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There is a local ring I of order 4, without identity for the multiplication, defined by generators and relations as

We give a natural map between linear codes over I and additive codes over 4 , that allows for efficient computations. We study the algebraic structure of linear codes over this non-unital local ring, their generator and parity-check matrices. A canonical form for these matrices is given in the case of so-called nice codes. By analogy with ℤ 4 -codes, we define residue and torsion codes attached to a linear I-code. We introduce the notion of quasi self-dual codes (QSD) over I, and Type IV I-codes, that is, QSD codes all codewords of which have even Hamming weight. This is the natural analogue of Type IV codes over the field 4 . Further, we define quasi Type IV codes over I as those QSD codes with an even torsion code. We give a mass formula for QSD codes, and another for quasi Type IV codes, and classify both types of codes, up to coordinate permutation equivalence, in short lengths.

Introduction

While rings have been used as alphabets in Coding Theory for more than thirty years [START_REF] Shi | Codes and Rings: Theory and Practice[END_REF], it is only recently that non-unital rings have been used to that effect [START_REF] Alahmadi | Mass formula for self-dual codes over ℤ p 2[END_REF]. In that paper, the authors introduce the notion of Type IV codes over the ring E in the terminology of [START_REF] Fine | Classification of finite rings of order p 2[END_REF][START_REF] Raghavendran | A class of finite rings[END_REF], in analogy with Type IV codes over unital rings of order four [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF].

In this paper we study codes over another non-unital commutative ring of order four, denoted by I in the classification of [START_REF] Fine | Classification of finite rings of order p 2[END_REF][START_REF] Raghavendran | A class of finite rings[END_REF]. We call I-code of length n any I-submodule of I n . Such a code can be thought of as an additive 4 -code in the sense of [START_REF] Calderbank | Quantum error correction via codes over GF(4)[END_REF] with an extra module structure. This allows us to use the additive code package of Magma [12] in computations, and might lead in the future to the discovery of new additive 4 -codes. In the ring I the notion of self-dual code must be adapted since the usual relation between the size of the code and that of its dual [START_REF] Wood | Duality for modules over finite rings and applications to coding theory[END_REF], does not hold in general. We thus introduce, in Section 2. [START_REF] Conway | Self-dual codes over the integers modulo four[END_REF], following [START_REF] Alahmadi | Mass formula for self-dual codes over ℤ p 2[END_REF], the notion of quasi self-dual code (QSD), that is of an I-code of length n which is both selforthogonal and of size 2 n . As with other local rings of order 4, residue and torsion codes play a fundamental role in the structure of QSD codes. Thus, in Sect. 3, we derive a canonical form for the generator matrix of any I-code, based on the residue and torsion codes. However, an I-code cannot be determined uniquely by its residue and torsion codes. But it is completely characterized by the triplet formed by these two codes and a map between the residue code and the cosets of the torsion code. This is similar to the technique used to derive mass formulas for self-dual codes over rings [2,[START_REF] Choi | Mass formula of self-dual codes over Galois rings GR(p 2 , 2)[END_REF][START_REF] Gaborit | Mass formulas for self-dual codes over ℤ 4 and q + u q rings[END_REF]. In Sect. [START_REF] Conway | Self-dual codes over the integers modulo four[END_REF] we give a construction of QSD codes from a pair of binary codes; we call this the multilevel construction in analogy with a similar construction over ℤ 4 [4]. In Sect. 5, we derive a mass formula for QSD codes with the objec- tive of classifying these codes. The method of calculation of this formula leads us to introduce the notion of quasi Type IV codes: QSD codes whose torsion code is even, and to derive a mass formula for them. Finally, we give a classification of QSD codes up to length 3 in Sect. 6, and some concluding remarks in Sect. 7.

Background material

Binary codes

Denote by wt(x) the (Hamming) weight of x ∈ n 2 , or, in other words, the number of indices i where x i ≠ 0. A linear code is a subspace of n 2 , viewed as an 2 -vector space. The dual of a binary linear code C is denoted by C ⊥ and defined as Content courtesy of Springer Nature, terms of use apply. Rights reserved.

where (x, y) = ∑ n i=1 x i y i , denotes the standard inner product. A code C is self- orthogonal if it is included in its dual: C ⊆ C ⊥ . A code is even if all its codewords have even weight. All self-orthogonal codes are even but not conversely. Two binary codes are equivalent if there is a permutation of coordinates that maps one to the other.

Rings

Following [START_REF] Fine | Classification of finite rings of order p 2[END_REF], we define a ring on two generators a, b by its relations Thus, I has characteristic two, and consists of four elements I = {0, a, b, c}, with c = a + b. The addition table is immediate from these definitions The multiplication table is as follows.

From this table, we infer that this ring is commutative, and without an identity element for the multiplication. It is local with maximal ideal J = {0, b}, and residue field 2 = {0, 1}, the finite field of order 2. Thus we have a b-adic decomposition as follows. Every element i ∈ I can be written where s, t ∈ 2 and where we have defined a natural action of 2 on I by the rule r0 = 0r = 0 and r1 = 1r = r for all r ∈ I. Thus a = 1a, b = 1b and c = a1 + b1 = c1. Note that for all r ∈ I, this action is "distributive" in the sense that r(s ⊕ t) = rs + rt, where ⊕ denotes the addition in 2 . On occasion we will use the inner product notation (x, r) for x ∈ n 2 , r ∈ I n to denote

C ⊥ = {y ∈ n 2 | ∀x ∈ C, (x, y) = 0}, I = ⟨a, b | 2a = 2b = 0, a 2 = b, ab = 0⟩. + 0 a b c 0 0 a b c a a 0 c b b b c 0 a c c b a 0 × 0 a b c 0 0 0 0 0 a 0 b 0 b b 0 0 0 0 c 0 b 0 b i = as + bt, (x, r) = n ∑ i=1 x i r i = ∑ x i =1 r i .
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Denote by ∶ I → I∕J ≃ 2 the map of reduction modulo J . Thus (0) = (b) = 0, and (a) = (c) = 1. This map is extended in the natural way in a map from I n to n 2 .

Modules

A linear I-code C of length n is an I-submodule of I n . It can be described as the I-span of the rows of a generator matrix. An 4 -code of length n is just any non-empty subset of n 4 . The notion and notation of Hamming weight over 4 is the same as over 2 . An additive code of length n over 4 is an additive subgroup of n 4 . It is an 2 vector space with 4 k elements for some k ≤ n (here 2k is an integer, but k may be half-integral). Using a generator matrix G, such a code can be cast as the 2 -span of its rows. To every linear I-code C is attached an additive 4 -code (C) by the alphabet substitution where 4 = 2 [ ], extended naturally to n 4 . Trivially, the Hamming weight of (x) is wt(x).

We use the Magma notation for the weight distribution of an additive 4 -code code, where A i is the number of codewords of weight i. Two I-codes are permutation equivalent if there is a permutation of coordinates that maps one to the other (and, consequently, the -image of one on the -image of the other). The automorphism group Aut(C) of an I-code C is the group of column permutations that leave C invariant.

Duality

Define an inner product on I n , by writing (x, y) = ∑ n i=1 x i y i for all x, y ∈ I n . The dual C ⊥ of a linear I-code C is the module defined by Thus the dual of a module is a module. A code is self-dual if it is equal to its dual.

Remark 1

The repetition code of length 2 is the linear I-code defined by R 2 ∶= {00, aa, bb, cc}. Its dual is R ⊥ 2 = {00, aa, bb, cc, 0b, b0, ac, ca}, a supercode of R 2 of size 8. In length one, we have J ⊥ = I.

Remark 1 shows that the product of the sizes of a code and its dual is not always

4 n . A code C of length n is nice if |C||C ⊥ | = 4 n . A linear I-code C is self-orthogonal if Clearly, C is self-orthogonal if and only if C ⊆ C ⊥ .
A code of length n is quasi self-dual (or QSD for short) if it is self-orthogonal and of size 2 n . Note that the direct sum of two QSD codes is QSD.

0 → 0, a → , b → 1, c → 2 , [<0, 1>, ⋯ , <i, A i >, ⋯ , <n, A n >] C ⊥ = {y ∈ I n | ∀x ∈ C, (x, y) = 0}. ∀x, y ∈ C, (x, y) = 0.
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Following a terminology from [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF], a quasi self-dual code over I with all weights even is called a Type IV code. This notion is also stable by taking direct sums.

Remark 2

The repetition code of length 2 is quasi self-dual over I and is of Type IV. This shows, by taking direct sums of codes, that Type IV codes over I exist for all even lengths. We see that J is a quasi self-dual code over I. This shows, again by taking direct sums, that QSD codes exist for all integer lengths.

We introduce the notion of Quasi Type IV code (QT4) as a QSD code with an even torsion code (see next section for a definition of torsion code). Every Type IV code is quasi Type IV but not conversely as the next example shows. The motivation will appear in the mass formula section.

Example 1

The code with three generators

⎛ ⎜ ⎜ ⎝ a b a b 0 b b 0 b 0 0 b ⎞ ⎟ ⎟ ⎠ is QSD but not Type
IV as the sum of first and second row has odd weight. But its torsion code with generator matrix

⎛ ⎜ ⎜ ⎝ 1 0 1 0 0 1 1 0 1 0 0 1 ⎞ ⎟ ⎟ ⎠
is an even code.

Structure of linear codes

Let C be a code of length n over I. With this code we associate two binary codes of length n:

1. the residue code defined by res(C) = { (y) | y ∈ C}, 2. the torsion code defined by tor(C) = {x ∈ n 2 | bx ∈ C}.
Recall that the Trace function of 4 down to 2 is defined by ∀z ∈ 4 ,

Tr(z) = z + z 2 .
In other words By distinguishing four cases and induction on n it can be checked that for all x ∈ I n , we have Tr( (x)) = (x), and thus res(C) = Tr( (C)). Similarly, we see that tor(C) is the so-called subfield subcode of (C), that is (C) ⋂ n 2 . Denote by C the restriction of to C. We see that tor(C)b = Ker ( C ) , and that res(C) = Im ( C ) . By the first isomorphism theorem applied to the map C , we see that

|C| = |res(C)||tor(C)| .
There is a relationship between these two codes.

Lemma 1 If C is a linear I-code then res(C) ⊆ tor(C).

Proof Write an arbitrary codeword z in b-adic decomposition form as z = ax + by, with x, y binary vectors. Since (ax + by) = x, we have x ∈ res(C). Note that, by

Tr(0) = Tr(1) = 0; Tr( ) = Tr( 2 ) = 1.
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

definition of the residue code, any x ∈ res(C) arises in that way. Multiplying the codeword ax + by by a, we see that bx ∈ C, implying x ∈ tor(C). ◻

We let k 1 = dim(res(C)), and k 2 = dim(tor(C))k 1 , a nonegative quan- tity by Lemma 1, and say that C is of type (k 1 , k 2 ). It can be seen that C is free as an I-module if and only if k 2 = 0. Further, by a previous observation, |C| = |res(C)||tor(C)| = 2 2k 1 +k 2 . We give a characterization of the generator matrix of a linear code as a function of these invariants.

Theorem 1 Assume C is an I-linear code of length n and type (k 1 , k 2 ). Then, up to a permutation of columns, there exists a generator matrix G of C that is of the form where I j denotes the identity matrix of order j, the matrix Y has entries in I, and X, Z are binary matrices.

Proof Write the generator matrices of res(C) and tor(C) as

G 1 = I k 1 X (Y) and G 2 = I k 1 X (Y) 0 I k 2 Z
, respectively, with Y a matrix of suitable dimensions with entries in I, and X, Z are binary matrices. By the first isomorphism theorem applied to the map C , the matrix G can be written on the form R bT , where and (R) = G 1 . By taking linear combinations with rows of T, the matrix R can be written in the above form. ◻

Theorem 2 Assume C is a nice I-linear code of length n and type (k 1 , k 2 ) . Then a parity check matrix H of C consistent with Theorem 1 is of the form where I j denotes the identity matrix of order j, and X, Y, Z are as in Theorem 1.

In particular

C ⟂ is of type (n -k 1 -k 2 , k 2 ) . If, furthermore C is self-dual, then n = 2k 1 + k 2 .
Proof A direct calculation shows that HG t = 0. This shows that, as I-modules, ⟨H⟩ = I n-k 1 H ⊆ C ⊥ . Equality follows by size comparison upon noticing that ⟨H⟩ has type (nk 1k 2 , k 2 ), and upon observing that by the niceness hypothesis we have |C||C ⊥ | = 4 n . The last assertion follows by unicity of the type

k 1 = n -k 1 -k 2 . ◻
To prepare for the derivation of a mass formula, we develop a method similar to that of [START_REF] Gaborit | Mass formulas for self-dual codes over ℤ 4 and q + u q rings[END_REF]. We define a map F from res(C) to n 2 ∕tor(C) by the formula

G = aI k 1 aX Y 0 bI k 2 bZ , tor(C) = res(C) ⊕ ⟨T⟩, H = Y t + aZ t X t aZ t aI n-k 1 -k 2 bX t bI k 2 0 ,
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Since C is I-linear, it follows that F is 2 -linear. We write (C) = (res(C), tor(C), F).

The following Theorem is immediate, but essential.

Theorem 3 Keep the above notation. The map is a one to one correspondence between linear I-codes C of length n, and triplets (C 1 , C 2 , F) such that C 1 , C 2 are binary codes of length n, satisfying C 1 ⊆ C 2 and such that the map F is 2 -linear from C 1 to n 2 ∕C 2 .

Proof Let C be an arbitrary linear I-code. Let (C) = (C 1 , C 2 , F), be given. Writing an arbitrary codeword of C as ax + by, with x, y binary vectors of length n, we see that

• (ax + by) = x, implying x ∈ C 1 ; • y ∈ F(x), by definition of F.
From there it follows that the code C is uniquely determined as ◻

Construction of QSD codes

We call the next construction of I-codes from binary codes the multilevel construction.

Theorem 4 Let C 1 be a self-orthogonal binary code of length n, and let C 2 be a binary code of length n, where C 1 ⊆ C 2 . The code C defined by the relation is a self-orthogonal code. Its residue code is C 1 and its torsion code is

C 2 . If, further- more, |C 1 ||C 2 | = 2 n , then C is QSD.
Proof The code C is closed under addition, by linearity of C 1 and C 2 . Let us check it is closed under multiplication by a sca- lar of I. Note that aC = a

2 C 1 + abC 2 = bC 1 ⊆ bC 2 ⊆ C . Likewise, we see that cC = caC 1 + cbC 2 = bC 1 ∈ C . Because bI = {0}, we get bC = baC 1 + b 2 C 2 = {0} ⊆ C.
Thus C is I-linear. For all x, x ′ in C 1 and y, y ′ in C 2 we have the inner products

F(x) = {y ∈ n 2 | ax + by ∈ C}. C = ⋃ x∈C 1 ⋃ y∈F(x)
ax + by.

C = aC 1 + bC 2 ,
Content courtesy of Springer Nature, terms of use apply. Rights reserved. We need the following counting lemma. For information on q-binomial coefficients we refer the reader to [11, p. 443].

Lemma 2

The number E(q, n, r, s) of subspaces of dimension r of n q containing a given subspace of dimension s < r is n-s r-s q , where i i q denotes the q-binomial coefficient defined for integers i ≥ j by Proof Follows by Lemma 3 of [START_REF] Delsarte | Association schemes and t-designs in regular semi-lattices[END_REF] with i = j = s and k = r . ◻

We also need the following simple Lemma.

Lemma 3 If C is a self-orthogonal I-code, then its residue res(C) is a binary selforthogonal code.

Proof By linearity of the map it can be seen that ∀x, y ∈ C , we have

(ax + by, ax � + by � ) = a 2 (x, x � ) + ab(x, y � ) + ba(y, x � ) + b 2 (y, y � ) = b(x, x � ) = 0 (N, K) = ⎧ ⎪ ⎨ ⎪ ⎩ ∏ K j=1 (2 N+1-2j -1) ∏ K j=1 (2 j -1)
if n ≥ 3 is odd ,

(2 N-K -1) ∏ K-1 j=1 (2 N-2j -1) ∏ K j=1 (2 j -1)
if n ≥ 2 is even .

i j q = (q i -1)(q i-1 -1) ⋯ (q i-j+1 -1) (q j -1)(q j-1 -1) ⋯ (q -1) .

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

The result follows by res(C) = Im( C ) . ◻

We can now count the QSD codes of given length and residue dimension.

Theorem 5 For all lengths n and type (k, n -2k) , with k > 0 we have Proof Let C be a QSD code of length n and type (k, n -2k) . We reason in terms of the map . Note the following three independent counts.

1. By Lemma 3, we know that res(C) is self-orthogonal. By definition of , there are (n, k) self-orthogonal binary [n, k] codes that can be used as res(C).

The residue code is contained in

E(2, n, n -k, k) = n-k n-2k 2
possible torsion codes by Lemma 2 for r = k, s = nk , and q = 2.

The additive map F is arbitrary from res(C) to n

2 ∕tor(C). By the QSD hypothesis, these two vector spaces have dimension k. Hence, by considering the matrix of F, we see that there are 2 k 2 choices for F.

The result follows by multiplying the three factors together. ◻ The following mass formula follows by the usual counting technique.

Corollary 1 For given length n and type (k, n -2k) , with k > 0 , we have where C runs over distinct representatives of equivalence classes under column permutations of QSD codes of length n and type (k, n -2k).

Quasi type IV codes

Define N 4 (n, k) as the number of QT4 I-codes of length n and type (k, n -2k) . The analogue of Lemma 2 is as follows.

Lemma 4 The number EE(n, r, s) of even codes of dimension r of n

2 containing a given subspace of dimension s < r is n-1-s r-s 2 . Proof Follows by Lemma 3 of [START_REF] Delsarte | Association schemes and t-designs in regular semi-lattices[END_REF] with i = j = s and k = r for q = 2 . Here C in the notation of [START_REF] Delsarte | Association schemes and t-designs in regular semi-lattices[END_REF] is the binary code of length n, and dimension n -1 , consisting of all even Hamming weight vectors. ◻ ( (x), (y)) = ((x, y)) = (0) = 0.

N I (n, k) = (n, k) n -k n -2k 2 2 k 2 . ∑ C 1 |Aut(C)| = (n, k) n-k n-2k 2 2 k 2 n! ,
Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Using this Lemma the following analogue of Theorem 5 for QT4 codes can be shown. The easy proof is omitted.

Theorem 6 For all lengths n and type (k, n -2k) , with k > 0 we have

The following mass formula follows by the usual counting technique.

Corollary 2 For given length n, and type (k, n -2k) , with k > 0 , we have where C runs over distinct representatives of equivalence classes under column permutations of QT4 codes of length n and type (k, n -2k).

Short length classification ( n < 4)

In the following, we classify, up to coordinate permutation, QSD codes. We construct QSD codes by means of the multilevel construction, and of the characterization of Theorem 1, in short lengths ( n < 4 ) and rely on the mass formula to know the maximum number of equivalence classes.

For n = 1 there is just one QSD code with generator matrix b .

n = 2

There are two codes of length 2. Both are Type IV codes and their weight distribution is [<0, 1>, <2, 3>] . One is generated by a a and the other one by a c .

n = 3

There are exactly six codes that are not permutation equivalent. All these codes have an automorphism group of order 2. The following four codes have a minimum distance equal to 1.

• One code has generator matrix and weight distribution [<0, 1>, <1, 2>, <2, 1>, <3, 4>].

• One code has generator matrix 

N 4 (n, k) = (n, k) n -1 -k n -2k 2 2 k 2 . ∑ C 1 |Aut(C)| = (n, k) n-1-k n-2k 2 2 k 2 n! ,

Conclusion

In this article, we have studied quasi self-dual codes over the non-unital commutative ring I of order four. The existence of codes that are not nice precludes any attempt to derive a general MacWilliams formula, since this would imply a relation between the size of a code and that of its dual. We have thus introduced QSD codes as an alternative to the concept of self-dual codes. For similar reasons, we have introduced the notion of quasi Type IV codes, in view of the difficulty of studying Type IV codes. We have derived a mass formula for QSD codes and for QT4 codes to classify them under coordinate permutation equivalence.

The main open problem arising from this work would be to derive a mass formula for Type IV codes. This would require a characterization of these codes akin to what exists over E [START_REF] Alahmadi | Mass formula for self-dual codes over ℤ p 2[END_REF], or over unital rings of Type IV [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF]. It would be interesting to derive a classification under a notion of equivalence based on the symmetry of the Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

alphabet between a and c. It might be a simpler classification than the classification under column permutation of the present paper. On the computational side, pushing the classification of QSD codes beyond length 3, is certainly a worthy project, and might lead to the discovery of new additive 4 -codes in lengths > 3.
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since x ∈ C 1 a 0 0 b b and the code C 2 generated by the matrix a a b 0 b b have same residue and torsion codes. 5 formulas 5 . 1

 12551 which is self orthogonal. Thus C is self-orthogonal. The residue and torsion codes are immediately derived from the definitions. Since |C| = |C 1 ||C 2 |, the last assertion follows. ◻Note that for given residue and torsion codes many QSD codes may exist. As an example, the code C 1 generated by the matrix a Mass QSD codesDefine N I (n, k) as the number of QSD I-codes of length n and type (k, n -2k). Let (N, K) denote the number of self-orthogonal binary codes having parameters [N, K]. The following explicit formula for this quantity can be found in[10, p.1]. It is valid for K ≥ 1.

a a b 0 b 0

 0 Content courtesy of Springer Nature, terms of use apply. Rights reserved. and weight distribution [<0, 1>, <1, 2>, <2, 5>]. • The last two codes amongst these four share the same weight distribution [<0, 1>, <1, 1>, <2, 3>, <3, 3>] . Their generator matrices are and Two codes have minimum distance 2 and weight distribution [<0, 1>, <2, 5>, <3, 2>] . Their generator matrices are and These two codes are quasi Type IV codes with, as torsion code, a binary code of parameters [3, 2, 2] and generator matrix b 0 b 0 b b . Note that we obtain two quasi Type IV codes, which is consistent with Corollary 1.
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