must
be an order of magnitude larger than the number of weights in
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Table 3. Non-structural network hyperparameter values used in training
for each dataset.

Orion NGC 2264 Combined Full 1 kpc
Size 2394 493 3586 7476

η 3 × 10−5 2 × 10−5 4 × 10−5 8 × 10−5

α 0.7 0.6 0.6 0.8
n 20 20 20 30
ne 5000 5000 5000 3000

Notes. The size of the corresponding training set is put for comparison.
η is the learning rate, α the momentum, n the number of neurons in the
hidden layer, and ne the number of epochs between two control steps.

such a network. This means that the minimum size of the train-
ing dataset increases with the complexity of the problem using
ML algorithms. In our case, including the bias nodes, we would
need (m + 1) × n + (n + 1) × o × 10 objects in our training set,
with the same notations as in Sect. 2.2. This gives us a mini-
mum of 2830 objects in the whole training set using our network
structure with n = 20, assuming a balanced distribution among
the output classes. As shown in Table 2, some of our training
samples are too small for the class I YSOs and critically small
for various subclasses of contaminants. Still, each class does
not get the same number of neurons from the network. Some
classes have a less complex distribution in the parameter space
and can be represented by a small number of weights, therefore
with fewer training examples. The extra representative strength
can then be used to better represent more complex classes that
may be more abundant. Thus, it is a matter of balance between
having a sufficient number of neurons to properly describe our
problem and the maximum amount of available data. This is a
strong limitation on the quality of the results.

Our datasets were individually normalized in an interval of
−1 to 1, with a mean close to zero for each input feature. This
was done for each dimension individually by subtracting the
mean value and then dividing by the new absolute maximum
value. This evened out the numerical values of the input dimen-
sions, which avoided, at the beginning of the training, inappro-
priately giving a stronger impact to the dimensions with larger
numerical values. Therefore, we set the steepness β of the sig-
moid activation of the hidden neurons to β = 1, which worked
well with the adopted normalization.

As described in Sect. 2.3, we only used the batch CUDA
method to train our network throughout this study. We adopted
learning rates in the range η = 3−8 × 10−5 and a momentum
ranging from α = 0.6 to α = 0.8 depending on the dataset, as
shown in Table 3. We obtained these values by optimizing the
results as illustrated in Appendix A. We note that during training
we summed the weight update contributions from each object in
the training set (as in, e.g., Rumelhart et al. 1986b); in order to
keep the update values of similar order, the learning rate should
be decreased according to the size of the training set (Eqs. (7),
and (8)). A variation of this approach could have been employed,
where the contributions from each object in the training set
would be averaged (as in, e.g., Glorot & Bengio 2010), sparing
the user the necessity of adapting the learning rate to the sample
size. This would not change the results since the two strategies
are strictly identical with the appropriate choice of learning rate
value. Interestingly, we observed for this specific study that the
learning rate could instead be slowly increased when the training
dataset was larger. This indicates that, in small training sets, the
learning process is dominated by the lack of constraints, causing

a less stable value of convergence. This translates into a conver-
gence region in the weight space that contains numerous narrow
minima due to the larger description granularity of the objects in
a smaller dataset. The network can only properly resolve it with
a slower learning rate and will be less capable of generaliza-
tion. This is an expected issue because we intentionally included
small datasets in the analysis to assess the limits of the method
with few objects.

Finally, one less important hyperparameter is the number of
epochs between two monitoring steps, which was set from ne =
3000 to ne = 5000. It defines at which frequency the network
state is saved and checked, leaving the opportunity to decrease
the learning rate η if necessary.

3.5. Representation and quality estimators

In this last part we define the concepts necessary to present our
results statistically, and to characterize their quality. For this we
use the “confusion” matrix. It is defined as a two-dimensional
table with rows corresponding to the original class distribution
(targets), and columns corresponding to the classes given to the
same objects by our network classification (output). As an exam-
ple, Table 5 shows the 3 × 3 confusion matrix for the Orion test
set using observational proportions. This representation directly
provides a visual indication of the quality of the network classi-
fication. It allows us to define quality estimators for each class.
The “recall” represents the proportion of objects from a given
class that were correctly classified. The “precision” is a purity
indicator of an output class. It represents the fraction of correctly
classified objects in a class as predicted by the network. And
finally, the “accuracy” is a global quantity that gives the propor-
tion of objects that are correctly classified with respect to the
total number of objects. In our confusion matrices we show it at
the intersection of the recall column and the precision row. Lim-
iting the result analysis to this latter quantity may be mislead-
ing because it would hide class-specific qualities and would be
strongly impacted by the imbalance between the output classes.
The matrix format is particularly well-suited to reveal the weak-
nesses of a classification. It could, for example, reveal that the
vast majority of a subclass goes mistakenly into a specific other
subclass, which is informative about any degeneracy between the
two classes.

One difficulty highlighted by the use of a confusion matrix
is the absence of a global quality estimator since it depends on
the end objective. As for any classification problem, one must
choose the appropriate balance between reliability and complete-
ness. As our aim we chose maximizing the precision for CI,
while keeping a large enough value in recall (ideally >90% for
both), and a good precision for CII as well. This choice strongly
impacts the tuning of the γi values, since they directly represent
the emphasis given to a class against the others during the train-
ing phase, hence biasing the network toward the class that needs
the most representative strength. This will lower the quality of
the most dominant objects. A typical example of emphasis on CI
YSOs is presented in Appendix A for the tuning of γStars.

3.6. Convergence criteria

Since training the network is an iterative process, a convergence
criteria must be adopted. In principle, this criteria should enable
one to identify an iteration where the training has sufficiently
converged for the network to capture the information in the train-
ing sample, but is not yet subject to over-training. It is customary
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Table 4. List of case studies regarding the dataset used to train the network and the dataset to which it was applied to provide predictions.

Forward dataset
Orion NGC 2264 Combined Full 1 kpc

Training dataset

Orion O–O O–N (∗)

NGC 2264 N–O (∗) N–N
Combined C–C
Full 1 kpc F–C

Notes. (∗)These cases were only forwarded on the full corresponding dataset with no need for a test set. There was no forward on the Full 1 kpc
dataset since, as a combination of a complete catalog and a YSO-only catalog, it is not in observational proportions.

to monitor the global error on both the training and test set
during the process. While the error of the training set will slowly
converge to a minimum value, the error on the test set will fol-
low the same curve only for part of the training and then rise
when over-fitting begins. However, this global error is affected
by the proportions in the training sample and does not neces-
sarily reflect the underlying convergence of each subclass. Our
approach to this issue was to let the network learn for an obvi-
ously unnecessary amount of steps and regularly save the state
of the network. This allowed us to better monitor the long-term
behavior of the error, and to compare the confusion matrix at
regular steps. In most cases the error of the training and test
sets both converged to a stable value and stayed there for many
steps before the second one started to rise. During this apparently
stable moment, the prediction quality of the classes oscillated,
switching the classes that get the most representativity strength
from the network. Because we want to put the emphasis on CI
YSOs, we then manually selected a step that was near the maxi-
mum value for CI YSOs precision, with special attention to avoid
the ones that would be too unfavorable to CII YSOs.

We observed that the convergence step changed significantly
with the network weight random initialization, even with the
exact same dataset and network, ranging from 100 to more that
1000, where each step corresponds to several thousands epochs
(Table 3). Most of the time, the error plateau lasted around 100
steps. We note that the number of steps needed to converge has
no consequences on the quality of the results; it only reflects the
length of the particular trajectory followed by the network during
the training phase.

4. Results

This section presents the YSO classification obtained for the var-
ious labeled datasets described in Sect. 3. To ease the reading of
this section, we summarize all the cases in Table 4.

4.1. Results for the Orion molecular cloud

In this section we consider the case where both the training and
forward datasets were built from the Orion labeled dataset, here-
after denoted the O–O case. The network hyperparameters used
for Orion are described in Sect. 3 and Table 3. The resulting
confusion matrix is shown in Table 5, where the forward set is
the test set from Table 2, which is in observational proportions.
The optimal γi factors found for Orion show a stronger impor-
tance of the CII YSOs (γCII = 3.35) and of the Stars subclass
(γStars = 4.0) than for any other subclass (γi . 1). In contrast,
the optimal values for Shocks and PAHs are saturated in the
sense that in Eq. (10), N train

i = (1 − θ) × N tot
i , but they appear

to have a negligible impact on the classification quality in this

case. Galaxies and PAHs appear to be easily classified with a
rather small number of them in the training sample. This is con-
venient since adding too many objects of any class hampers the
capacity of the network to represent CI objects (i.e., the most
diluted class of interest) in the network, degrading the reliabil-
ity of their identification. Therefore, Stars and CII objects could
be well represented with a large fraction of them in the training
sample, still limiting their number to avoid an excessive dilution
of CI YSOs. We note that we have explored different values for
the θ parameter. It revealed that the network predictions improve
continuously when increasing the number of objects in the train-
ing sample. However, to keep enough objects in the test dataset,
we had to limit θ to 0.3 (Table 2). The only classes for which
the number of objects in the training sample is limited by the θ
value rather than their respective γi values are CI YSO, Shocks,
and PAHs. Since Shocks and PAHs are rare in the observational
proportions, they are unlikely to have a significant impact on the
prediction quality. This leads to the outcome that the following
results on Orion are currently limited by the number of CI YSOs
in the dataset.

The global accuracy of this case is 98.4%, but the confu-
sion matrix (Table 5) shows that this apparently good accuracy
is unevenly distributed among the three classes. The best rep-
resented class is the contaminant class, with an excellent preci-
sion of 99.7% and a very good recall of 98.6%. The results are
slightly less satisfying for the two classes of interest, with recalls
of 90.7% and 97.6%, and precisions of 83.0% and 91.3% for the
CI and CII YSOs, respectively. In spite of their very good recall,
due to their widely dominant number, objects from the Others
class are the major contaminants of both CI and CII YSOs, with
11 out of 18, and 58 out of 62 contaminants, respectively. There-
fore, improving the relatively low precision of CI and CII objects
mainly requires us to better classify the objects labeled Others.
In addition, less abundant classes are more vulnerable to con-
tamination. This is clearly illustrated by the fact that the seven
CII YSOs misclassified as CI YSOs account for a loss of 7% in
precision for CI objects, while the nine CII YSOs misclassified
as Others account for a loss of only 0.2% in the Others preci-
sion. Those properties are typical of classification problems with
a diluted class of interest, where it is essential to compute the
confusion matrix using observational proportions. Computing it
from a balanced forward sample would have led to apparently
excellent results, which would greatly overestimate the quality
genuinely obtained in a real use case. It illustrates the necessity
of a high γi value for dominant classes regardless of their interest
(e.g., Stars) as we need to maximize the recall of these classes to
enhance the precision of the diluted classes.

To illustrate the interest of selecting our training and test
composition with the θ and γi factors, we made a test with a
balanced training set where all three classes were represented by
an equal number of objects. The best we could achieve this way
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was not more than ∼55% precision on CI YSOs and ∼87% on
CII YSO. This was mostly due to the small size of the training
sample, which was constrained by the less abundant class, and
to the poor sampling of the Others class compared to its great
diversity. In contrast, when using our more complex sample def-
inition, despite the reduced proportion of YSOs in the training
sample, the precision and recall quantities for both CI and CII
remained above 80% and 90%, respectively. This means that
we found an appropriate balance between the representativity of
each class and their dilution in the training sample.

As discussed in Sect. 3.3, we tested the stability of those
results regarding (i) the initial weight values using the exact
same training dataset, and (ii) the random selection of objects
in the training and test set. For point (i) we found that in Orion
the weight initialization has a weak impact with approximately
±0.5% dispersion in almost all the quality estimators. For point
(ii) we found the dispersion to average around ±1% for the recall
of YSO classes. Contaminants were found to be more stable with
a recall dispersion under ±0.5%. Regarding the precision value,
there is more instability for the CI YSOs because they are weakly
represented in the test set and one misclassified object changes
the precision value by typically 1%. Overall, we observed values
ranging from 77% to 83% for the CI YSOs precision. For the
better represented classes we obtained much more stable values
with dispersions of ±0.5 to ±1% on class II, and less than ±0.5%
on the Others objects. This relative stability is strongly related to
the proper balance between classes, controlled by the γi param-
eters, since strong variations between runs imply that selection
effects are important, and that there are not enough objects to
represent the input parameter space properly.

We also looked at the detailed distribution of classified
objects regarding their subclasses from the labeled dataset.
These results are shown for Orion in Table 6. It is particularly
useful to detail the distribution of contaminants across the three
network output classes. For CI YSOs, the contamination appears
to originate evenly from various subclasses, while for CII there
is a strong contamination from non-YSO stars, though this rep-
resents only a small fraction (∼1%) of the Stars population. The
distribution of Others objects among the subclasses is very simi-
lar to the original (Table 1). Interestingly, the Shocks subclass is
evenly scattered across the three output classes, which we inter-
pret as a failure by the network to find a proper generalization for
these objects. More generally, Table 6 shows that the classes that
are sufficiently represented in the training set like AGNs or Stars
are well classified, while the Galaxies, Shocks, and PAHs are
less well predicted. This is mostly because the training dataset
does not fully cover the respective volume in the input parame-
ter space or because they are too diluted in the dataset. Addition-
ally, Stars and Galaxies mainly contaminate the CII class. This
is a direct consequence of the proximity of these classes in the
input parameter space, as can be seen in Fig. 2.

To circumvent the limitations due to the small size of our test
set, we also applied our network to the complete Orion dataset.
The corresponding confusion matrix is in Table 7, and the asso-
ciated subclass distribution is in Table 8. It may be considered
a risky practice because it includes objects from the training set
that could be over-fitted, so it should not be used alone to ana-
lyze the results. Here, we use it jointly with the results on the
test set as an additional over-fitting test. If the classes are well
constrained, then the confusion matrix should be stable when
switching from the test to the complete dataset. For Orion we
see a strong consistency between Tables 5 and 7 for the Others
and CII classes, both in terms of recall and precision. For CI
YSOs, the recall increases by 3.4%, and the precision decreases

Table 5. Confusion matrix for the O–O case for a typical run.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 88 4 5 90.7%
Actual CII YSOs 7 651 9 97.6%

Others 11 58 4899 98.6%
Precision 83.0% 91.3% 99.7% 98.4%

Table 6. Subclass distribution for the O–O case.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 88 7 1 2 3 3 2
Predicted CII 4 651 5 0 2 4 47

Others 5 9 116 340 3 19 4421

Table 7. Confusion matrix for the O–O case forwarded on the full
dataset.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 305 11 8 94.1%
Actual CII YSOs 34 2157 33 97.0%

Others 34 201 16331 98.6%
Precision 81.8% 91.1% 99.7% 98.3%

Table 8. Subclass distribution for the O–O case forwarded on the full
dataset.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 305 34 2 11 11 7 3
Predicted CII 11 2157 10 9 9 18 155

Others 8 33 395 1121 8 62 14745

by 1.2%. These variations are of the same order as the vari-
ability observed when changing the training set random selec-
tion, indicating that over-fitting is unlikely here. If there is over-
fitting it should be weak and restricted to CI YSOs. Therefore,
the results obtained from the complete Orion dataset appear to
be reliable enough to take advantage of their greater statistics.
Table 7 gives slightly more information than Table 5, and mostly
confirms the previous conclusions on the contamination between
classes. Table 8 provides further insight. AGNs, which seemed to
be almost perfectly classified, are revealed to be misclassified as
YSOs in 1.8% of cases. It also shows that the missed AGNs are
equally distributed across the CI and CII YSO classes. Shocks
are still evenly spread across the three output classes. Regarding
PAHs, Table 8 reveals that there is more confusion with the CII
YSOs than with the CI YSOs.

4.2. NGC 2264 open cluster

For this section we used the training and forward datasets
for NGC 2264 described in Table 2 with the corresponding
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hyperparameters (Table 3). The results for this region alone,
obtained by a forward on the test set, are shown in Table 9, with
the subclass distribution in Table 10. We refer to this case as
the N–N case. The major differences with Orion are expected
to come from the differences in input parameter space coverage
and from the different proportions of each subclass. This N–N
case is also useful to see how difficult it is to train our network
with a small dataset. The recall and precision of CI YSOs are
greater (96.3% and 89.7%, respectively) than in Orion, but the
corresponding number of objects is too small to draw firm con-
clusions. For CII YSOs, the recall and precision are less than in
Orion by approximately 4% and 10%, respectively. The Others
class shows similar values to those in Orion.

We highlight here how having a small learning sample is
problematic for this classification. First of all, the training set
contains only 62 CI YSOs, which is far from enough in regard
of the size of the network (Sect. 3.4). This difficulty is far worse
than for Orion because, to avoid dilution, we had to limit the
number of objects in the two other classes, leading to the small
size of the training sample (493 objects), and consequently to
worse results for all classes. To mitigate these difficulties and
because the dilution effect occurs quickly, we adopted lower
γi values for CII YSOs and Stars, thus reducing their relative
strength. It results in too small training set sizes for all the sub-
classes compared to the number of weights in the network. How-
ever, we observed that a decrease in the number of neurons still
reduced the quality of the results. Although a lower number of
hidden neurons tended to increase stability, we chose to keep
them at n = 20 to get the best results and to reduce the learn-
ing rate to achieve better stability. We note that, due to the use
of batch training, the smaller size of the dataset than for the O–
O case is equivalent to an additional lowering of the learning
rate because the typical magnitude of the weight updates scales
with the batch size (Sect. 2.3). For this dataset slight changes in
the γi values happened to lead to great differences in terms of
results and stability, which is a hint that the classification lacks
constraints.

Even for a given good γi set, there is a large scatter in the
results when changing the training and test set random selec-
tion. It leads to a dispersion of about ±4% in both recall and
precision for the CI YSOs. This can be due to a lack of represen-
tativity of this class in our sample, but it can also come from
small-number effects in the test set that are stronger than in
Orion. These two points show that the quality estimators for
CI YSOs are not trustworthy with such a small sample size.
The results shown in Tables 9 and 10 correspond to one of the
best trainings on NGC 2264, that achieves nearly the best val-
ues for CI quality estimators. The CII precision dispersion is
about ±2%, and its average value is around 80%, which is higher
than in the specific result given in Table 9, but still significantly
lower than for Orion. In contrast, the CII recall is fairly stable
with less than ±1% dispersion. Contaminants seem as stable as
for Orion using these specific γi values. However, it could come
from the artificial simplification of the problem due to the quasi-
absence of some subclasses (Shocks and PAHs; see Table 2) in
the test set. We note that the network would not be able to clas-
sify objects from these classes if this training were applied to any
other region that contained such objects.

As in the previous section, we studied the effect of the ran-
dom initialization of the weights. We found that both precision
and recall of YSO classes are less stable than for the O–O case
with a dispersion of ±1.5% to ±2.5%. The Others class shows a
similar stability to that for Orion, with up to ±0.5% dispersion
on precision and recall, which could again be biased by the fact

Table 9. Confusion matrix for the N–N case for a typical run.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 26 1 0 96.3%
Actual CII YSOs 1 121 8 93.1%

Others 2 31 2144 98.5%
Precision 89.7% 79.1% 99.6% 98.2%

Table 10. Subclass distribution for the N–N case.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 26 1 0 2 0 0 0
Predicted CII 1 121 4 5 1 0 21

Others 0 8 30 68 0 0 2046

Table 11. Confusion matrix for the N–N case forwarded on the full
dataset.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 88 2 0 97.8%
Actual CII YSOs 7 406 22 93.3%

Others 12 77 7175 98.8%
Precision 82.2% 83.7% 99.7% 98.4%

Table 12. Subclass distribution for the N–N case forwarded on the full
dataset.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 88 7 0 8 3 0 0
Predicted CII 2 406 8 10 1 0 58

Others 0 22 106 232 2 0 6835

that the absence of some subclasses simplifies the classification.
These results indicate as before that our network is not suffi-
ciently constrained using this dataset alone with respect to the
architecture complexity that is needed for YSO classification.

The forward on the complete NGC 2264 dataset is crucial in
this case since it may overcome small-number effects for many
subclasses. The corresponding results are shown in Tables 11
and 12. It is more difficult in this case than for O–O to be
sure that there is no over-training, even with a careful moni-
toring of the error convergence on the test set during the train-
ing, because the small-number effects are important. As a pre-
caution, in all the results for the N–N case, we chose to stop
the training slightly earlier in the convergence phase in com-
parison to Orion, for which we found over-training to be neg-
ligible or absent (Sect. 4.1). We expect this strategy to reduce
over-training, at the cost of a higher noise. With this assumption,
the results show more similarities to the Orion case than those
obtained with the test set only (comparing Tables 7 and 11).
Because NGC 2264 contains fewer CI and CII YSOs than Orion,
their boundaries with the contaminants in the parameter space
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Table 13. Confusion matrix for the O–N case forwarded on the full
NGC 2264 dataset.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 74 2 14 82.2%
Actual CII YSOs 6 402 27 92.4%

Others 9 52 7203 99.2%
Precision 83.1% 88.2% 99.4% 98.6%

Table 14. Subclass distribution for the O–N case forwarded on the
NGC 2264 dataset.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 74 6 0 3 5 0 1
Predicted CII 2 402 6 2 0 0 44

Others 14 27 108 245 0 1 6848

are less constrained. This results in a lower precision for YSO
classes, which is mainly visible for the CII YSOs with a drop in
precision to 83.7%. For NGC 2264, we have smaller optimal γi
values for the contaminants (especially the Stars) than in Orion.
Since it implicitly forces the network to put the emphasis on CI
and CII, it should result in better, or at least equivalent, values
for recall on these classes than on Orion. This appears to be the
case for CI (≈98%). It is less clear for CII (93.3%), possibly
because of their lower γi value than for the Orion case. For the
sub-contaminant distributions the statistics is more robust than in
Table 10, and the Galaxies and AGNs are properly represented.
Even so, it appears that the AGN classification quality is not suf-
ficient and has a stronger impact on the CI precision than in the
case of Orion. The other behaviors are similar to those identified
in Orion.

4.3. Cross forwards

In this section we present our test of the generalization capac-
ity of the trained networks; we used the network trained on
one region to classify the sources of the other one. This test is
important because this is a typical use case: training the net-
work on well-known regions, and using it on a new region.
This is also a way to highlight more discrepancies between the
datasets. For this we used the obtained trained networks from
the O–O and N–N cases described in Sects. 4.1 and 4.2. Since
they are both built from the same original classification scheme
(Sect. 3.1), we applied one training directly to the other labeled
dataset, which resulted in the two new cases O–N and N–O (see
Table 4). However, the forwarded dataset must be normalized in
the same way as the training set (Sect. 3.4). Omitting this step
would lead to deviations and distortions of our network class
boundaries in the input parameter space, with a strong impact on
the network prediction. One difficulty is that some objects end
up with parameters outside the [−1; 1] range, corresponding to
areas of the feature space where the network is not constrained.
This effect could be partly hidden by excluding those out-of-
boundary objects. However, they give an additional information
about what kind of objects are missing in the respective training
datasets and about the corresponding input feature space areas.
Therefore, we preferred to keep them in the forward samples.

Table 15. Confusion matrix for N–O case forwarded on the full Orion
dataset.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 285 33 6 88.0%
Actual CII YSOs 54 1967 203 88.4%

Others 98 293 16175 97.6%
Precision 65.2% 85.8% 98.7% 96.4%

Table 16. Subclass distribution for the N–O case forwarded on the full
Orion dataset.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 285 54 8 37 12 39 2
Predicted CII 33 1967 18 34 15 27 199

Others 6 203 381 1070 1 21 14702

It is legitimate here to use the full dataset directly to test the
networks because none of its objects were used during the corre-
sponding training. It also means that we forwarded datasets with
different proportions than the ones they were trained with, but
this is the expected end use of such networks. Moreover, both
datasets are the results of observations, which means that our
tests measured the effective performance of the trained network
on a genuine observational use case with the corresponding pro-
portions of classes.

It should be noted that in order to properly compare the
results we needed to keep the exact same networks that produced
the results in Tables 5, 7, 9, and 11. Therefore, we did not esti-
mate the dispersion of the prediction regarding the weight ini-
tialization, and the training set random selection on the O–N and
N–O cases.

Regarding the results from O–N in Tables 13 and 14, we see
that the recall for CI YSOs is lower by approximately 8% than
that for the O–O case (Table 5) and lower by approximately 12%
when compared to the Orion full dataset results (Table 7). Sim-
ilarly, CII YSOs have a recall lower by approximately 5%. This
difference is much greater than the dispersion of our results on
the O–O case, which indicates that the Orion data lack some
specific information that is contained in NGC 2264 for these
classes. This should correspond to differences in feature space
coverage, but these differences might be subtle in the limited set
of CMDs considered in the G09 method, whereas the network
works directly in the ten-dimensional space composed of the five
bands and five errors. For example, as shown in Fig. 3, it is strik-
ing that both YSO classes cover less the upper part of the dia-
gram ([4.5]< 9) in the NGC 2264 case than for Orion. The slopes
of the normalized histograms in this figure also illustrate that the
density distributions are different between Orion and NGC 2264,
especially for CI YSOs. For this population Orion presents a
virtually symmetrical peaked distribution of [4.5]−[8] centered
near [4.5]−[8] = 1.9 mag, while NGC 2264 shows a flatter and
more skewed distribution. Although subtle, this specificity of
the parameter space coverage is in line with the drop in the CI
YSO recall in the O–N case, since in Orion the area located at
[4.5]−[8]> 2 is less constrained than for [4.5]−[8]≈ 1.9, while
in NGC 2264 the area at [4.5]−[8]> 2 contains a larger fraction
of CI YSOs. This interpretation is also consistent with the fact
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Orion NGC 2264

Combined Combined + 1 kpc

Fig. 3. Differences in feature space coverage for our datasets. The CI YSOs, CII YSOs, and contaminants are shown in red, green, and blue,
respectively, according to the simplified G09 classification scheme. The crosses in the last frame show the YSOs from the 1 kpc sample. In the
side frames, the area of each histogram is normalized to one.

that in the O–N case, CI are mostly confused with objects from
the Others class, in contrast with the O–O and N–N cases, sug-
gesting a lack of constraint for the boundary between the CI and
Others classes in the lower right area of the CI distribution in
Fig. 3, although the differences in class proportions may also
contribute (see next paragraph). From the perspective of the net-
work, it is likely that the weight values were more influenced
by the more abundant weight updates from objects near the CI
peak at [4.5]−[8] = 1.9 mag. Physically, the observed differences
in this CMD are likely to come from the different star forma-
tion histories and from the difference in distance between the
two regions, between ∼420 pc for Orion (Megeath et al. 2012)
and ∼760 pc for NGC 2264 (Rapson et al. 2014). In contrast, the
Others class appears to be well represented, suggesting that the
Orion training set contains enough objects to represent properly
the inherent distribution of this class also in NGC 2264.

The changes in precision are less significant than those in
recall, due to the differences in class proportions between the two

datasets. For example, there is a 1.58 factor in the CI-to-Others
ratio between Orion and NGC 2264. The number of Others mis-
classified as CIs is then expected to rise, with a consequent
impact on CI precision. However, for this case the improved
Others recall between the O–O and O–N case of 0.6% seems to
overcome this effect partly. In contrast, the CII YSOs, for which
the proportions are lowered by a 2.24 factor, indeed suffer a ∼8%
drop in precision. This strong interplay between proportions and
changes in recall for each class makes the differences in preci-
sion less prone to analysis.

Concerning the results from N–O in Tables 15 and 16, the
precision of CI YSOs dropped to 65.2%, in spite of the num-
ber of objects, sufficient not to be affected by small-number
effects. This is the worst quality estimator value we observed
in the whole study. The precision drop in CII YSOs is less
important, and only 2% lower than the NGC 2264 full dataset
results. The impact of the differences in feature space coverage
is even stronger than for the O–N case since there are almost

A116, page 14 of 25

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038516&pdf_id=3


D. Cornu and J. Montillaud: A Neural Network-based methodology to select YSOs

Table 17. Confusion matrix for the C–C case for a typical run.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 77 2 3 93.9%
Actual CII YSOs 9 514 8 96.8%

Others 9 49 4706 98.8%
Precision 81.1% 91.0% 99.8% 98.5%

Table 18. Subclass distribution of the C–C case.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 77 9 1 3 3 2 0
Predicted CII 2 514 0 3 3 4 39

Others 3 8 103 272 0 11 4320

no YSOs brighter than [4.5] = 9 mag in NGC 2264; therefore, a
large part of the feature space where many Orion objects lie is
left unconstrained. The NGC 2264 dataset also lacks shocks and
PAHs that are present in non-negligible proportions in the Orion
dataset. Therefore, the NGC 2264 trained network did not con-
strain them, as confirmed in Table 16, where PAHs are evenly
scattered in all output classes and where shocks are completely
misclassified as YSOs. In addition to these flaws, the number of
objects in the training set is too small to properly constrain the
overall network architecture that suits this problem (Sect. 3.4).

4.4. Combined training

The two major limitations identified in the cases of Orion and
NGC 2264 are (i) the lack of CI YSOs in the training datasets
to be properly constrained by the network, with the associated
reduction of other types of objects to avoid dilution, and (ii)
the differences in feature space coverage for the two different
regions, which induces a lack of generalization capacity toward
new star-forming regions. A simple solution to overcome those
limitations is to perform a combined training with the two clouds
(Fig. 3). We refer to this case as the C–C case, where we merged
the labeled samples from Orion and NGC 2264, and used it to
train the network and to perform the forward step. Since the two
labeled datasets were obtained with our modified G09 classifi-
cation, they formed a homogeneous dataset and it was straight-
forward to combine them. We normalized this new Combined
dataset as explained in Sect. 3.4. The detailed subclass distribu-
tion of the target sample for this dataset is presented in Table 1.
Thanks to the larger number of CI YSOs in the labeled dataset,
we were able to adopt a lower value of θ (θ = 0.2) to build the
test set, which proved to be large enough to mitigate the small-
number effects for our output classes. It conserved most data in
the training set, where they were needed to improve the classifi-
cation quality. We note that merging the datasets led to slightly
different observational proportions.

Table 2 shows the optimal γi values obtained with the Com-
bined dataset. The γi values are very similar to those of Orion,
as a result of Orion providing two to five times more objects
than NGC 2264 to the Combined dataset. The dataset is glob-
ally larger, so that the optimal number of neurons could have
been raised to represent the expected more complex boundaries

Table 19. Confusion matrix for the C–C case forwarded on the full
dataset.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 389 14 11 94.0%
Actual CII YSOs 53 2570 36 96.7%

Others 50 254 23526 98.7%
Precision 79.1% 90.6% 99.8% 98.4%

Table 20. Subclass distribution for the C–C case forwarded on the full
dataset.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 389 53 2 10 22 11 5
Predicted CII 14 2570 4 16 11 15 208

Others 11 36 515 1365 1 62 21583

in the parameter space. However, increasing the number of hid-
den neurons did not show any improvement of the end results.
Thus, we kept 20 hidden neurons for this C–C case. Neverthe-
less, the larger size of the training set tended to stabilize the
convergence of the network during the training, which allowed
us to increase the learning rate to η = 4 × 10−5. As shown
in Sect. 3.4, this is counterintuitive. Since the weight updates
are computed as a sum over the objects in the training sam-
ple, they should be greater here than in previous cases, increas-
ing the probability that the network misses local minima. On
the other hand, the larger statistics improves the weight space
resolution, mitigating those local minima that originate in the
limited number of objects. It appears that the latter effect was
dominant in this test, which allowed us to increase the learn-
ing rate even more. We kept the momentum value at α = 0.6
(Sect. 2.3) because a greater value made the network diverge in
the first steps of training when the weight corrections were too
large.

The results of this C–C case, presented in Tables 17 and 18,
were obtained by a forward on the test set of the Combined sam-
ple. They are very close to those on the O–O case with the full
Orion dataset. The largest difference is 0.7% for the precision
of CI YSOs. The other differences are ≤0.2%. The stability of
the results regarding both the weight initialization and the ran-
dom selection of the test and training sets is also very similar to
that of the O–O case (Sect. 4.1), with recall and precision val-
ues scattered by typically ±0.5%, except for CI precision which
is scattered by about ±1%. These fluctuations exceed the differ-
ences between the O–O and C–C case, as observed from their
confusion matrices, when considering the full dataset forward.
This stability was not guaranteed since, on the one hand, the
Combined training set is more general than previous training sets
and, on the other hand, the Combined training is a more com-
plex problem than a single-cloud training, due to the expected
more complex distribution of objects in the input parameter
space, especially for YSOs. If the latter effect dominates the
results could be expected to be less good than both the O–O and
N–N results individually, or than any linear combination of them.
We illustrate this idea with the following conservative reasoning.
If, when using the Combined training dataset, the network had
only learned from Orion objects, as might be argued due to their
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dominance in the Combined sample, then the state of the net-
work should be very similar to that obtained in the O–O case.
The C–C confusion matrix should then be a linear combina-
tion of those of the O–O (Table 7) and O–N cases (Table 13),
weighted by the respective abundances of Orion and NGC 2264
in the forward sampling. The recall of CI YSOs in the O–O and
O–N was 94.1% and 82.2%, respectively. Since, in the Com-
bined dataset, 78.3% of CI YSOs come from Orion, the expected
recall from an Orion dominated network would be 91.5%. Con-
sidering the obtained value of 93.9% in the C–C case (Table 17),
with a ±1% dispersion, the network has indisputably learned
information from the NGC 2264 objects, and the increased com-
plexity of the problem was more than balanced by the increased
generality of the sample. In other words, the fact that the results
of the C–C test are as good as those of the O–O test in spite of the
increased complexity implies that the network managed to take
advantage of the greater generality of the Combined sample to
find a better generalization. The analysis of the other two classes
does not contradict these conclusions, although the improvement
for CII objects is only marginal since the same reasoning applied
to CII YSOs leads to a recall of 96.2%, to be compared to the
C–C value of 96.8%, with ±0.5% dispersion. This is in line with
the fact that the CII YSO coverage in Orion was already close
to that of NGC 2264, as highlighted by the less than 1% differ-
ence between the CII YSO recall in O–N and N–N. Finally, con-
taminants are dominated by subclasses that were already nicely
constrained in the O–O and N–N cases.

The fact that the network results for the C–C case are as good
as or better than for the Orion case despite the added complexity
confirms that the number of objects was a strong limitation in
the O–O and N–N cases. It also confirms that the O–O training
might have provided better results with more observed objects
in the same region, which was already established from the
improvement of results with lower θ values in Sect. 4.1. More-
over, the absence of positive effect when raising the number of
neurons demonstrates that the network efficiently combined their
respective input parameter space coverage and that n = 20 does
not limit these results. The change in observational proportions
that occurred by merging the two datasets seems to have a negli-
gible impact as they are still close to the Orion values, but adding
more regions with fewer YSOs is expected to decrease the preci-
sion values for YSOs by increasing their dilution by the Others
class.

The results for the complete Combined dataset are presented
in Tables 19 and 20. As before, the results appear to be free from
over-training since there is no noticeable increase in recall for
any of our classes. These results are very similar to the pre-
vious ones, with differences in quality estimators of the same
order as the dispersion observed with random weight initializa-
tion. The slight decrease in precision of CI YSOs is also of the
same order as the dispersion obtained from the random selection
of our training and test samples. The contaminants that are not
sufficiently constrained, like Shocks, could also be affected by
selection effects between the two sets, which could lead to such
a dispersion in precision for CI YSOs. This seems to be con-
firmed by the fact that two-thirds of the shocks were misclassi-
fied as CI YSOs. Interestingly, this suggests a change in the net-
work behavior compared to the O–O case, where shocks were
almost evenly distributed among the three output classes. We
interpret the difference in shock distributions as a consequence
of the difference in the relative abundance of this subclass com-
pared to the rest of the training set, and to its strong dependency
to the MIPS rebranding step. The special location of Shocks in
the feature space, close to CII YSOs and mixed with the MIPS-

identified CI YSOs (Fig. 2D), makes this subclass identification
sensitive to its small relative abundance during the learning pro-
cess. Thus, in the O–O case, the number of shocks in the sam-
ple enabled the network to place the boundary in the vicinity of
the Shocks region, but in an inaccurate way, hence the even dis-
tribution. Conversely, the lower fraction of shocks in the C–C
sample probably made the network find an optimum where most
of its representative strength was used for other parts of the fea-
ture space. In this situation the majority of shocks are likely to
be included in one specific output class, which can vary accord-
ing to the random training set selection, but is more likely to be
a YSO class, and even more likely to be CI due to the MIPS
rebranding step.

To summarize the results of this Combined training, we
showed that combining two star-forming clouds improved the
underlying diversity of our prediction, and therefore the gener-
alization capability of our network over possible new regions.
The added complexity was largely overcome by the increased
statistics on our classes of interest, CI and CII YSOs, which
allowed us to maintain very good accuracy and precision for
them. However, some rare contaminant subclasses suffered from
their increased dilution.

4.5. Multiple-cloud training

In this section we present the advantages of the 1 kpc dataset to
further improve the network generalization capacity by increas-
ing the underlying diversity of the object sample. As discussed
in Sect. 3.2, this dataset only contains YSOs. This is not a major
issue because most of our contaminant subclasses are already
well constrained, while we have shown that it is not the case for
YSOs since adding more of them led to a better generalization.
As the dataset contains several regions, it should ensure an even
better diversity and input parameter space coverage for YSOs
than the previous C–C case, but it might also increase again the
underlying distribution complexity (Fig. 3). In this section, we
study the F–C case, that is a training on the Full 1 kpc dataset
(Combined + 1 kpc YSOs) and a forward on the test set of the
full Combined dataset, to keep a realistic test dataset with almost
observational proportions. As before, the Full 1 kpc dataset is
normalized as described in Sect. 3.4.

The detailed γi selection for this more complicated dataset
is presented in Table 2. Because we added YSOs, we had to
increase the number of contaminants to preserve their domi-
nant representation in the training sample. However, some sub-
classes of contaminants were already too few in the C–C case
and already included in the training set as much as possible.
Therefore, we did not add all the CI YSOs at our disposal to
avoid a too strong dilution of these subclasses of contaminants.
For objects from the Combined dataset, we kept θ = 0.2. In the
same manner as for the other datasets, we tried various num-
bers of neurons in the hidden layer, and for the first time the
optimum value is higher with around n = 30. This means that
we might have sufficiently raised the number of objects to break
previously existing limitations regarding the size of the network.
We also took advantage of the larger dataset and adopted greater
values for η = 8 × 10−5 and α = 0.8.

The results for this F–C case are presented in Tables 21
and 22. The precision of CI YSOs has dropped by 2.5%, but
all the other precisions have slightly improved. Compared to the
C–C case (Table 17), the precision of CI YSOs raised by 2.8%,
but the recall is significantly lowered with a drop of nearly 5%.
In contrast, the precision of CII YSOs dropped by 1.2%, and
the recall improved by 0.8%. Overall, these results are similar to
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the previous C–C case, despite the increase in complexity com-
ing from the addition of YSOs from new star-forming regions.
Similarly to the combination of Orion and NGC 2264, we could
have observed a stronger drop in quality estimators because the
problem becomes more general and therefore more difficult to
constrain. It is worth noting that the stability of the network
somewhat decreased in comparison to the O–O and C–C cases.
We observed a dispersion of recall regarding the weight random
initialization of about ±1% for CI and ±0.7% for CII YSOs. This
dispersion affects the Others class less, with a value of approxi-
mately ±0.15%. The precision is less reliable with a dispersion
of nearly ±1.5% for CI YSOs. The precision dispersion for CII
YSOs is around ±0.5% and is less than ±0.1% for the Others
class.

More generally, the sources of contamination of the YSO
classes have not changed; however, their overall effect is just
greater. The fact that increasing the number of neurons from 20
to 30 in the network leads to better results is certainly an indi-
cation of the increased complexity of this problem. This means
that the network uses more refined splittings in the input param-
eter space. However, there might not be enough objects in our
dataset to perfectly constrain this larger network, despite the
added YSOs. This naturally leads to a greater sensitivity to the
weight initialization. In contrast, the dispersion over the training
set random selection is similar to that observed in the C–C case
and is of the same order as the weight initialization dispersion.
As in the previous cases, the results show that the main source
of contamination of CI YSOs are the CII YSOs, while the latter
are mostly contaminated by the Others class. This is, as in the
previous cases, an indication of the respective proximity of the
three classes in the input parameter space.

The results of a forward of the complete Combined dataset
using this network are shown in Table 23, with the subclass dis-
tributions in Table 24. These results show a 2.3% increase in the
CI YSO recall compared to Table 21, and a 2.8% drop in preci-
sion for the same class. Similarly to all the previous cases, the
Others class remained almost identical. For CII YSOs and Oth-
ers the variations in precision and recall are within the weight
initialization dispersion. The case of CI YSOs is less clear as
their recall increase is greater than their dispersion, which could
mean that there is a slight over-training. However, when search-
ing for the optimum set of γi values, we observed that the sets
leading to less over-training of CI YSOs also degraded the over-
all quality of the results. Even so, it suggests that the genuine CI
YSO recall is between the values listed in Tables 21 and 23.

The increased number of objects provided us with more
details on the subclass distribution across the output classes.
Similarly to the C–C case, the Shocks behave as completely
unconstrained since they end up in mostly one class, which
changes randomly when the training is repeated. Compared to
the C–C case this effect is stronger, most likely because we did
not add any Shocks in the training sample, therefore increasing
their dilution. For almost any of the other subclasses, the vari-
ations are within the dispersion; overall there is a slight trend
for contaminant subclasses (galaxies, AGNs, shocks, PAH) to be
less well classified, and CII YSOs and Stars to be better classi-
fied. These results are expected because we increased the num-
ber of YSOs and Stars in the training sample. On the other hand,
we also increased the YSO distribution complexity, which could
lead to worse overall results. This is possibly what induced the
slight drop in CI YSO recall observed from C–C to F–C, whereas
CII YSOs and Others kept their quality indicators stable, either
due to the increased statistics or because their input parameter

Table 21. Confusion matrix for the F–C case for a typical run.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 73 4 5 89.0%
Actual CII YSOs 9 518 4 97.6%

Others 5 55 4704 98.7%
Precision 83.9% 89.8% 99.8% 98.5%

Table 22. Subclass distribution for the F–C case.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 73 9 0 0 1 2 2
Predicted CII 4 518 1 6 5 6 37

Others 5 4 102 272 0 9 4321

Table 23. Confusion matrix for the F–C case forwarded on the full
Combined dataset.

Predicted
Class CI YSOs CII YSOs Others Recall

CI YSOs 378 22 14 91.3%
Actual CII YSOs 45 2584 30 97.2%

Others 43 244 23543 98.8%
Precision 81.1% 90.7% 99.8% 98.5%

Table 24. Subclass distribution for the F–C case forwarded on the full
Combined dataset.

Actual
CI CII Gal AGNs Shocks PAHs Stars

CI 378 45 0 15 8 15 5
Predicted CII 22 2584 6 22 25 14 177

Others 14 30 515 1354 1 59 21614

space was already properly constrained by the Combined dataset
(C–C case).

4.6. Final classification and public catalog

Among all our attempts, the multiple cloud training (F–C,
Sect. 4.5) is clearly the most reliable one for general use. We
are confident that our Full 1 kpc trained network contains a suf-
ficient diversity of subclasses to be efficiently applied to most
nearby (.1 kpc) star-forming regions. Our results show that one
can expect nearly 90% of the CI YSOs to be properly recovered
with a precision above 80%, while nearly 97% of the CII YSOs
are expected to be recovered with a 90% precision.

The table containing the YSO candidates from the Orion and
NGC 2264 regions is made public and is available at the CDS.
It includes all objects from the catalogs by Megeath et al. (2012)
and Rapson et al. (2014), as described in Sect. 3.2, and Table C.1
shows an excerpt of our catalog. As a preview to Sect. 5.3, we
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Missed Wrong

Fig. 4. Zoom-in on the [4.5]−[5.8] vs. [3.6]−[4.5] graph, for misclassified objects in the F–C case. Missed: Genuine CI and CII YSOs according to
the labeled dataset that were misclassified by the network. Wrong: Predictions of the network that are known to be incorrect based on the labeled
dataset. In both frames, green is for genuine CII YSOs, red for genuine CI YSOs, and blue is for genuine contaminants. The symbol shapes indicate
the predicted output class as specified in the legends.

note here that a membership probability is also provided for each
source.

5. Discussion

5.1. Current limitations to the classification scheme

With the dataset selected for this paper the quality of our results
is mostly dependent on the proper choice of the γi factors, that
is to say that the main limitation comes from the construction of
our labeled dataset. It is indeed expected to be the most critical
part of any ML application because the network only provides
results that are as good as the input data. One of our major issues
is that some subclasses of rare contaminants remain poorly con-
strained, like Shocks or PAHs, which leads to an important con-
tamination of the YSO classes. The non-homogeneity between
the 1 kpc small cloud dataset and the other datasets worsen
this effect by increasing the dilution of these rare subclasses
(Sect. 4.4). They are almost evenly distributed across output
classes in the O–O case, revealing that the network was not able
to identify enough constraints on those objects. In contrast, for
the C–C and F–C cases, they are randomly assigned to an out-
put class. This means that they are completely unconstrained by
the network, which failed to disentangle them from the noise of
another class. This effect appeared in those specific cases due to
the increased dilution of those subclasses of contaminants.

The main source of contamination for CII YSOs is the Star
subclass. Adding more of them has proven to improve their clas-
sification quality (Sects. 4.1 and 4.4), but at the cost of even more
dilution of all the other subclasses, which has a stronger negative
impact on the global result. Similarly, YSO classes themselves
should be more present to further improve their recall, but again
at the cost of an increased dilution of the contaminant subclasses.
The confusion between CI and CII YSOs is illustrated by Fig. 4,
where the misclassified YSOs of both CI and CII accumulate
at the boundary between them in the input parameter space. This
figure also illustrates the CII contamination from Others with the
same kind of stacking, where the two classes are close to each
other. A similar representation for all the CMDs is provided in
Fig. B.1.

Overall, we lack the data to get better results. Large Spitzer
point source catalogs are available, but the original classifica-
tion from Gutermuth et al. (2009) was tailored for relatively
nearby star-forming regions where YSOs are expected to be
observed. Therefore, using a non-specific large Spitzer catalog
would mostly add non-star-forming regions, which would cre-
ate a significant number of false positive YSOs. In practice,
these false positive YSOs would overwhelmingly contaminate
the results, and the network performance would drop to the point
where more than 50% of CI YSOs are false positive. However,
since one of our main limitations is the number of contaminants,
a large Spitzer catalog could be used to increase the number of
rare contaminants in the training sample by selecting areas that
are known to be clear of YSOs. Unfortunately, this approach
would mostly provide us with more Stars, Galaxies, and AGNs,
which are already well constrained, while the two most criti-
cal contaminant subclasses, Shocks and PAHs, originate mostly
from star-forming regions.

5.2. Effect of the 24 µm MIPS band

We investigate here the impact of the MIPS 24 µm band on
the original classification, and therefore on the results of the
network. As stated in Sect. 3.1, this band is used as a refine-
ment step of the G09 method. Considering the classification per-
formed using the four IRAC bands, it ensures that it is consis-
tent with the 24 µm emission where available, for example by
testing whether the SED still rises at long wavelength to better
distinguish between different YSO classes. However, it adds het-
erogeneity in the classification scheme since objects that do not
present a MIPS emission cannot be refined. It makes the results
harder to interpret and gives more work to the network as it has
to learn an equivalent of this additional step. Moreover, the effect
of this band on the end classification strongly affects some sub-
classes that are very rare in the dataset. For example, almost half
of the objects initially classified as Shocks are reclassified as CI
YSOs after this refinement step. Therefore, as it corresponds to
a significant increase in complexity on very few objects, it is dif-
ficult to get the network to constrain them, considering the other
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Output Correct Missed Wrong

Fig. 5. Ternary plots of output membership probability for each class in the F–C case forwarded on the full dataset. Output: All objects. Correct:
Genuine and predicted classes are identical. Missed: Misclassified objects colored according to their genuine class. Wrong: Misclassified objects
colored according to their predicted class.

Output Correct Missed Wrong

Fig. 6. Histograms of membership probability for YSO classes regarding different populations in the F–C case forwarded on the full dataset.
Output: All objects. Correct: Genuine and predicted classes are identical. Missed: Misclassified objects colored according to their genuine class.
Wrong: Misclassified object colored according to their predicted class.

limitations. It results in a strong contamination of the CI YSOs,
as highlighted multiple times in our results.

On the other hand, most of the Spitzer large surveys miss
a 24 µm MIPS band measurement, preventing us from general-
izing our network to those datasets. Nevertheless, we chose to
keep this band in this paper to have the most complete view of
its effect on our network. To quantify this effect, we trained net-
works that did not include either the MIPS refinement step or
the 24 µm in input. These networks show a small increase in
performance, especially for CI YSOs with 2% to 3% improve-
ment in recall and precision in the F–C case. This can mainly be
explained by the simplification of the problem, but also by the
greater number of objects in rare subclasses like Shocks. Such
results could be generalized over larger datasets. In this case a
MIPS refinement step could still be performed a posteriori on the
network output for objects where this band is available. Interest-
ingly, although the absence of the MIPS refinement step could be
expected to degrade the absolute reliability of the classification,
the potentially large increase in the number of rare subclasses
may improve the overall network performance sufficiently for
the net effect on the absolute accuracy of the classification to be
positive.

5.3. Probabilistic prediction

In this section we discuss the inclusion of a membership proba-
bility prediction in our network. If we assumed that the original
classification were absolutely correct, the discrepancies would
only correspond to errors. However, as illustrated by the effect
of the MIPS band, the original classification has its own limita-
tions. Therefore, the objects misclassified by our network might

highlight that they were already less reliable in the original
classification, or may even have been misclassified. With a mem-
bership probability it is possible to refine this idea by quantify-
ing the level of confidence of the network on each prediction,
directly based on the observed distribution of the objects in the
input parameter space. In practice, as already illustrated in Fig. 4
where misclassified objects stack around the inter-class bound-
aries, the classification reliability of individual objects is mostly
a function of their distance to these boundaries. One strength of
the probabilistic output presented in Sect. 2.2 is that the probabil-
ity values provided by the network take advantage of the network
ability to combine the boundaries directly in the ten dimensions
of the feature space.

We used the probabilistic predictions to measure the degree
of confusion of an object between the output classes. This is
illustrated by the ternary plots in Fig. 51, where the location of
the objects corresponds to their predicted probability of belong-
ing to each class. In these plots an object with a high confidence
level lies near the peaks. Objects that are in the inner part of the
graph are the most confused of the three classes, while objects
on the edges illustrate a confusion between only two classes.
The sample size obviously plays a role in this representation, but
each class clearly shows a level of confusion that is higher than
one specific other class. The graph for all outputs shows that the
confusion between CI and Others is the lowest, followed by the
confusion between CI and CII YSOs, with the highest confusion
level being between the CII and Others classes. Those observa-
tions are strongly consistent with our previous analysis based
only on the confusion matrix.

1 These plots make use of the Python ternary package (Marc 2019).
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Above 0.9 Below 0.9

Fig. 7. Input parameter space coverage using the usual G09 diagrams in
the F–C case on the full dataset regarding their predicted membership
probability. CI YSOs are in red, CII YSOs are in green, and Others
are in blue. Left: objects with membership probability greater than 0.9.
Right: objects with membership probability less than 0.9.

The probabilistic predictions can be used to remove objects
that are not reliable enough. The misclassified objects show a
higher degree of confusion, and therefore a maximum value of
membership probability that is lower than that for the properly
classified objects. This characteristic is illustrated by Figs. 5
and 6. The latter compares histograms of the highest output

probability for properly and incorrectly classified objects. This
figure reveals that the great majority of correctly classified YSOs
have a membership probability greater than 0.95, whereas most
missed or incorrectly classified YSOs have a probability mem-
bership below that threshold. In this context applying a thresh-
old on the membership probability will proportionally remove
more misclassified objects than properly classified ones, there-
fore improving the recall and precision of our network. The
threshold value is arbitrary, depending on the application. We
illustrate this selection effect on the F–C case in Tables 25–27.
These tables represent the confusion matrix of the complete
Combined dataset after selecting objects with membership prob-
ability above 0.9, 0.95, and 0.99, respectively. In the 0.9 case
(Table 25), 25% (104) of the CI YSOs were removed, while
their recall increased by 4.5%. In the same way, 8.2% (218) of
the CII YSOs were removed leading to a 1.2% increase in their
recall. Contaminants were less affected; only 1.8% of objects
were removed, which still increased the recall by 0.6%. This
is an additional demonstration of the CI YSOs being less con-
strained than the other output classes. In the 0.95 case (Table 26),
the output classes has lost 31.6% (131), 12.7 (338), and 2.4%
(579) of objects, respectively. This still improved the recall of the
two YSO classes with a 1% increase for CI and a 0.4% increase
for CII, when compared to the 0.9 case. This result is also the
first one to be close to having all quality estimators above 90%
since the CI YSO precision is 89%, while losing an acceptable
fraction of them. The 0.99 case (Table 27) is more extreme since
almost 50% (206) of CI YSOs were removed, but the recall of
the remaining one reached 97.6%, which is a 6.3% improvement
over the regular F–C full dataset case. However, the CII YSOs
are also strongly affected, with 25.6% (681) of them removed,
and only yielding a 0.4% improvement in comparison to the
0.95 case. Another illustration of the fact that this strategy effec-
tively excludes objects that are near the cuts is presented in Fig. 7
where the objects above or below a 0.9 membership threshold are
plotted separately for a usual set of CMDs. This effect is partic-
ularly visible in the ([4.5]−[8],[3.6]−[5.8]) (second frame) and
the ([4.5]−[5.8],[3.6]−[4.5]) (forth frame) diagrams. This figure
illustrates that a membership probability of less than 0.9 can be
considered unreliable.

With the inclusion of this probability in our results, we pro-
vide a substantial addition to the original G09 classification,
for which it might be more difficult to identify the reliable
objects. The membership probability for each object in Orion
and NGC 2264 is included in the public catalog presented in
Sect. 4.6.

It is important to note that the membership probability output
is not a direct physical probability. It is a probability regarding
the network knowledge of the problem, which can be biased,
incomplete, or both. Therefore, selecting a 0.9 membership
probability does not necessarily correspond to a 90% certainty
prediction level. The only usable probability is the one given by
the confusion matrix. Consequently, according to Table 25, when
applying a 0.9 membership limit, the probability that a predicted
class I YSO is correct is estimated to be 87.6%; instead, with the
same limit class II YSOs are correct in 96.1% of the cases. These
two values are not equivalent and the network output member-
ship probability should not be used as a true estimate of the reli-
ability of an object. It can only be used to compare objects from
the same network training, and must be converted into a true
quality estimator using the confusion matrix.
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Table 25. F–C case forwarded on the full dataset with membership
probability >0.9.

Predicted
Class CI YSO CII YSO Others Recall

CI YSO 297 5 8 95.8%
Actual CII YSO 16 2412 13 98.8%

Others 26 118 23247 99.4%
Precision 87.6% 95.1% 99.9% 99.3%

Notes. The selection led to the removal of 104 CI (−25.1%), 218 CII
(−8.2%), and 439 Others (−1.8%).

Table 26. F–C case forwarded on the full dataset with membership
probability >0.95.

Predicted
Class CI YSO CII YSO Others Recall

CI YSO 274 2 7 96.8%
Actual CII YSO 11 2302 8 99.2%

Others 23 92 23136 99.5%
Precision 89.0% 96.1% 99.9% 99.4%

Notes. The selection led to the removal of 131 CI (−31.6%), 338 CII
(−12.7%), and 579 Others (−2.4%).

Table 27. F–C case forwarded on the full dataset with membership
probability >0.99.

Predicted
Class CI YSO CII YSO Others Recall

CI YSO 203 0 5 97.6%
Actual CII YSO 4 1970 4 99.6%

Others 14 51 22747 99.7%
Precision 91.9% 97.5% 99.9% 99.7%

Notes. The selection led to the removal of 206 CI (−49.8%), 681 CII
(−25.6%), and 1018 Others (−4.3%).

5.4. Possible method improvements

Using our approach comes with several caveats, the main one
being that we built our labeled dataset from a pre-existing clas-
sification that has its own limitations. The membership probabil-
ity discussed in the previous section provides a first but limited
view of the uncertainties inherent to the original classification
scheme. One approach to completely releasing our methodol-
ogy from its dependence on the G09 scheme would consist in
building our training set from a more conclusive type of obser-
vations, like visible spectroscopy to detect the Hα line that is
usually attributed to gas accretion by the protostar (Kun et al.
2009) or (sub)millimeter interferometry to detect the disks (e.g.,
Ruíz-Rodríguez et al. 2018; Cazzoletti et al. 2019; Tobin et al.
2020). Alternatively, a large set of photometric bands could be
gathered to reconstruct the SED across a wider spectral range, as
in Miettinen (2018). Unfortunately, to date, too few objects have
been observed that extensively to build a labeled sample large
enough to efficiently train most of the ML algorithms.

Another approach would be to use simulations of star-forming
regions (e.g., Padoan et al. 2017; Vázquez-Semadeni et al. 2019)
and star-forming cores (e.g., Robitaille et al. 2006) to pro-
vide a mock census of YSOs and emulate their observational

properties. This option would enable us to generate large train-
ing catalogs, and would provide additional control on the YSO
classes, but at the cost of other kinds of biases coming from the
simulation assumptions. An additional difficulty of this approach
would be the large variety of contaminant objects, each of which
would require a dedicated treatment.

A different strategy could consist in improving the method
itself. With feedforward neural networks, as used in this paper,
there may still be improvement possibilities by using deeper net-
works with, for example, a different activation function, a weight
initialization, or a more complex error propagation. By choosing
a completely different, unsupervised method, one could work
independently of any prior classification. However, there is a
risk that the classes identified by the method do not match the
classical ones. In particular, the continuous distribution from
CI to CII YSOs, and then to main sequence stars is likely to
be identified as a single class by such algorithms. A middle-
ground could be the semi-supervised learning algorithms such
as Deep Belief Networks (Hinton & Salakhutdinov 2006). Such
algorithms were designed to find a dimensional reduction of the
given input feature space that is more suitable to the problem,
basing its own classes on the proximity of objects in the fea-
ture space. It could then be connected with a regular supervised
feedforward neural network layer that would combine the found
classes into more usual ones. This approach would reduce the
impact of the original classification on the training process, and
therefore its impact on the final results.

6. Conclusion

We presented a detailed methodology to use deep neural net-
works to extract and classify YSO candidates from several star-
forming regions using Spitzer infrared data, based on the method
described by (Gutermuth et al. 2009). The analysis is based on
the ability of ANNs to quantitatively characterize the classifi-
cation properties and reliability, demonstrating the advantage of
our neural network methodology over a CMD-selection scheme
like that of G09. We make public the table containing the YSO
candidates in Orion and NGC 2264 from the classification of our
final and best ANN. The table includes the class membership
probability for each object, and is available at CDS. This study
led to the following conclusions.

Deep Neural networks are a suitable solution for perform-
ing an efficient YSO classification using the four Spitzer IRAC
bands and the MIPS 24 µm band. When trained on one cloud
only, the prediction performance mostly depends on the size of
the sample. Fairly simple networks can be used for this task with
just one hidden layer that only consists of 15 to 25 neurons with
a classical sigmoid activation function.

The prediction capability of the network on a new region
strongly depends on the properties of the region used for train-
ing. The study revealed the necessity to train the network on a
census of star-forming regions to improve the diversity of the
training sample. A network trained on a more diverse dataset has
been able to maintain a high quality prediction, which is promis-
ing for its ability to be applied to new star-forming regions.

The dataset imbalance has a strong effect on the results, not
only on the classes of interest, but also for the hidden subclasses
considered as contaminants. Carefully rebalancing each subclass
in the training dataset, according to its respective feature space
coverage complexity and to its proximity with other classes of
interest, has shown to be of critical importance. The use of obser-
vational proportions to measure the quality of the prediction has

A116, page 21 of 25



A&A 647, A116 (2021)

been shown to be of major importance to properly assess the
quality of the prediction.

This study showed that the network membership probabil-
ity prediction complements the original G09 classification with
an estimate of the prediction reliability. It allows one to select
objects based on their proximity to the whole set of classification
cuts in a multidimensional space, using a single quantity. The
identification of objects with a higher degree of confusion high-
lights parts of the parameter space that might lack constraints
and that would benefit from a refinement of the original classifi-
cation.

The current study contains various limitations, mainly the
lack of additional near star-forming region catalogs that contain
the sub-contaminant distinction to construct complete training
samples. Some subclasses, namely Shocks and PAHs, remain
strongly unconstrained due to their scarcity. Identifying addi-
tional shocks and resolved PAH emission in Spitzer archive data
could significantly improve their classification by our networks,
and consequently improve the YSO classification. Attention has
also been drawn toward the use of simulations to compile large
training datasets that might be used in ensuing studies.

Finally, our method could be improved by adopting more
advanced networks that would probably overcome some diffi-
culties, for example by avoiding local minima more efficiently,
and would improve the raw computational performance of the
method. Semi-supervised or fully unsupervised methods may
also be promising tracks to predict YSO candidates that may
surpass the supervised methods in terms of prediction quality.
On the other hand, we have highlighted that most of the diffi-
culties come from the training set construction, which is mostly
independent of the chosen method. Therefore, future improve-
ments in YSO identification and classification from ML applied
to mid-IR surveys will require us to compile larger and more reli-
able training catalogs, either by taking advantage of current and
future surveys from various facilities, like the Massive Young
Star-Forming Complex Study in Infrared and X-ray (MYStIX,
Feigelson et al. 2013) and the VLA/ALMA Nascent Disk and
Multiplicity survey (VANDAM, Tobin et al. 2020), or by syn-
thesizing such catalogs from simulations.
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Appendix A: Example of tuning of the sample
proportions and network parameters

In Sects. 3.3 and 3.4 we presented the strategy adopted to build
the training and test sets, and to set the network parameters.
We illustrate this strategy here on the example of the Orion
region. We note that although the dataset parameters (θ and γi)
and the network parameters (learning rate η and momentum α)
are conceptually different kinds of parameters, in practice they
are mutually dependent. In total, there were at least ten differ-
ent parameters to optimize simultaneously, and the computation
time of an individual training made it very difficult, if not impos-
sible, to search for the optimum automatically. This difficulty to
automatize the search for the best parameters is increased by the
fact that the importance of an observable depends on our interest.
For example, it is more important for us to maximize the recall
and precision of CI YSOs than those of the other classes. This is
why we adopted a manual iterative procedure to identify satisfy-
ing parameters based on the values of precision and recall of the
different classes, the priority being given to the CI YSOs, as dis-
cussed in Sect. 3.6. As we show below, the interpretation of the
observable variations plays an important role in this procedure.

To illustrate this search we consider here the optimization of
the γStars parameter for the Orion sample, all other parameters
being fixed to the values presented in Tables 2 and 3. Figure A.1
shows the variations in recall and precision of the CI, CII, and
Others classes when γStars increases from 2 to 7. We trained the
network ten times for each setup in order to get a mean value and
a typical range of convergence value for each quality indicator.
We note that the fluctuations in the observable values for a given
γStars are mutually dependent. For example, a high recall value
for one class is generally obtained at the cost of a smaller recall
value in another class for a given training.

In this figure we observe that for the Others class, which is
vastly dominated by Stars, recall and precision values are above
98% even with the smallest γStars = 2 and slowly increase with
γStars. This indicates that the vast majority of genuine Stars are
easy to separate, which was expected due to the relatively small
proportion of them that are close to a YSO boundary in the fea-
ture space. Even so, this small proportion represents a large num-
ber of objects compared to the number of genuine YSOs. For
low values of γStars the precision of CI and CII YSOs is low and
with a high dispersion between repeated training. The recall and
precision of CII YSOs mostly follow a linear trend. The recall
slowly decreases because more of the network representativity
strength is allocated to Stars, and at the same time CII preci-
sion increases due to the improvement of the boundary between
CII and Stars due to a larger number of star examples. In other
words, this boundary is constrained by more neurons and data
points, but the other boundaries of CII become proportionally
less important for the network and are less well constrained.

Examining the variations in the scatter of observable val-
ues helps to estimate parameters that provide more reproducible
results. The dispersion of CII recall values is smaller for larger
γStars, while the dispersion of CII precision values decreases,
with a minimum around γStars = 4, and then slowly rises for
larger γStars values. Regarding CI YSOs, there are two regimes:
(i) for γStars < 4, where the mean values of recall and pre-
cision improve overall, while their dispersion decreases when
γStars increases, and (ii) for γStars > 4, where these trends are
reversed. This can be explained by the fact that the network first
takes advantage of the additional Stars to better constrain the
differences between CI and Stars, but at some point CI YSOs
become too diluted in the training sample.
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Fig. A.1. Quality indicators for each network output class as a function
of the proportion of stars in the training sample γStars. The lines are the
recall (continuous) and the precision (dashed) mean value of conver-
gence over ten trainings, and the error bars represent the typical ranges
of convergence value.

For this example we chose to use γStars = 4 since it pro-
vides the highest CI precision and the smallest dispersion for
both recall and precision for the two YSO classes. In the rest
of the paper we adopted a method similar to that used in this
example; we preferred parameters that maximized the results
for CI YSOs and tried to minimize the negative impact on
CII YSOs. When possible we also chose parameters that min-
imized the dispersion of the YSO quality indicators. We note
that we frequently observed parameters that did not signifi-
cantly impact the observables for a large range of values. In
this case, we selected parameter values that seemed reason-
able. Although these values are not well constrained, it does not
impact our results. While the actual parameter values we used
in the present study might not be the optimal ones, we are con-
fident that the best prediction is contained within our margin of
error.

Appendix B: Detailed feature space coverage

Figure B.1 presents a detailed comparison of the parameter space
coverage for several of the classical CMDs used in the G09 clas-
sification for different objects in the F–C case (see Table 4 and
Sect. 4.5). The first and second columns of the figure represent
the distribution of sources for the target class and the predicted
class, respectively. The comparison of these two columns illus-
trates the global quality of our prediction and provides a ref-
erence point for the two other columns on the right-hand side,
which show the objects that were misclassified by the network.
In the third and fourth columns the colors encode the genuine
class while the symbol shapes encode the prediction class. The
third column focuses on genuine YSOs for which the predic-
tion is incorrect. It is then possible to identify feature space
regions where increasing the number of objects would signifi-
cantly improve the recall of the corresponding class. In the fourth
column the view is reversed; it focuses on the original class
of misclassified objects. It reveals confused boundaries between
classes that could be better constrained in order to improve the
precision. Naturally, both the CI YSOs that were misclassified
as CII and CII YSOs that were misclassified as CI are present in
the two representations.
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Actual Predicted Missed Wrong

Fig. B.1. Input parameter space coverage in the CMDs used for the G09 method in the F–C case on the full dataset regarding different populations.
Actual: Distribution of genuine classes. CI YSOs are in red, CII YSOs are in green, and Others are in blue. Predicted: Prediction given by the
network with the same color-coding as for the actual frames. Missed: Genuine CI and CII according to the labeled dataset that were misclassified
by the network. Green is for genuine CII YSOs, red for genuine CI YSOs. The points and crosses indicate the network output as specified in the
legend. Wrong: YSO predictions of the network that are known to be incorrect based on the labeled dataset. Green is for genuine CII YSOs, red
for genuine CI YSOs, and blue for genuine contaminants. The two types of crosses indicate the predicted YSO class as specified in the legend.
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Appendix C: YSO candidates catalog

Table C.1 presents an excerpt of the YSO candidate catalog that
is publicly available at the CDS. It is the result of our F–C
trained network (see Sect. 4.5). The prediction is made only for
objects from the Orion and NGC 2264 catalogs using our pre-
selection criteria (Sect. 3.1). Our catalog lists the original catalog
of each object, all the Spitzer bands and their uncertainties that
were used as input features for the network, the target associ-

ated with each object using the subclasses, and the prediction of
the network using our three classes (CI, CII, Others). Compared
to the data published by Megeath et al. (2012) for Orion and by
Rapson et al. (2014) for NGC 2264 applying the G09 method,
we provide the membership probability for each object, making
it possible to select objects according to the reliability of their
classification. The membership probability is given for all the
three output classes, enabling subsequent refinement of the clas-
sification following the prescriptions from Sect. 5.3.

Table C.1. First 20 and last 20 elements of the catalog of network prediction in the F–C case using the full dataset.

RA Dec Catalog Orig. class 3.6 e3.6 4.5 e4.5 5.8 e5.8 8.0 e8.0 24 e24 Targ. Pred. P(CI) P(CII) P(Oth.)
(deg) (deg) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

100.792999 +8.7531472 0 III/F 10.32 0.003 10.17 0.003 10.07 0.005 10.03 0.008 . . . . . . 6 2 0.0 5.7e−5 0.9999
100.677625 +8.7556250 0 III/F 11.62 0.003 11.60 0.004 11.55 0.016 11.56 0.035 . . . . . . 6 2 0.0 0.0 1.0
100.760958 +8.7566528 0 III/F 13.38 0.007 13.28 0.011 13.27 0.05 13.78 0.155 . . . . . . 6 2 0.0 0.0 1.0
100.757875 +8.7589389 0 III/F 12.52 0.005 12.52 0.006 12.4 0.03 12.41 0.053 . . . . . . 6 2 0.0 0.0 1.0
100.724500 +8.7606944 0 III/F 13.71 0.009 13.66 0.013 13.6 0.069 13.67 0.148 . . . . . . 6 2 0.0 0.0 1.0
100.728917 +8.7609722 0 III/F 13.23 0.007 13.17 0.008 12.99 0.042 13.16 0.081 . . . . . . 6 2 0.0 0.0 1.0
100.744958 +8.7630750 0 III/F 11.28 0.003 11.37 0.004 11.32 0.011 11.22 0.027 . . . . . . 6 2 0.0 0.0 1.0
100.667167 +8.7653722 0 III/F 13.5 0.015 13.36 0.029 13.39 0.075 13.43 0.11 . . . . . . 6 2 2.0e−6 1.4e−4 0.9998
100.670250 +8.7691222 0 III/F 8.64 0.002 8.54 0.002 8.4 0.002 8.36 0.002 8.29 0.043 6 2 0.0 5.9e−4 0.9994
100.792083 +8.7692694 0 III/F 13.39 0.007 13.40 0.010 13.41 0.052 13.01 0.09 . . . . . . 6 2 0.0 4.6e−5 0.9999
100.769292 +8.7704556 0 III/F 12.93 0.006 12.87 0.008 12.89 0.038 12.7 0.058 . . . . . . 6 2 0.0 3.0e−6 0.9999
100.757708 +8.7710500 0 III/F 10.58 0.002 10.65 0.003 10.59 0.007 10.56 0.012 . . . . . . 6 2 0.0 0.0 1.0
100.811250 +8.7714556 0 III/F 7.75 0.002 7.83 0.002 7.63 0.002 7.63 0.002 . . . . . . 6 2 0.0 8.2e−3 0.9917
100.768208 +8.7728194 0 III/F 13.83 0.009 13.80 0.014 13.99 0.088 13.56 0.117 . . . . . . 6 2 0.0 0.0 1.0
100.773667 +8.7744222 0 III/F 11.68 0.004 11.87 0.004 11.61 0.012 11.61 0.032 . . . . . . 6 2 0.0 0.0 1.0
100.672208 +8.7765889 0 III/F 13.37 0.007 13.31 0.010 13.32 0.055 13.21 0.089 . . . . . . 6 2 0.0 1.0e−6 0.9999
100.768375 +8.7775694 0 III/F 12.49 0.005 12.52 0.006 12.44 0.026 12.41 0.053 . . . . . . 6 2 0.0 0.0 1.0
100.697292 +8.7783972 0 III/F 10.78 0.003 10.79 0.003 10.74 0.007 10.57 0.014 . . . . . . 6 2 0.0 3.0e−6 0.9999
100.684208 +8.7784639 0 III/F 12.87 0.005 12.85 0.007 12.81 0.033 12.74 0.065 . . . . . . 6 2 0.0 0.0 1.0
100.792542 +8.7796389 0 AGN 16.18 0.047 5.12 0.035 14.37 0.141 13.00 0.079 . . . . . . 3 2 4.9e−5 2.0e−6 0.9999
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
86.8015397 −0.7217830 1 Other 13.79 0.011 13.73 0.017 13.66 0.106 13.54 0.153 . . . . . . 6 2 0.0 1.0e−6 0.9999
86.7227924 −0.7204420 1 Other 11.88 0.005 11.85 0.006 11.87 0.026 11.73 0.036 . . . . . . 6 2 0.0 0.0 1.0
86.7296191 −0.7189594 1 Other 14.54 0.019 14.14 0.026 13.84 0.147 10.98 0.022 8.44 0.110 2 2 0.0 0.0 1.0
86.6185832 −0.7163786 1 Other 9.60 0.002 9.60 0.003 9.57 0.006 9.53 0.007 . . . . . . 6 2 0.0 2.1e−5 0.9999
86.8822281 −0.7111607 1 Other 13.16 0.009 13.13 0.012 13.02 0.056 13.00 0.110 . . . . . . 6 2 0.0 2.0e−6 0.9999
86.8187251 −0.7086041 1 Other 13.40 0.010 13.32 0.011 13.24 0.072 13.34 0.123 . . . . . . 6 2 0.0 0.0 1.0
86.8938200 −0.7075397 1 Other 11.36 0.004 11.38 0.005 11.27 0.017 11.29 0.027 . . . . . . 6 2 0.0 0.0 1.0
86.7451751 −0.7074037 1 Other 11.61 0.004 11.54 0.004 11.51 0.024 11.53 0.024 . . . . . . 6 2 0.0 0.0 1.0
86.6627309 −0.7060398 1 Other 12.99 0.008 12.93 0.008 12.86 0.056 12.95 0.064 . . . . . . 6 2 0.0 0.0 1.0
86.6652294 −0.7036116 1 Other 11.52 0.004 11.47 0.004 10.59 0.013 11.45 0.022 . . . . . . 5 2 0.0 0.0 1.0
86.6478710 −0.7028939 1 Other 11.40 0.004 11.44 0.005 11.35 0.018 11.28 0.027 . . . . . . 6 2 0.0 0.0 1.0
86.6734974 −0.7025317 1 Other 12.68 0.006 12.64 0.009 12.60 0.045 12.48 0.064 . . . . . . 6 2 0.0 1.0e−6 0.9999
86.6593266 −0.6985667 1 Other 13.54 0.010 13.50 0.015 13.55 0.095 13.36 0.147 . . . . . . 6 2 0.0 0.0 1.0
86.8586910 −0.6948155 1 Other 12.77 0.007 12.75 0.010 12.63 0.043 12.72 0.077 . . . . . . 6 2 0.0 0.0 1.0
86.6522543 −0.6913875 1 Other 8.95 0.007 8.95 0.002 8.87 0.004 8.83 0.004 8.94 0.168 6 2 1.0e−6 3.1e−3 0.9969
86.7718531 −0.6903623 1 Other 13.83 0.014 13.78 0.020 13.63 0.104 13.65 0.184 . . . . . . 6 2 0.0 1.0e−6 0.9999
86.8164438 −0.6901289 1 Other 13.39 0.010 13.29 0.011 13.12 0.066 13.08 0.084 . . . . . . 6 2 1.0e−6 2.5e−5 0.9999
86.7218342 −0.6863691 1 Other 14.15 0.015 13.90 0.022 13.08 0.076 10.32 0.014 8.32 0.095 2 2 0.0 0.0 1.0
86.6604287 −0.6855791 1 Other 10.51 0.003 10.46 0.002 10.40 0.009 10.42 0.010 . . . . . . 6 2 0.0 0.0 1.0
86.8976492 −0.6839529 1 Other 8.97 0.006 8.97 0.002 8.85 0.004 8.81 0.004 8.82 0.152 6 2 1.0e−6 3.0e−3 0.9970

Notes. The full catalog is publicly available at the CDS. The columns are: (1) and (2) the source coordinates (J2000); (3) the original catalog (0:
Megeath et al. 2012, 1: Rapson et al. 2014); (4) the original classification; (5)−(14) IRAC and MIPS magnitudes and corresponding uncertainties;
(15) the target classification obtained with our simplified G09 scheme (0: CI YSOs, 1: CII YSOs, 2: Galaxies, 3: AGNs, 4: Shocks, 5: PAHs, 6:
Stars); (16) the classification predicted by the ANN in the F–C case (0: CI YSOs, 1: CII YSOs, 2: contaminants); (17)−(19) the corresponding
membership probabilities.
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