

1st March 2021 Virtual meeting hosted by the University of Sheffield

Supported by:

Molards on Mars -Signs of a disrupted cryosphere?

Costanza Morino¹, Susan Conway²,

Coralie Peignaux², Antoine Lucas³,

Kristian Svennevig⁴, Frances Butcher⁵,

Gioachino Roberti⁶, Meven Philippe²,

Jake Collins-May⁷

 1 CNRS UMR 5204 Laboratoire Environnements Dynamiques et Territoires De La Montagne, Le Bourgetdu-Lac, France (costanza.morino@gmail.com)
2 CNRS UMR6112 Laboratoire de Planétologie et Géodynamique, Nantes, France
3 Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
4 Geological Survey of Denmark and Greenland, Copenhagen, Denmark
5 Department of Geography, The University of Sheffield, Sheffield, UK
6 Minerva Intelligence Inc., Vancouver, British Columbia, Canada
7 The School of Geography, Politics and Sociology, Newcastle University, Newcastle, UK

from Morino et al., 2019 – EPSL

from Morino et al., 2019 – EPSL

Height (m)

The University Of Sheffield.

ΛH.

CryoMars

CryoMars

The University Of Sheffield.

Ē.

Distance from Hale Crater Rim

Molards on Mars vs Earth

• Móafellshyrna 10.2 \rightarrow 15-20 m

OryoMars

The University Of Sheffield.

- Árnesfjall $3.7 \rightarrow 1-5 \text{ m}$
 - Mars A $37 \rightarrow 40 \text{ m}$
- Mars B $53 \rightarrow 40 \text{ m}$

Molards on Mars vs Earth

CryoMars

The University Of Sheffield.

Molards on Mars vs Earth

CryoMars

(

The University Of Sheffield.

Conclusions

- The conical mounds in Hale have heights that approach their host flow thickness and similar slopes to molards on Earth.
- The setting of the conical mounds within the lobate deposits of Hale Crater ejecta flows are consistent with molards in landslides on Earth
- Hale mounds result from blocks of ice-cemented ground that were thrown out in the impact and transported by the ejecta flows, which then degraded to cones of debris on loss of the interstitial ice.